首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The Baerzhe alkaline granite pluton hosts one of the largest rare metal (Zr, rare earth elements, and Nb) deposits in Asia. It contains a geological resource of about 100 Mt at 1.84 % ZrO2, 0.30 % Ce2O3, and 0.26 % Nb2O5. Zirconium, rare earth elements (REE), and Nb are primarily hosted by zircon, yttroceberysite, fergusonite, ferrocolumbite, and pyrochlore. Three types of zircon can be identified in the deposit: magmatic, metamict, and hydrothermal. Primary magmatic zircon grains occur in the barren hypersolvus granite and are commonly prismatic, with oscillatory zones and abundant melt and mineral inclusions. The occurrence of aegirine and fluorite in the recrystallized melt inclusions hosted in the magmatic zircon indicates that the parental magma of the Baerzhe pluton is alkali- and F-rich. Metamict zircon grains occur in the mineralized subsolvus granite and are commonly prismatic and murky with cracks, pores, and mineral inclusions. They commonly show dissolution textures, indicating a magmatic origin with later metamictization due to deuteric hydrothermal alteration. Hydrothermal zircon grains occur in mineralized subsolvus granite and are dipyramidal with quartz inclusions, with murky CL images. They have 608 to 2,502 ppm light REE and 787 to 2,521 ppm Nb, much higher than magmatic zircon. The texture and composition of the three types of zircon indicate that they experienced remobilization and recrystallization during the transition from a magmatic to a hydrothermal system. Large amounts of Zr, REE, and Nb were enriched and precipitated during the transitional period to form the giant low-grade Baerzhe Zr–REE–Nb deposit.  相似文献   

2.
The Shicaogou granite has been identified as a magnesian (Fe-number=0.71-0.76), calcic to calc-alkalic (MALI=3.84-5.76) and peraluminous (ASI=1.06-1.13) granite of the syn-collisional S-type, with high SiO2(>71%), A12O3 (>13%) and Na2O+K2O (6.28%-7.33%, equal for NaO2 and K2O). Trace element and REE analyses show that the granite is rich in LILE such as of Rb, Sr, Ba and Th, and poor in HFSE like Yb, Y, Zr and Hf. Its Rb/Sr ratio is greater than 1; the contents of Nb and Ta, and the ratio of Nb/Ta as well as the REE geochemical features (e.g. REE abundance, visible fractionation of LREE and HREE and medium to pronounced negative Eu anomalies) are all similar to those of crust-origin, continent-continent syn-collisional granite. Moreover, the granite exhibits almost the same pattern as that of the typical continent-continent syn-collisional granite on the spider diagram and all samples fall within the syn-collisional granite field.The cathodoluminescence (CL) investigations have revealed that the zircon f  相似文献   

3.
The chemical composition of zircons from S‐ and I‐type ilmenite‐series granitic rocks in the Chubu district is summarized based upon recent electron probe microanalysis. Zircons in S‐type Busetsu granite of the Ryoke Metamorphic Belt have a homogeneous composition with minimum impurities, whereas those of I‐type Naegi granite in the non‐metamorphic Sanyo Belt are enriched in Hf, Y, REE, Th and U along the crystal rims. Similar enrichment has been observed in a variety of zircon called Naegite. These minor components are concentrated in the F‐rich fluid phase of residual melts of the Naegi granite magma, and are crystallized in pegmatites during the latest magmatic stage. High values of Nb and Ta in some Naegite reported previously are attributed to micro‐inclusion of fergusonite.  相似文献   

4.
The Belt-Purcell Supergroup comprises dolomite-rich stratigraphic units in a dominantly siliciclastic succession, where sedimentation spans 1400-1470 Ma. Dolomitic units are variable mixtures of co-sedimented argillite and primary carbonate post-depositionally converted to secondary dolomite. Based on rare earth element (REE) relationships three distinct REE patterns are identified in the dolomite-rich units: Type 1 (T1d; d = dolomitic sample) with REE patterns parallel to post-Archean Upper Continental Crust (PA-UCC), albeit at lower absolute abundances due to dilution by carbonate content; Type 2 (T2d) with Heavy REE (HREE) enrichment but Light REE (LREE) depletion relative to T1d; and Type 3 (T3d) with enrichment in LREE and HREE relative to T1d, but erratic Middle REE (MREE) patterns. There is a progressive increase of ΣREE from T1d through T2d to T3d, whereas for ΣLREE/ΣHREE T2d < T1d < T3d. T1d-T2d and T3d represent three different “snapshots” of a continuous process.In terms of timing, dolomitization of calcite primary sediment in all samples likely took place broadly during burial diagenesis, as inferred for most Proterozoic dolomites. T1d is easily explained by provenance: however, T2d and T3d cannot be related to provenance, weathering or sedimentary sorting processes to explain higher concentrations of HREE referenced to PA-UCC and consequently developed in the sediment from a T1d precursor. The same three REE signatures have been described in previous studies in counterpart siliciclastic counterparts throughout the Belt-Purcell Supergroup at three different locations. Mobility of normally stable REE is accompanied by mobility of normally isochemical high field strength elements (HFSE) in T2d and T3d to give REE/REE, HFSE/HFSE, REE/HFSE and Y/HREE fractionations. No specific REE-HFSE signatures are apparent in the carbonate-rich units as compared to their non-dolomitic siliciclastic counterparts. This unusual mobility of REE and HFSE reflected in T2d and T3d is attributed to alkaline oxidizing post-depositional brines. Salinity was derived from seawater-sediment reactions, dissolution of evaporite minerals, and the smectite-illite transformation, whereas alkaline oxidizing conditions were promoted by groundwater interaction with mafic units in the basin, CO2 introduced into the system during episodic rifting with mantle degassing, and interaction of syn-sedimentary mafic intrusions with carbonate units at early stages of BPS deposition. Intermittent brine activity, inducing T2d and T3d patterns, spanned >1 Ga as recorded by secondary monazite grains with age distributions that correspond to large scale tectono-thermal events in Laurentia.Post-depositional processes and redistribution of carbonate can have an impact on transitional stratigraphic contacts between dolomitic and siliciclastic units which may have been incorrectly described as primary due to sedimentary environment changes.  相似文献   

5.
A unique zircon was studied in the gneiss samples collected from the Wadi Abu Rusheid psammitic gneiss using electron scanning microscope and electron probe microanalyses. This zircon can be categorized into two types according to the texture and trace element content: (l) magmatic zircon slightly enriched in HfO2 with ordinary zone. (2) Overgrowths of zircon occur as two species, the first species being highly enriched in HfO2 with irregular zoning. The second species is highly enriched in HfO2 forming a rim around the second species with a very sharp thinner boundary. The first type shows a distinct oscillatory internal zoning pattern without change in shape of this zone and has conspicuous inclusion-free zircon overgrowths with distinct poor concentrations in Y, Hf, Th, U, Nb, and Ta in both rim and core. The second type shows two species, the first one displays distinct irregular interval zoning and irregular overgrowth with abrupt change in composition of these zones with distinct enrichment in Y, Hf, Th, U, Nb, and Ta in the rim relative to the core. The second species is forming a rim around the first species also with distinct enrichment in Y, Hf, Th, U, Nb, and Ta content. These indicate that two events (crystallization environment) have played an important role in the formation of this zircon and largely reflect differences in whole-rock trace element contents between the successive generations of this zircon. The first event is believed to be of magmatic origin giving rise to normal composition of magmatic zircon. The second event shows an intense successive process of metasomatic activity during the formation of the Abu Rusheid radioactive gneiss. Electron microprobe analysis indicates that oscillatory zoned zircon shows poor content of Y, Hf, Th, U, Nb, Ta, and rare earth elements (REE) in the rim and core, while overgrowths of zircon are slightly enriched by these elements. Also, these analyses indicate that the Abu Rusheid psammitic gneiss has been significantly enriched by the thorite mineral (Th content up to 54.72% ThO2) and columbite-bearing minerals (Nb content up to 64.74% Nb2O5, Ta content up to 9.32% Ta2O5). The poor content of REE in overgrowths of zircon indicates mobilization of REE during the metamorphism processes of gneiss.  相似文献   

6.
The sources and formation conditions of unconventional Zr–Nb–REE mineralisation (REE = rare earth elements) presently found in increasing number worldwide are still poorly constrained. One particular problem is the specific role of magmatic and hydrothermal processes active in various geological settings. Investigation of Zr–Nb–REE mineralisation at Khalzan Buregte and Tsakhir, Western Mongolia, enables to evaluate magmatic processes preceding economic mineralisation and, in a second step, to compare similar ore-forming processes developing in host rocks of contrasting rock composition (low- vs. high-silica rocks). The genesis of the Zr–Nb–REE mineralisation is re-assessed using field observations, whole rock analysis (chemical composition, quantitative modal analysis by X-ray diffraction) and by the application of various transmitted light and electron microscopic techniques. Coarse-grained intrusive bodies, dikes and volcanic rocks of alkaline, silica-saturated composition were found to be contemporarily emplaced at subvolcanic to volcanic levels forming four alkaline massifs within the Khalzan Buregte area. The whole rock composition of weakly altered magmatic rocks ranges from syenite to quartz monzonite and alkaline granite (alkali feldspar syenite to alkali feldspar granite according to their modal composition). Magmatic and at least two subsequent hydrothermal processes contributed significantly to the formation of economic concentrations of high field strength elements (HFSE) such as Zr, Hf, Nb, Ta, REE and Y in the Khalzan Buregte deposit and in the nearby Tsakhir prospect. Mixing of magma from at least three sources and the formation of potassium feldspar cumulates resulted in local enrichment of Zr, Nb and light rare earth elements (LREE) in the rocks up to sub-economic levels. There was no significant increase in Y and heavy rare earth elements (HREE) during magmatism.Multistage metasomatic alteration resulted in a pronounced chemical and mineralogical heterogeneity of associated alteration assemblages. The main hosts of Zr and Hf in the ores are zircon and other zirconium silicates (gittinsite, catapleiite-(Ca) and elpidite). The rare metals Nb and Ta are mainly contained in various types of pyrochlore (Khalzan Buregte) and, to a lesser extent, in fergusonite and other minerals (Tsakhir). A large variety of REE- and Y-bearing minerals have been identified, including oxides, fluorocarbonates and silicates. Early hydrothermal alteration by silica- and carbonate-rich fluids yielded extreme concentrations of Zr, Nb and LREE. Later alteration resulted in enrichment of Y and HREE. In the latter case, fluids were very rich in fluorine. Our preliminary genetic model assumes a carbonatite-related fluid system responsible for the early alteration that occurred late during or postdating the intrusion/extrusion of the silica-saturated magmas. A “Li-F granite-type” fluid system was active during the late alteration. The interplay of all these processes resulted in the formation of a complex, economic Zr–Nb–REE mineralisation at Khalzan Buregte.  相似文献   

7.
金红石边缘形成榍石冠状边结构在变质中-基性岩中普遍存在,是金红石与退变质流体携带的SiO_2与CaO作用的结果,反应形成的榍石微量元素特征受到金红石和流体的共同影响。雅鲁藏布江缝合带中角闪岩LZ06-04在抬升过程经历近等温降压退变质作用,石榴子石分解导致同一样品中含石榴子石部分与不含石榴子石部分的退变质流体成分的差异。两种流体分别与金红石反应,对应形成的榍石具有相似的Nb、Ta含量和Nb/Ta比值特征,但截然不同的REE特征。榍石的Nb、Ta来源于金红石,残余金红石与含水流体再平衡Nb、Ta的分配系数增大,且D_(Nb)~(Rt/Fluid)≥D_(Ta)~(Rt/Fluid);虽然Nb和Ta在含水流体中都表现为不活动元素,但相对于Nb,Ta在含水流体中活动性较高。榍石的Zr-Hf体系特征受到锆石、石榴子石等矿物的综合影响,并且Zr-Hf在含水流体中表现出比Nb-Ta更高的活动性。榍石的REE特征受流体中REE特征、榍石与流体配分系数以及共生矿物的影响。在岩浆或变质体系,榍石形成过程中,REE富集矿物(如石榴子石、锆石、褐帘石、独居石、磷灰石等)形成或分解将影响榍石的REE分布特征或形成REE环带结构。含水流体中金红石退变质形成榍石反应的进行受流体中TiO_2、CaO和SiO_2活度的影响。因此榍石常见于钙碱性岩浆岩、富Ca基性变质岩和矽卡岩中。流体中CaO活度的变化影响榍石的形成,进而影响Ti、Nb、Ta在流体中的运移能力。俯冲板片产生流体在交代上覆富Ca地幔楔物质过程中形成榍石残留同样可以造成部分熔融体具有亏损HFSE特征。  相似文献   

8.
Tungsten mineralisation in the NE Hindu Kush terrain occurs 8 km NW of the Tirich Boundary Zone suture between Karakoram and Eastern Hindu Kush. Scheelite occurs mainly in calc-silicate rocks and subordinately in tourmalinites associated with metasediments at Miniki Gol, Chitral. The investigated area underwent two phases of deformation and was metamorphosed up to sillimanite grade, followed by the emplacement of leucogranite and hydrothermal activity. The mineral assemblages of the calc-silicate rocks, comprising clinozoisite, quartz, calcic-amphibole, plagioclase, chlorite, biotite, calcite, sphene, garnet and scheelite, clearly express a skarn type environment. The coexistence of the scheelite grains with clinozoisite and the occurrence of anomalous values of ZrO2 and Ta2O5 in the scheelite grains imply a genetic link between the scheelite mineralisation and post-magmatic hydrothermal fluids. The enrichment of Zr, Hf, Be, Sn, W, Th, U, Ga, Nb, F and Y along with total REE in the scheelite-bearing calc-silicate rocks compared with the associated metasediments assigns that the rocks at Miniki Gol have undergone a pronounced hydrothermal activity. Strong positive correlations between Zr, Hf, Nb, Y, Ta, F and REE, and the mobility of REE are consistent with this consideration. Aqueous fluid inclusions in the scheelite-bearing calc-silicate rocks display very low salinity, suggesting a mixing of magmatic fluids with meteoric water. The formation of intergrown scheelite and clinozoisite indicates a high pH and CO2-deficient fluid. The tungsten mineralization may be related to the Miniki Gol leucogranite which occurs at a distance of only 400 m.  相似文献   

9.
Igneous rocks of Nusab El Balgum are formed as an elongated complex mass covering an area of about 4 km?×?12.5 km (50 km2), in the NNE-SSW direction of the Tarfawi-Qena-South Sinai trend, which is a branch of the Trans-African shear zone at the intersection with the Kalabsha fault, which is a branch from Guinean-Nubian lineaments. The continuous reactivation of these two major weakness zones from the late Triassic to recent times has created many generations of the magma batches. The exposed granitic rocks of these batches at Nusab El Balgum were represented by the fresh peralkaline granite (youngest) and hydrothermally altered granites (oldest). The fresh peralkaline granite takes the form of a small stock composed essentially of perthites, quartz, sodic pyroxenes, amphiboles (secondary), and rare albite according to the proportion of presence, respectively. The accessory minerals are zircon, bastnaesite-(Ce), columbite-(Fe), magnetite, barite, and sphalerite. The geochemical study indicated that this granite is peralkaline, ferroan, A-type (specifically belongs to the A1-subgroup), anorogeny, emplaced in a within-plate, and crystallized at relatively shallow depth from the alkali basaltic magma similar to the OIBs. Furthermore, it is enriched in the HFSE (e.g., Th, U, Nb, REE, and Zr). The hydrothermally altered granites are formed as an incomplete ring shape and a small stock. They were formed during the late Cretaceous age and were altered due to the hydrothermal solutions from the continuous reactivation affected weakness zones and the new magmatic batches. The hydrothermally altered granites are extremely rich in HFSE found in the accessory minerals such as zircon (different in shape, size, and contains inclusions of bastnaesite and columbite), columbite-(Fe&Mn), rare gittinsite, pyrochlore minerals (ceriopyrochlore and plumbopyrochlore) carlosbarbosaite, changbaiite, bastnaesite-(Ce), monazite-(Ce), stetindite, cerianite-(Ce), thorite, and uranothorite. These rocks were subjected to many highly superimposed hydrothermal alteration types, including propylitic, sericitic, potassic, silicification, argillic, and Fe-Mn oxy-hydroxides. The hydrothermal solutions with low temperatures and containing F1? and CO32?, PO43? and H2O caused redistribution; transportation and redeposition of the HFSE in these rocks, in addition to the clay minerals and K-metasomatism, were formed. The relations between the silicification index (SI?=?SiO2/(SiO2 + Al2O3) and Zr, Nb, Th, U, LREE, and HREE are positive but they become negative with the K-metasomatism.  相似文献   

10.
The Katugin deposit of economic Ta, Nb, Zr, U, REE, Y, and cryolite (Na3AlF6) ores is located in the Kalar district of the Chita region and classified as unique in Nb, Ta, and Y reserves hosted in rare-metal alkali granite. The distribution of trace elements (including REE) in zircon was studied for ore-bearing arfvedsonite–aegirine, biotite–riebeckite rocks, and zones of late recrystallization with nodular zircon clusters. The outer rims and marginal zones of zircon grains are depleted in almost all trace elements except for hafnium as compared with cores and central zones. Compositional features of zircon cores indicate their magmatic origin and do not prove metasomatic nature of the deposit. The similar REE patterns of zircon rims and cores, as well as other attributes assume postmagmatic or metamorphic origin of the rims.  相似文献   

11.
The Benjamin River apatite prospect in northern New Brunswick, Canada, is hosted by the Late Silurian Dickie Brook plutonic complex, which is made up of intrusive units represented by monzogranite, diorite and gabbro. The IOA ores, composed mainly of apatite, augite, and magnetite at Benjamin River form pegmatitic pods and lenses in the host igneous rocks, the largest of which is 100 m long and 10–20 m wide in the diorite and gabbro units. In this study, 28 IOA ore and rock samples were collected from the diorite and gabbro units. Mineralogical observations show that the apatite–augite–magnetite ores are variable in the amounts of apatite, augite, and magnetite and are associated with minor amounts of epidote‐group minerals (allanite, REE‐rich epidote and epidte) and trace amounts of albite, titanite, ilmenite, titanomagnetite, pyrite, chlorite, calcite, and quartz. Apatite and augite grains contain small anhydrite inclusions. This suggests that the magma that crystallized apatite and augite had high oxygen fugacity. In back scattered electron (BSE) images, apatite grains in the ores have two zones of different appearance: (i) primary REE‐rich zone; and (ii) porous REE‐poor zone. The porous REE‐poor zones mainly appear in rims and/or inside of the apatite grains, in addition to the presence of apatite grains which totally consist of a porous REE‐poor apatite. This porous REE‐poor apatite is characterized by low REE (<0.84 wt%), Si (<0.28 wt%), and Cl (<0.17 wt%) contents. Epidote‐group minerals mainly occur in grain boundary between the porous REE‐poor apatite and augite. These indicate that REE leached from primary REE‐rich apatite crystallized as allanite and REE‐rich epidote. Magnetite in the ores often occurs as veinlets that cut apatite grains or as anhedral grains that replace a part of augite. These textures suggest that magnetite crystallized in the late stage. Pyrite veins occur in the ores, including a large amount of quartz and calcite veins. Pyrite veins mainly occur with quartz veins in augite. These textures indicate pyrite veins are the latest phase. Apatite–augite–magnetite ore, gabbro–quartz diorite and feldspar dike collected from the Benjamin River prospect contain dirty pure albite (Ab98Or2–Ab100) under the microscope. The feldspar dikes mainly consist of dirty pure albite. Occurrences of the dirty pure albite suggest remarkable albitization (sodic alteration) of original plagioclase (An25.3–An60 in Pilote et al., 2012) associating with intrusion of monzogranite into gabbro and diorite. SO42? bearing magma crystallized primary REE‐rich apatite, augite and anhydrite reacted with Fe in the sodic fluids, which result in oxidation of Fe2+ and release of S2? into the sodic fluids. REE, Ca and Fe from primary REE‐rich apatite, augite and plagioclase altered by the sodic fluids were released into the fluids. Then Fe3+ in the sodic fluids precipitated as Fe oxides and epidote‐group minerals in apatite–augite–magnetite ores. Finally, residual S2? in sodic fluids crystallized as latest pyrite veins. In conclusion, mineralization in Benjamin River IOA prospect are divided into four stages: (1) oxidized magmatic stage that crystallized apatite, augite and anhydrite; (2) sodic metasomatic stage accompanying alteration of magmatic minerals; (3) oxidized fluid stage (magnetite–epidote group minerals mineralization); and (4) reduced fluid stage (pyrite mineralization).  相似文献   

12.
Most rare-metal granites in South China host major W deposits with few or without Ta–Nb mineralization. However, the Yashan granitic pluton, located in the Yichun area of western Jiangxi province, South China, hosts a major Nb–Ta deposit with minor W mineralization. It is thus important for understanding the diversity of W and Nb–Ta mineralization associated with rare-metal granites. The Yashan pluton consists of multi-stage intrusive units, including the protolithionite (-muscovite) granite, Li-mica granite and topaz–lepidolite granite from the early to late stages. Bulk-rock REE contents and La/Yb ratios decrease from protolithionite granite to Li-mica granite to topaz–lepidolite granite, suggesting the dominant plagioclase fractionation. This variation, together with increasing Li, Rb, Cs and Ta but decreasing Nb/Ta and Zr/Hf ratios, is consistent with the magmatic evolution. In the Yashan pluton, micas are protolithionite, muscovite, Li-mica and lepidolite, and zircons show wide concentration ranges of ZrO2, HfO2, UO2, ThO2, Y2O3 and P2O5. Compositional variations of minerals, such as increasing F, Rb and Li in mica and increasing Hf, U and P in zircon are also in concert with the magmatic evolution from protolithionite granite to Li-mica granite to topaz–lepidolite granite. The most evolved topaz–lepidolite granite has the highest bulk-rock Li, Rb, Cs, F and P contents, consistent with the highest contents of these elements and the lowest Nb/Ta ratio in mica and the lowest Zr/Hf ratio in zircon. Ta–Nb enrichment was closely related to the enrichment of volatile elements (i.e. Li, F and P) in the melt during magmatic evolution, which raised the proportion of non-bridging oxygens (NBOs) in the melt. The rims of zoned micas in the Li-mica and topaz–lepidolite granites contain lower Rb, Cs, Nb and Ta and much lower F and W than the cores and/or mantles, indicating an exotic aqueous fluid during hydrothermal evolution. Some columbite-group minerals may have formed from exotic aqueous fluids which were originally depleted in F, Rb, Cs, Nb, Ta and W, but such fluids were not responsible for Ta–Nb enrichment in the Yashan granite. The interaction of hydrothermal fluids with previously existing micas may have played an important role in leaching, concentrating and transporting W, Fe and Ti. Ta–Nb enrichment was associated with highly evolved magmas, but W mineralization is closely related to hydrothermal fluid. Thus these magmatic and hydrothermal processes explain the diversity of W and Ta–Nb mineralizations in the rare-metal granites.  相似文献   

13.
Whole‐rock geochemistry, zircon U–Pb and molybdenite Re–Os geochronology, and Sr–Nd–Hf isotopes analyses were performed on ore‐related dacite porphyry and quartz porphyry at the Yongping Cu–Mo deposit in Southeast China. The geochemical results show that these porphyry stocks have similar REE patterns, and primitive mantle‐normalized spectra show LILE‐enrichment (Ba, Rb, K) and HFSE (Th, Nb, Ta, Ti) depletion. The zircon SHRIMP U–Pb geochronologic results show that the ore‐related porphyries were emplaced at 162–156 Ma. Hydrothermal muscovite of the quartz porphyry yields a plateau age of 162.1 ± 1.4 Ma (2σ). Two hydrothermal biotite samples of the dacite porphyry show plateau ages of 164 ± 1.3 and 163.8 ± 1.3 Ma. Two molybdenite samples from quartz+molybdenite veins contained in the quartz porphyry yield Re–Os ages of 156.7 ± 2.8 Ma and 155.7 ± 3.6 Ma. The ages of molybdenite coeval to zircon and biotite and muscovite ages of the porphyries within the errors suggest that the Mo mineralization was genetically related to the magmatic emplacement. The whole rocks Nd–Sr isotopic data obtained from both the dacite and quartz porphyries suggest partial melting of the Meso‐Proterozoic crust in contribution to the magma process. The zircon Hf isotopic data also indicate the crustal component is the dominated during the magma generation.  相似文献   

14.
The Boziguoer A-type granitoids in Baicheng County,Xinjiang,belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks.The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite,an aegirine or arfvedsonite alkali feldspar granite,and a biotite alkali feldspar syenite.The major rock-forming minerals are albite,K-feldspar,quartz,arfvedsonite,aegirine,and siderophyllite.The accessory minerals are mainly zircon,pyrochlore,thorite,fluorite,monazite,bastnaesite,xenotime,and astrophyllite.The chemical composition of the alkaline granitoids show that SiO2 varies from 64.55% to 72.29% with a mean value of 67.32%,Na2O+K2O is high (9.85%-11.87%) with a mean of 11.14%,K2O is 2.39%-5.47% (mean =4.73%),the K2O/Na2O ratios are 0.31-0.96,Al2O3 ranges from 12.58% to 15.44%,and total FeOT is between 2.35% and 5.65%.CaO,MgO,MnO,and TiO2 are low.The REE content is high and the total SREE is (263-1219) ppm (mean =776 ppm),showing LREE enrichment and HREE depletion with strong negative Eu anomalies.In addition,the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type.The Zr content is (113-1246) ppm (mean =594 ppm),Zr+Nb+Ce+Y is between (478-2203) ppm with a mean of 1362 ppm.Furthermore,the alkaline granitoids have high HFSE (Ga,Nb,Ta,Zr,and Hf) content and low LILE (Ba,K,and Sr) content.The Nb/Ta ratio varies from 7.23 to 32.59 (mean =16.59) and the Zr/Hf ratio is 16.69-58.04 (mean =36.80).The zircons are depleted in LREE and enriched in HREE.The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly.The Boziguoer A-type granitoids share similar features with A1-type granites.The average temperature of the granitic magma was estimated at 832-839℃.The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature,anhydrous,and low oxygen fugacity conditions.  相似文献   

15.
Baerzhe Be–Nb–Zr–REE deposit is hosted in alkaline granite (125 Ma) which intrudes in the late Jurassic Baiyingaolao Formation in the middle of the Great Hinggan Metallogenic Belt in China. The ore‐forming granite consists of three lithological facies: arfvedsonite‐bearing alkaline granite at the bottom, aegirine‐bearing albite aplite in the middle and pegmatite crust on the top. The albite aplite is the main orebody. We recognized three magmatic‐hydrothermal stages: orthomagmatic stage, late‐magmatic stage and hydrothermal stage, with the late‐magmatic stage being divided into two substages, the pegmatite substage and the aplite substage. Petrographic study on the granite, the microthermometric study on fluid inclusions and in situ laser‐ablation inductively coupled plasma mass spectrometry analysis for quartz‐hosted melt inclusions reveal the process of magmatic‐hydrothermal evolution. The finding indicates that primary magma evolved to more peralkaline by fractional crystallization, with synchronously increasing high field strength elements. An extremely high content of Zr and Nb are in the melt inclusions from last stage albite aplite (Zr, min 52 548 ppm, and Nb, min 4104 ppm). This implies that the residual magma directly formed the orebody of rare metal elements. Meanwhile, volatility was increasing during the magma evolution process and F‐bearing aqueous fluid was oversaturated at temperatures higher than 800°C. The separation of fluid from magma caused Li‐REE enrichment in F‐bearing fluid and depletion in residual melt, and led to the difference of the Y/Ho ratio between whole rock compositions and melt inclusion data. Fluid separated into a high‐salinity liquid and a low density vapor phase above 697°C, and enriched REE in the high‐salinity liquid. The oxygen isotope data shows mixing between primary magmatic‐hydrothermal fluid and meteoric water. The ubiquitous pseudo‐secondary fluid inclusions have a wide range of salinity below 462°C, which is similar to the melting temperatures of REE‐bearing daughter minerals. A model involving the mixing by meteoric water could be a mechanism for precipitation of REE minerals.  相似文献   

16.
在野外地质调查的基础上,结合室内显微镜观察及电子探针分析测试,对新疆拜城波孜果尔碱性岩中的副矿物的矿物学特征和化学成分进行了研究.发现这些副矿物常以共生组合的形式产在碱性岩中,主要分布在石英二长闪长岩和石英二长岩中.烧绿石中U、Th和REE替代Ca、Na.独居石富含LREE,Th和LREE相互替代;根据独居石中w(La+ Ce) >40%和La/Nd比值在1.6~4.5,推断独居石为热液成因.磷钇矿中富含REE,且以HREE为主;w(Th)>w(U).锆石中Zr/Hf比值在60%以上,符合碱性岩特征;其Th/U比值为0.6,属于岩浆锆石.星叶石中w(Rb2O)、w(Cs2O)较高.萤石中Y、Ce替代Ca.锆石中的钍石w(U)明显高于磁铁矿中钍石w(U).在石英二长岩中,烧绿石的w(CaO)、w(TiO2)、w(ZrO2)、w(U3O8),磷钇矿的w(Y2O3),星叶石的w(TiO2),萤石的w(Ca),氟碳铈镧矿的w(CaO)较丰富;而在石英二长闪长岩中,烧绿石的w(Ce2O3),磷钇矿的REE含量,星叶石的w(Nb2O5)、w(Rb2O),萤石w(Ce)、w(Y)和氟碳铈镧矿的w(La2O3)较高.  相似文献   

17.
赵禹  赵玉岩  郝立波  陆继龙  赵新运 《地质通报》2014,33(10):1562-1570
成矿流体来源及性质是确定岩浆热液矿床找矿方向、建立找矿预测模型的重要依据。通过对紫金山铜金矿区内主要岩体岩石、典型矿石的对比分析,发现矿石与花岗闪长斑岩稀土元素特征相似,且花岗闪长斑岩岩体的形成年龄与成矿时间极为接近,可以为成矿流体提供足够的热量,因此推断该矿床的成矿流体最初来源于深部隐伏花岗闪长斑岩岩体分异的岩浆热液。矿石中富集Th、Nb、Ta、Zr、Hf等高场强元素和轻稀土元素,Hf/Sm值和Nb/La值都大于1,表明成矿流体具有F含量多于Cl的性质。结合前人大量的研究资料,建立了二庙沟—中寮剖面找矿预测模型。  相似文献   

18.
An eclogitemafic granulite occurs as a rare boudin within a felsic kyaniteK‐feldspar granulite in a low‐strain zone. Its boundary is marked by significant metasomatism–diffusional gain of potassium at the centimetre‐scale, and probable infiltration of felsic melt on a larger scale. This converted the eclogitemafic granulite into an intermediate‐composition, ternary‐feldspar‐bearing granulite. Based on inclusions in garnet, the peak P–T conditions of the original eclogite are 18 kbar at 850950 °C, with later matrix re‐equilibration at 12 kbar and 950 °C. Four samples from the transition of the eclogitemafic granulite through to the intermediate granulite were studied. In the eclogite, REE patterns in the garnet core show no Eu anomaly, compatible with crystallization in the absence of plagioclase and consistent with eclogite facies conditions. Towards the rim of garnet, LREE decrease, and a weak negative Eu anomaly appears, reflecting passage into HP granulite facies conditions with plagioclase present. The rims of garnet next to ternary feldspar in the intermediate granulite show the lowest LREE and deepest Eu anomalies. Zircon from the four samples was analysed by LASS (laser ablation–split‐stream inductively coupled plasma–mass spectrometry). It shows U–Pb ages from 404 ± 4.0 to 331 ± 3.3 Ma, with a peak at 340 ± 4.0 Ma corresponding to the likely exhumation of the rocks to 12 kbar. Older ages from zircon with steep HREE patterns indicate the minimum age of the protolith, and ages <360 ± 4.0 Ma are interpreted to correspond to the eclogite facies metamorphism. Only some zircon grains ≤350 ± 4.0 Ma have flat HREE patterns, suggesting that these are primarily modified protolith grains, rather than new zircon crystallized in the eclogite‐ or granulite facies. The metasomatic processes that converted the eclogitemafic granulite to an intermediate granulite may have facilitated zircon modification as zircon in the intermediate granulite has flat HREE and ages of 340 ± 4.0 Ma. The difference between the oldest and youngest ages with flat REE patterns indicates a 16 ± 5.6 Ma period of zircon modification in the presence of garnet.  相似文献   

19.
20.
Extremely U-depleted (<1 ppm) zircons from H8 banded ores in the East Orebody of the Bayan Obo REE–Nb–Fe deposit are presented, with mineral compositions, textures, 232Th–208Pb SHRIMP ages and petrological context. Cores of East Orebody zircon contain up to 7 wt% HfO2 and are zoned, depicting bipyramidal crystal forms. A distinct generation of patchy, epitaxial rim zircon, similarly depleted in U, is intergrown with rare earth ore minerals (bastnäsite, parisite, monazite). Overprinting aegirine textures indicate paragenetically late, reactive Na-rich fluids. Chondrite-normalized REE patterns without Eu anomalies match closely with those from the Mud Tank and Kovdor carbonatitic zircons. Increased HREE in rims ((Lu/Gd)N 43–112) relative to cores ((Lu/Gd)N 6–7.5) and the localized presence of xenotime are attributable to reactive, mineralizing fluid compositions enriched in Y, REE and P. Cathodoluminescence further reveals HREE fractionation in rims, evidenced by a narrow-band Er3+ emission at 405 nm. The extreme depletion of U in core and rim zircon is characteristic for this mineral deposit and is indicative of a persistent common source. U depletion is also a characteristic for zircons from carbonatitic or kimberlitic systems. 232Th–208Pb (SHRIMP II) geochronological data reveal the age of zircon cores as 1,325 ± 60 Ma and a rim-alteration event as 455.6 ± 28.27 Ma. The combined findings are consistent with a protolithic igneous origin for zircon cores, from a period of intrusive, alkaline–carbonatitic magmatism. Fluid processes responsible for the REE–Nb mineralizations affected zircon rim growth and degradation during the widely reported Caledonian events, providing a new example in a localized context of HREE enrichment processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号