首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ^190Pt-^186Os system should be a unique tracer for mantle processes be-cause both Pt and Os are concentrated in the mantle.The ^190Pt-^186Os system will also be a good supplement to the ^187Re-^187Os system for dating and tracing mantle pro-cesses because the ^190Pt-^186Os system is not so easily contaminated by crustal materials as the ^187Re-^187Os system.In turn,the application of the ^187Re-^187Os system to Pt-enriched materials uncontaminated by crustal materials will indirectly refine the half life of ^190Pt.The ^190Pt is refined.In the coupled ^187Re-^187Os and ^190Pt-^186Os sys-tematics,an ^186Os*/^190Pt-^187Os*/^187Re Concordia diagram similar to the ^206Pb*/^238U-^208Pb*/^232Th Concordia can be constructed.In such a Concordia diagram,a date will be obtained so long as the ^190Pt-^186Os system remains closed even if the ^187Re-^187Os sys -tem is contaminated by crustal materials.In addition ,for the coupled ^190Pt-^186Os and ^187Re-^187Os systematics,the mantle processes and the interactions between the mantle and the crust will be described by two ratios:^186Os/^188Os and ^187Os/^188Os .The coupled ^187Re-^187Os and ^190Pt-^186Os systematics will be a powerful tool in the investigation of the geodynamic history of the Earth because the ^187Re-^187Os system is sensitive to the interactions between the mantle and the crust,while the ^190Pt-^186Os system is a good tracer for mantle processes.  相似文献   

2.
Podiform chromite deposits occur in the mantle sequences of many ophiolites that were formed in supra-subduction zone (SSZ) settings. We have measured the Re-Os isotopic compositions of the major chromite deposits and associated mantle peridotites of the Dongqiao Ophiolite in the Bangong-Nujiang suture, Tibet, to investigate the petrogenesis of these rocks and their genetic relationships.The 187Os/188Os ratios of the chromite separates define a narrow range from 0.12318 to 0.12354, less variable than those of the associated peridotites. Previously-reported 187Os/188Os ratios of the Os-rich alloys enclosed in the chromitites define two clusters: 0.12645 ± 0.00004 (2 s; n = 145) and 0.12003 to 0.12194. The ultra-depleted dunites have much lower 187Os/188Os (0.11754, 0.11815), and the harzburgites show a wider range from 0.12107 to 0.12612. The average isotopic composition of the chromitites (187Os/188Os: 0.12337 ± 0.00001) is low compared with the carbonaceous chondrite value (187Os/188Os: 0.1260 ± 0.0013) and lower than the average value measured for podiform chromitites worldwide (0.12809 ± 0.00085). In contrast, the basalts have higher 187Os/188Os, ranging from 0.20414 to 0.38067, while the plagioclase-bearing harzburgite and cumulates show intermediate values of 187Os/188Os (0.12979 ~ 0.14206). Correspondingly, the basalts have the highest 187Re/188Os ratios, up to 45.4 ± 3.2, and the chromites have the lowest 187Re/188Os ratios, down to 0.00113 ± 0.00008. We suggest that melts/fluids, derived from the subducting slab, triggered partial melting in the overlying mantle wedge and added significant amounts of radiogenic Os to the peridotites. Mass-balance calculations indicate that a melt/mantle ratio of approximately 15:1 (melt: 187Re/188Os: 45.4, 187Os/188Os: 0.34484; mantle peridotite: 187Re/188Os: 0.0029, 187Os/188Os: 0.11754) is necessary to increase the Os isotopic composition of the chromitite deposits to its observed average value. This value implies a surprisingly low average melt/mantle ratio during the formation of the chromitite deposits. The percolating melts probably were of variable isotopic composition. However, in the chromitite pods the Os from many melts was pooled and homogenized, which is why the chromitite deposits show such a small variation in their Os isotopic composition. The results of this study suggest that the 187Os/188Os ratios of chromitites may not be representative of the DMM, but only reflect an upper limit. Importantly, the Os-isotope compositions of chromitites strongly suggest that such deposits can be formed by melt/mantle mixing processes.  相似文献   

3.
An extensive study of peridotitic sulfide inclusion bearing diamonds and their prospective harzburgitic host rocks from the 53 Ma Panda kimberlite pipe, Ekati Mine, NWT Canada, has been undertaken with the Re–Os system to establish their age and petrogenesis. Diamonds with peridotitic sulfide inclusions have poorly aggregated nitrogen (<30% N as B centers) at N contents of 200–800 ppm which differs from that of chromite and silicate bearing diamonds and indicates residence in the cooler portion of the Slave craton lithospheric mantle. For most of the sulfide inclusions, relatively low Re contents (average 0.457 ppm) and high Os contents (average 339 ppm) lead to extremely low 187Re/188Os, typically << 0.05. An age of 3.52 ± 0.17 Ga (MSWD = 0.46) and a precise initial 187Os/188Os of 0.1093 ± 0.0001 are given by a single regression of 11 inclusions from five diamonds that individually provide coincident internal isochrons. This initial Os isotopic composition is 6% enriched in 187Os over 3.5 Ga chondritic or primitive mantle. Sulfide inclusions with less radiogenic initial Os isotopic compositions reflect isotopic heterogeneity in diamond forming fluids. The harzburgites have even lower initial 187Os/188Os than the sulfide inclusions, some approaching the isotopic composition of 3.5 Ga chondritic mantle. In several cases isotopically distinct sulfides occur in different growth zones of the same diamond. This supports a model where C–O–H–S fluids carrying a radiogenic Os signature were introduced into depleted harzburgite and produced diamonds containing sulfides conforming to the 3.5 Ga isochron. Reaction of this fluid with harzburgite led to diamonds with less radiogenic inclusions while elevating the Os isotope ratios of some harzburgites. Subduction is a viable way of introducing such fluids. This implies a role for subduction in creating early continental nuclei at 3.5 Ga and generating peridotitic diamonds.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
Ultramafic xenoliths entrained in the late Miocene alkali basalts and basanites from NW Turkey include refractory spinel-harzburgites and dunites accompanied by subordinate spinel-lherzolites. Whole-rock major and trace element characteristics indicate that the xenoliths are mostly the solid residues of varying degrees of partial melting (~4–~15%), but some have geochemical signatures reflecting the processes of melt/rock interaction. Mantle-normalized trace element patterns for the peridotites vary from LREE-depleted to strongly LREE-enriched, reflecting multistage mantle processes from simple melt extraction to metasomatic enrichment. Rhenium and platinum group element (PGE) abundances and 187Os/188Os systematics of peridotites were examined in order to identify the nature of the mantle source and the processes effective during variable stages of melt extraction within the sub-continental lithospheric mantle (SCLM). The peridotites are characterized by chondritic Os/Ir and Pt/Ir ratios and slightly supra-chondritic Pd/Ir and Rh/Ir ratios, representing a mantle region similar in composition to the primitive mantle (PM). Moderate enrichment in PPGE (Pd–Pt–Rh)/IPGE (Ir–Os–Ru) ratios with respect to the PM composition in the metasomatized samples, however, reflects compositional modification by sulphide addition during possible post-melting processes. The 187Os/188Os ratios of the peridotites range from 0.11801 to 0.12657. Highly unradiogenic Os isotope compositions (γOs at 10 Ma from –7.0 to –3.2) in the chemically undisturbed mantle residues are accompanied by depletion in Re/Os ratios, suggesting long-term differentiation of SCLM by continuous melt extraction. For the metasomatized peridotites, however, systematic enrichments in PPGE and Re abundances, and the observed positive covariance between 187Re/188Os and γOs can most likely be explained by interaction of solid residues with basaltic melts produced by melting of relatively more radiogenic components in the mantle. Significantly, the wide range of 187Os/188Os ratios characterizing the entire xenolith suite seems to be consistent with multistage evolution of SCLM and suggests that parts of the lithospheric mantle contain materials that have experienced ancient melt removal (~1.3 Ga) which created time-integrated depletion in Re/Os ratios; in contrast, some other parts display evidence indicative of recent perturbation in the Re–Os system by sulphide addition during interaction with metasomatizing melts.  相似文献   

5.
In this study, the USGS black shale reference material SBC‐1 was investigated as a matrix‐matched reference material for both intra‐laboratory calibration and inter‐laboratory comparison of high‐precision Re‐Os dating for organic‐rich sedimentary rocks. This reference material was analysed for Re‐Os isotopic composition by three digestion protocols – inverse aqua regia, CrO3‐H2SO4 and H2O2‐HNO3. The results for SBC‐1 obtained by inverse aqua regia digestion yielded similar Re mass fractions but slightly (~ 5%) higher Os mass fractions and lower 187Os/188Os values than the CrO3‐H2SO4 and H2O2‐HNO3 digestions. The data set of inverse aqua regia digestion exhibited strong correlations in plots of 187Os/188Os vs. 1/192Os and 187Os/188Os vs. 187Re/188Os, which may signify the incorporation of detrital Re and Os into organic matter in the Re‐Os system. Similar correlations were also observed for the CrO3‐H2SO4 digestion data set, but not for that of H2O2‐HNO3. The data indicate that there is an amount of non‐hydrogenous Os in SBC‐1 and that CrO3‐H2SO4 and H2O2‐HNO3 digestions would minimise liberation of the non‐hydrogenous Os component. We propose that SBC‐1 may be a more suitable reference material to monitor the influence of detrital Re and Os on Re‐Os isochron age data, especially for samples with less organic matter and more siliceous detritus.  相似文献   

6.
Sulfide inclusions in diamonds from the 90-Ma Jagersfontein kimberlite, intruded into the southern margin of the Kaapvaal Craton, were analyzed for their Re–Os isotope systematics to constrain the ages and petrogenesis of their host diamonds. The latter have δ13C ranging between −3.5 and −9.8‰ and nitrogen aggregation states (from pure Type IaA up to 51% total N as B centers) corresponding to time/temperature history deep within the subcontinental lithospheric mantle. Most sulfides are Ni-poor ([Ni + Co]/Fe = 0.05–0.25 for 15 of 17 inclusions), have elevated Cu/[Fe + Ni + Co] ratios (0.02–0.36) and elemental Re–Os ratios between 0.5 and 46 (12 of 14 inclusions) typical of eclogitic to more pyroxenitic mantle sources. Re–Os isotope systematics indicate two generations of diamonds: (1) those on a 1.7 Ga age array with initial 187Os/188Os (187Os/188Osi) of 0.46 ± 0.07 and (2) those on a 1.1 Ga array with 187Os/188Osi of 0.30 ± 0.11. The radiogenic initial Os isotopic composition for both generations of diamond suggests that components with high time-integrated Re–Os are involved, potentially by remobilization of ancient subducted oceanic crust and hybridization of peridotite. A single sulfide with higher Os and Ni content but significantly lower 187Os/188Os hosted in a diamond with less aggregated N may represent part of a late generation of peridotitic diamonds. The paucity of peridotitic sulfide inclusions in diamonds from Jagersfontein and other kimberlites from the Kaapvaal craton contrasts with an overall high relative abundance of diamonds with peridotitic silicate inclusions. This may relate to extreme depletion and sulfur exhaustion during formation of the Kaapvaal cratonic root, with the consequence that in peridotites, sulfide-included diamonds could only form during later re-introduction of sulfur.  相似文献   

7.
We present major element and PGE (platinum-group-element) abundances in addition to Re–Os isotope data for 11 spinel-facies whole rock peridotites from a single maar from the Middle Atlas Mountains, Morocco.Major element systematics of these xenoliths are generally correlated with indices of depletion. FeO–MgO systematics appear to suggest spinel-facies melting in the range of 5 to 25%. However, Al2O3 abundances in these xenoliths appear elevated relative to primitive mantle (Prima). The Al2O3 abundances in conjunction with other major elements require distinct re-enrichment of the Middle Atlas continental mantle root due to melt/rock reaction and precipitation of amphibole and/or clinopyroxene from passing silicate melts akin to MORB or OIB that evolved in reverse direction along the melting curves in e.g. FeO–MgO space. Sc and V confirm the range of apparent depletion and also indicate that the currently preserved fO2 in these peridotites is distinctly different from fO2 conditions observed in subduction zones.The majority of these xenoliths have low Os and Ir (I-PGEs) concentrations relative to Prima and modelled sulphide- and clinopyroxene-depleted residues of mantle melting under low fO2, mid-ocean ridge-like conditions. Moreover, Pt and Pd (P-PGE) abundances are elevated when compared to their expected abundances after substantial melt extraction. Importantly, the systematically low Ir abundances in the majority of samples show well-correlated trends with Al2O3, MgO and Cu that are inconsistent with established melting trends. Os isotopes in the Middle Atlas xenoliths range from 187Os/188Os = 0.11604 to 0.12664 although most samples are close to chondritic. The Os isotope ratios are decoupled from 187Re/188Os but, together with Re abundances, also exhibit a good correlation with Al2O3, MgO and Cu.The major element, I-PGE and Os isotope correlations suggest that the initial melt depletion led to the exhaustion of sulphide and clinopyroxene (20 to 30%) without significant stabilization of I-PGE-rich alloys. During later modal metasomatism of the refractory Middle Atlas continental mantle root with silicate melts akin to MORB or OIB the introduction of clinopyroxene/amphibole reduced the volume of the melt inducing sulphur saturation in these melts causing precipitation of secondary sulphides. This coupled crystallization of pyroxenes and sulphides (chalcopyrite) resulted in the two-component mixing systematics exhibited by I-PGEs, Os isotopes with major elements and Cu preserved in the Middle Atlas continental mantle root.  相似文献   

8.
含有普通锇的辉钼矿Re-Os同位素定年研究   总被引:14,自引:3,他引:11  
通过大量数据统计,表明较高比例的辉钼矿中存在普通锇。普通锇可能以类质同像形式存在于辉钼矿样品中,理论上辉钼矿中可能含有较高含量普通锇。辉钼矿样品含有较高含量普通锇可能对Re-Os定年结果产生很大影响,从原理上并结合实例证实了普通锇含量对辉钼矿Re-Os年龄影响程度。对于一般辉钼矿样品来讲,如果187Os总量(放射成因187Os与非放射成因187Os之和)与普通锇比值小于20,需要考虑普通锇对Re-Os模式年龄的影响,并提出了对于含有普通锇辉钼矿模式年龄的计算方法。先做出187Os/188Os-187Re/188Os等时线,求得初始187Os/188Os值,再根据初始187Os/188Os值和单个样品的普Os含量求得非放射成因的普Os中187Os的量。最后根据Re含量以及放射成因187Os含量得到模式年龄。  相似文献   

9.
《Chemical Geology》2007,236(3-4):323-338
Serpentinized garnet peridotites from the Xugou peridotite body of the Sulu ultrahigh-pressure (UHP) metamorphic terrane, central eastern China, are refractory (olivines have Fo91.7–93.1), indicating their origin as residual mantle. Negative correlations between whole-rock MgO and TiO2, Al2O3, total Fe2O3 and CaO (r =  0.90 to − 0.95) and positive correlations between whole-rock Al2O3 and CaO and incompatible elements [Li, V, Cu, Ga, Sr, Y, Zr, heavy rare earth elements (HREEs), Hf, Pb and U] (r = 0.69 to 0.98) likely reflect melt depletion trends. Four highly refractory samples were selected for Re–Os isotopic analysis. Although they show evidence of variable enrichment of incompatible elements during serpentinization/metasomatism, no correlations exist between 187Re/188Os or 187Os/188Os with either La or Re (r = 0.00 to 0.17). These results indicate that any Re addition was fairly recent and did not affect the Os isotopic composition significantly. The correlation between 187Os/188Os and 187Re/188Os ratios thus, most likely reflects an ancient melt extraction event.The TRD, TMA and errorchron ages of the Xugou peridotites are all similar, suggesting that these peridotites formed around 2.0 Ga ago. This age is similar to Os model ages of mantle peridotites from the Dabie terrane, but contrasts markedly with the Archean ages of the continental lithospheric mantle (CLM) beneath the eastern block of the North China craton (NCC). If we assume that the Dabie–Sulu belt formed by the Triassic collision of the Yangtze craton with the eastern block of NCC and that the Archean aged CLM of the latter persisted until the Triassic, the Paleoproterozoic ages suggest derivation of these Dabie–Sulu mantle peridotites from the Yangtze craton. A Yangtze craton origin is consistent with the existing tectonic model of the Dabie–Sulu UHP belt. Our results support the hypothesis that the crust and underlying lithospheric mantle of the Yangtze craton were subducted to depths of > 180–200 km to form the world's largest UHP belt.  相似文献   

10.
Peridotitic sulphide inclusions in diamonds from the central Slave craton constrain the age and origin of their subcontinental lithospheric mantle (SCLM) sources. These sulphides align with either a ca. 3.5 Ga (shallow SCLM) or a ca. 3.3 Ga isochron (deep SCLM) on a Re–Os ischron diagram, with variably enriched initial 187Os/188Os. Since some Archaean to recent plume-derived melts carry a subducted crust (eclogite) signature and some cratonic SCLM may have been generated in plumes by extraction of komatiitic liquids, we explain these data by subduction of evolved lithospheric material (shallow SCLM) and melting in a hybrid mantle plume that contains domains of recycled eclogite (deep SCLM), respectively. In upwelling hybrid mantle, eclogite-derived melts react with olivine in surrounding peridotites to form aluminous orthopyroxene, convert peridotite to pyroxenite and confer their crustal isotope signatures. We suggest that it is subsequent to orthopyroxene enrichment of peridotite in an upwelling plume that partial melting of this Al- and Si- enriched source generated komatiites and complementary ultradepleted cratonic mantle residues. Although subduction is needed to explain some cratonic features, melting of a hybrid plume source satisfies several key observations: (1) suprachondritic initial 187Os/188Os in subsets of lithospheric mantle samples and in some coeval Archaean komatiites; (2) variable enrichment of cratonic mantle by high-temperature aluminous orthopyroxene; (3) high Mg# combined with high orthopyroxene content in cratonic mantle due to higher melt productivity of an Al- and Si-richer source; (4) variable orthopyroxene enrichment possibly linked to varying mantle potential temperatures (Tp), plume buoyancy and resultant eclogite load and/or variable availability of subducted material in the source; and (5) absence of younger analogues due to a secular decrease in Tp. Most importantly, this model also alleviates a mass balance problem, because it predicts a hybrid mantle source with variably higher SiO2 and Al2O3 than primitive mantle, and, contrary to a primitive mantle source, is able to reconcile compositions of komatiites and complementary cratonic mantle residues.  相似文献   

11.
Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine(54%–58%) + orthopyroxene(40%–46%)+minor clinopyroxene(1%)+spinel. Samples with boninite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-Al end-members with Al_2O_3 content of 30 wt % –50 wt %, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO_2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements(REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of arc-and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have ~(187)Os/~(188)Os ratios ranging from 0.113–0.122, which is typical of cratonic lithospheric mantle. These ~(187)Os/~(188)Os ratios yield model melt extraction ages(TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Al_2O_3-~(187)Os/~(188)Os-proxy isochron ages of 2.4 Ga–2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean-Paleoproterozoic.  相似文献   

12.
The Qinling Orogenic Belt was formed by subduction and collision between the North and South China Blocks along the Shangdan suture. The Songshugou ultramafic massif located on the northern side of the Shangdan suture provides essential insights into the mantle origin and evolutionary processes during spreading and subduction of the Shangdan oceanic lithosphere. The ultramafic massif comprises harzburgite, coarse- and fine-grained dunites. The spinels from harzburgite exhibit low Cr# and high Mg# numbers, suggesting a mid-ocean ridge peridotite origin, whereas spinels from both coarse- and fine-grained dunites are indicated as resulted from melt-rock reaction due to their systematic higher Cr# and low Mg# numbers. This melt-rock reaction in the dunites is also indicated by the low TiO2 (mostly <0.4 wt%) in the spinel and high Fo (90–92) in olivines. Due to its relatively homogeneous nature in the mantle, oxygen isotopic composition is a sensitive indicator for the petrogenesis and tectonic setting of the Songshugou ultramafic rocks. Based on in-situ oxygen isotope analyses of olivines from twenty-six rock samples, most harzburgites from the Songshugou ultramafic massif show low δ18O values of 4.54–5.30‰, suggesting the olivines are equilibrium with N-MORB magmas and originally formed in a mid-ocean ridge setting. The coarse- and fine-grained dunites exhibit slightly higher olivine δ18O values of 4.69–6.00‰ and 5.00–6.11‰, respectively, suggesting they may have been modified by subduction-related boninitic melt-rock reaction. The δ18O values of olivines systematically increasing from the harzburgites, to coarse-grained dunites and fine-grained dunites may suggest enhancing of melt-rock reaction. The decreasing of Os concentration, 187Re/188Os and 187Os/188Os ratios from harzburgite to dunite suggest an 187Os-enriched, subduction zone melt was responsible for creating the melt channel for melt-rock reactions. Together with the high-temperature ductile deformation microstructures, these isotopic and mineral geochemical features suggest that the harzburgites represent mantle residues after partial melting at mid-ocean ridge or supra-subduction zone, while the dunites were probably resulted from reactions between boninitic melt and harzburgites in a supra-subduction zone. Re-Os geochronology yields a maximum Re depletion model age (TRD) of 805 Ma, constraining the minimum formation age of the harzburgites derived from oceanic mantle. Eight samples of whole rock and chromite yield a Re-Os isochron age of 500 ± 120 Ma, constraining the timing of melt-rock reactions. Combined with the regional geology and our previous investigations, the Songshugou ultramafic rocks favors a mantle origin at mid-ocean ridge before 805 Ma, and were modified by boninitic melt percolations in a SSZ setting at ca. 500 Ma. This long-term tectonic process from spreading to subduction might imply a huge Pan-Tethyan ocean between the Laurasia (e.g., North China Block) and Gondwana (e.g., South China Block) and/or a one-side subduction.  相似文献   

13.
本文对马关地区新生代碱性玄武岩中的地幔包体进行了系统的岩石学和地球化学研究,并首次进行了包体的Re-Os同位素测试。马关地区的橄榄岩包体主量成分上表现为饱满肥沃的特征;具有不同程度的轻稀土亏损特征,亏损Nb、Ti和Zr等高场强元素(HFSE)以及Ba等大离子亲石元素(LILE);橄榄岩包体的Nd同位素特征表明橄榄岩包体代表的是不均一的亏损地幔。5个橄榄岩全岩样品的Re-Os同位素分析结果表明,样品的Os含量总体较高(3.29×10-9~3.78×10-9),接近于造山带橄榄岩体的Os含量,Re含量变化范围较大(0.24×10-9~0.54×10-9),与Re的迁移能力较强有关。样品的187Os/188Os值在0.12295~0.12530之间变化,与187Re/188Os值和Al2O3含量之间都不存在较好的相关性,说明Re-Os体系不单纯由熔体抽取过程所控制。橄榄岩包体的Re亏损年龄tRD为254~604Ma,说明马关地区岩石圈地幔形成的时代应该在新元古代之前。马关地区岩石圈地幔并非是由软流圈上涌新增生的地幔,而是经历了如下演化历史:在新元古代之前,由原始地幔的部分熔融和熔体抽取作用形成了岩石圈地幔,之后经历了熔/流体交代和改造而发生了再富集作用,导致部分地幔橄榄岩逐渐从亏损难熔的特征向饱满肥沃转变,而未遭受熔/流体的改造的橄榄岩仍然保持了难熔亏损的特征。这种熔/流体交代和改造作用很可能与晚二叠纪峨眉山地幔柱的活动有关,而新生代以来印度-亚洲大陆碰撞导致地幔物质向东南方向的侧向流动,诱发软流圈上涌和马关地区的钾质岩浆的活动,也对马关地区岩石圈地幔的改造具有重要的影响,但由于喷发时间较新对Os同位素组成的影响还未显现出来。  相似文献   

14.
Major elements, highly siderophile elements (HSE) and Re-Os isotope ratios were analysed in situ on individual sulfide grains in spinel peridotite xenoliths hosted by Miocene intraplate basalts from the Penghu Islands, Taiwan. The xenoliths represent texturally and compositionally different mantle domains, and the geochemical characteristics of the sulfides show changes in HSE distribution and Re-Os isotope systematics, produced as their host rocks were metasomatised by percolating fluids/melts. In prophyroclastic and partly metasomatised peridotites from the Kueipi (KP) locality, the sulfides have subchondritic to superchondritic 187Re/188Os and 187Os/188Os ratios. Many of these sulfides reflect fluid/melt interaction with residual MSS and/or crystallization of fractionated sulfide melts, which produced high contents of Cu and PPGEs and high Re/Os; inferred melt/rock ratios are low. In contrast, sulfides in equigranular and extensively metasomatised peridotites from the Tungchiyu (TCY) locality are mainly more sulfur-rich Ni-(Co)-rich MSS, with subchondritic to chondritic 187Os/188Os and subchondritic 187Re/188Os. These sulfides are interpreted as products of interaction between pre-existing MSS and percolating silicate melts. Melt/rock ratios were high and the percolating melt was less differentiated than the melt that percolated the KP peridotites. Sulfides in a TCY pyroxenite are mainly MSS; they have the lowest HSE contents, subchondritic to superchondritic 187Os/188Os and subchondritic 187Re/188Os, and may have precipitated from sulfide melts that segregated from basaltic melts under S-saturated conditions. In most sulfides melt percolation appears to have induced fractionation among the HSEs and disturbed Re-Os isotope compositions. Despite the metasomatic effects, rare residual MSS, sulfides that from crystallised sulfide melts and sulfides modified by addition of Re (with no evidence for Os addition) can still provide useful chronological information. Such sulfides yield TRD age peaks of 1.9, 1.7-1.6, 1.4-1.3 and 0.9-0.8 Ga, which may record the timing of melt extraction and/or metasomatic events in the mantle. These periods are contemporaneous with the major crustal events recorded by U-Pb dates and Nd and Hf model ages in the overlying crust. This close correspondence indicates that the sulfide TRD ages reflect the timing of lithosphere-scale tectonothermal events (such as melting and metasomatism) that affected both the lithospheric mantle and the overlying crust. The sulfide TRD ages, taken together with the crustal data, suggest that most of the Cathaysia block had formed at least by Paleo-Proterozoic time, and that some domains are Archean in age.  相似文献   

15.
Initial 187Os/188Os isotopic compositions for geochronologically and geologically well -constrained 3.8-Ga spinel peridotites from the Itsaq Gneiss Complex of southern West Greenland and chromite separates from 3.46-Ga komatiites from the Pilbara region of Western Australia have been determined to investigate the osmium isotopic evolution of the early terrestrial mantle. The measured compositions of 187Os/188Os(0) = 0.10262 ± 2, from an olivine separate, and 0.10329 ± 3, for a spinel separate from ∼3.8-Ga peridotite G93/42, are the lowest yet reported from any terrestrial sample. The corrections for in situ decay over 3.8 Ga for these low Re/Os phases are minimal and change the isotopic compositions by only 0.5 and 2.2% for the spinel and the olivine, respectively, resulting in 187Os/188Os(3.8 Ga) = 0.1021 ± 0.0002 and 0.1009 ± 0.0002, respectively. These data extend direct measurement of Os isotopic compositions to much earlier periods of Earth history than previously documented and provide the best constraints on the Os isotopic composition of the early Archean terrestrial mantle. Analyses of Pilbara chromites yield 3.46-Ga mantle compositions of 0.1042 ± 0.0002 and 0.1051 ± 0.0002.These new data, combined with published initial Os isotopic compositions from late Archean and early Proterozoic samples, are compatible with the mantle, or at least portions of it, evolving from a solar system initially defined by meteorites to a modern composition of 187Os/188Os(0) = 0.1296 ± 0.0008 as previously suggested from peridotite xenolith data ( Meisel et al., 2001); the associated 187Re/188Os(0) = 0.435 ± 0.005. Thus, chondritic 187Os/188Os compositions were a feature of the upper mantle for at least 3.8 billion years, requiring chondritic Re/Os ratios to have been a characteristic of the very early terrestrial mantle. In contrast, nonchondritic initial compositions of some Archean komatiites demonstrate that Os isotopic heterogeneity is an ancient feature of plume materials, reflecting the development of variable Re/Os mantle sources early in Earth history.The lower average 187Os/188Os = 0.1247 for abyssal peridotites (Snow and Reisberg, 1995) indicate that not all regions of the modern mantle have evolved with the same Re/Os ratio. The relative sizes of the various reservoirs are unknown, although mass balance considerations can provide some general constraints. For example, if the unradiogenic 187Os/188Os modern abyssal peridotite compositions reflect the prevalent upper mantle composition, then the complementary high Re/Os basaltic reservoir must represent 20 to 40% by mass of the upper mantle (taken here as 50% of the entire mantle), depending on the mean storage age. The difficulties associated with efficient long-term storage of such large volumes of subducted basalt suggest that the majority of the upper mantle is not significantly Re-depleted. Rather, abyssal peridotites sample anomalous mantle regions.The existence of 3.8-Ga mantle peridotites with chondritic 187Os/188Os compositions and with Os concentrations similar to the mean abundances measured in modern peridotites places an upper limit on the timing of a late accretionary veneer. These observations require that any highly siderophile element -rich component must have been added to the Earth and transported into and grossly homogenized within the mantle by 3.8 Ga. Either large-scale mixing of impact materials occurred on very short (0-100 myr) timescales or (the interpretation preferred here) the late veneer of highly siderophile elements is unrelated to the lunar terminal cataclysm estimated to have occurred at ∼3.8 to 3.9 Ga.  相似文献   

16.
Osmium, Ru, Ir, Pt, Pd and Re abundances and 187Os/188Os data on peridotites were determined using improved analytical techniques in order to precisely constrain the highly siderophile element (HSE) composition of fertile lherzolites and to provide an updated estimate of HSE composition of the primitive upper mantle (PUM). The new data are used to better constrain the origin of the HSE excess in Earth’s mantle. Samples include lherzolite and harzburgite xenoliths from Archean and post-Archean continental lithosphere, peridotites from ultramafic massifs, ophiolites and other samples of oceanic mantle such as abyssal peridotites. Osmium, Ru and Ir abundances in the peridotite data set do not correlate with moderately incompatible melt extraction indicators such as Al2O3. Os/Ir is chondritic in most samples, while Ru/Ir, with few exceptions, is ca. 30% higher than in chondrites. Both ratios are constant over a wide range of Al2O3 contents, but show stronger scatter in depleted harzburgites. Platinum, Pd and Re abundances, their ratios with Ir, Os and Ru, and the 187Os/188Os ratio (a proxy for Re/Os) show positive correlations with Al2O3, indicating incompatible behavior of Pt, Pd and Re during mantle melting. The empirical sequence of peridotite-melt partition coefficients of Re, Pd and Pt as derived from peridotites () is consistent with previous data on natural samples. Some harzburgites and depleted lherzolites have been affected by secondary igneous processes such as silicate melt percolation, as indicated by U-shaped patterns of incompatible HSE, high 187Os/188Os, and scatter off the correlations defined by incompatible HSE and Al2O3. The bulk rock HSE content, chondritic Os/Ir, and chondritic to subchondritic Pt/Ir, Re/Os, Pt/Re and Re/Pd of many lherzolites of the present study are consistent with depletion by melting, and possibly solid state mixing processes in the convecting mantle, involving recycled oceanic lithosphere. Based on fertile lherzolite compositions, we infer that PUM is characterized by a mean Ir abundance of 3.5 ± 0.4 ng/g (or 0.0080 ± 0.0009*CI chondrites), chondritic ratios involving Os, Ir, Pt and Re (Os/IrPUM of 1.12 ± 0.09, Pt/IrPUM = 2.21 ± 0.21, Re/OsPUM = 0.090 ± 0.002) and suprachondritic ratios involving Ru and Pd (Ru/IrPUM = 2.03 ± 0.12, Pd/IrPUM = 2.06 ± 0.31, uncertainties 1σ). The combination of chondritic and modestly suprachondritic HSE ratios of PUM cannot be explained by any single planetary fractionation process. Comparison with HSE patterns of chondrites shows that no known chondrite group perfectly matches the PUM composition. Similar HSE patterns, however, were found in Apollo 17 impact melt rocks from the Serenitatis impact basin [Norman M.D., Bennett V.C., Ryder G., 2002. Targeting the impactors: siderophile element signatures of lunar impact melts from Serenitatis. Earth Planet. Sci. Lett, 217-228.], which represent mixtures of chondritic material, and a component that may be either of meteoritic or indigenous origin. The similarities between the HSE composition of PUM and the bulk composition of lunar breccias establish a connection between the late accretion history of the lunar surface and the HSE composition of the Earth’s mantle. Although late accretion following core formation is still the most viable explanation for the HSE abundances in the Earth’s mantle, the “late veneer” hypothesis may require some modification in light of the unique PUM composition.  相似文献   

17.
Rhenium (Re) is one of the least abundant elements in Earth, averaging 0.28 ppb in the primitive mantle. The unique occurrence of rheniite ReS2 (74.5 wt% of Re) in Kudryavy volcano precipitates raises questions about recycling of Re-rich reservoirs within the Kurile-Kamchatka volcanic Island arc setting. The sources of this unique Re enrichment have been inferred from studies of Re-Os isotope systematic and trace elements in volcanic gases, sulphide precipitates and host volcanic rocks. The fumarolic gas condensates are enriched in hydrophile trace elements relative to fluid-immobile elements and exhibit high Ba/Nb (133-204), Rb/Y (16-406) and Th/Zr (0.01-0.25) ratios. They are characterised by high Re (7-210 ppb) and Os abundances (0.4-0.9 ppb), with 187Os/188Os ratios in a range 0.122-0.152. This Os isotopic compositional range is similar to that of the peridotite xenoliths from the metasomatised mantle wedge above the subducted Pacific plate, the radiogenic isotopic signature of which is probably due to radiogenic addition from a slab-derived fluid.Re- and Os-rich sulphide and oxide minerals precipitate from volcanic gases within fumarolic fields. Molybdenite (MoS2), powellite (CaMoO4) and cannizzarite (Pb4Bi6S13) contain 1.5-1.7 wt%, 10 ppm, and 65-252 ppb of Re, respectively. Both molybdenite and rheniite contain normal Os concentrations, with total Os abundances in a range from 0.6 to 3.1 ppm for molybdenite, and 2.3-24.3 ppb for the rheniite samples. Repeated analyses of osmium isotope ratios for two rheniite samples form a best-fit line with an initial 187Os/188Os ratio of 0.32 ± 0.15 and an age of 79 ± 11 yr, which is the youngest age ever measured in natural samples. The high Re contents in molybdenite and rheniite led to high radiogenic 187Os values, even in the limited period of time, with 187Os/188Os ratios up to 3.3 for molybdenite and up to 4.4 for rheniite.The Os isotopic compositions of andesite-basaltic rocks from the Kudryavy volcano (187Os/188Os up to 0.326) are more radiogenic than those of residual peridotites and fumarolic gas condensates that are mainly constituted from magmatic vapor. Such radiogenic values can be attributed either to the addition of a radiogenic Os-rich subduction component to the depleted mantle, or to the assimilation of older dacitic caldera walls (187Os/188Os = 0.6) during arc magma ascent and emplacement. The latter hypothesis is supported by the correlation between 187Os/188Os ratio and indicators of fractionation such as MgO or Ni, and by low contents of potentially hydrophile trace elements such as Ba, Rb and Th relative to fluid-immobile elements such as Nb, Zr and Y. The high Re flux in the Kudryavy volcano (estimated at ∼46 kg/yr) can be explained by remobilisation of Re by Cl-rich water from an underplated mantle wedge and subducted organic-rich sediments of the Pacific plate.  相似文献   

18.
The Ransko gabbro–peridotite massif in Eastern Bohemia is a strongly differentiated intrusive complex, which hosts low-grade Ni–Cu ores mainly developed close to the contact of olivine-rich rocks with gabbros, in troctolites, and to a much lesser extent in both pyroxene and olivine gabbros and plagioclase-rich peridotites. Gabbro, troctolite, peridotite and Ni–Cu ores from the Jezírka Ni–Cu (PGE) deposit, considered to be a typical example of the liquid segregation style of mineralization, were analyzed for Re–Os concentrations and isotopic ratios. Seven barren and mineralized samples from the Jezírka deposit yielded a Re–Os regression of 341.5?±?7.9 Ma (MSWD?=?69). Strongly mineralized peridotite with mantle-like initial 187Os/188Os ratio of 0.125 suggests that Os as well as other PGE present in the Ni–Cu mineralization are predominantly of mantle origin. On the other hand, barren and low-mineralized samples have radiogenic initial 187Os/188Os ratios of 0.14–0.16 suggesting some import of Re and/or radiogenic 187Os most likely through contamination by continental crust during magma emplacement. The Re–Os age of the Ransko Massif is significantly younger than the previously suggested Lower Cambrian age, but it is similar to and/or younger than the age of metamorphism of the adjacent Kutná Hora crystalline complex and the Moldanubian unit. Therefore, it is likely that the emplacement of the Ransko massif and its Ni–Cu mineralization was closely connected with the late-stage evolution of the Kutná Hora crystalline complex.  相似文献   

19.
Pyroxenitic layers are a minor constituent of ultramafic mantle massifs, but are considered important for basalt generation and mantle refertilization. Mafic spinel websterite and garnet-spinel clinopyroxenite layers within Jurassic ocean floor peridotites from the Totalp ultramafic massif (eastern Swiss Alps) were analyzed for their highly siderophile element (HSE) and Os isotope composition.Aluminum-poor pyroxenites (websterites) display chondritic to suprachondritic initial γOs (160 Ma) of −2 to +27. Osmium, Ir and Ru abundances are depleted in websterites relative to the associated peridotites and to mantle lherzolites worldwide, but relative abundances (Os/Ir, Ru/Ir) are similar. Conversely, Pt/Ir, Pd/Ir and Re/Ir are elevated.Aluminum-rich pyroxenites (clinopyroxenites) are characterized by highly radiogenic 187Os/188Os with initial γOs (160 Ma) between +20 and +1700. Their HSE composition is similar to that of basalts, as they are more depleted in Os, Ir and Ru compared to Totalp websterites, along with even higher Pt/Ir, Pd/Ir and Re/Ir. The data are most consistent with multiple episodes of reaction of mafic pyroxenite precursor melts with surrounding peridotites, with the highest degree of interaction recorded in the websterites, which typically occur in direct contact to peridotites. Clinopyroxenites, in contrast, represent melt-dominated systems, which retained the precursor melt characteristics to a large extent. The melts may have been derived from a sublithospheric mantle source with high Pd/Ir, Pt/Ir and Re/Os, coupled with highly radiogenic 187Os/188Os compositions. Modeling indicates that partial melting of subducted, old oceanic crust in the asthenosphere could be a possible source for such melts.Pentlandite and godlevskite are identified in both types of pyroxenites as the predominant sulfide minerals and HSE carriers. Heterogeneous HSE abundances within these sulfide grains likely reflect subsolidus processes. In contrast, large grain-to-grain variations, and correlated variations of HSE ratios, indicate chemical disequilibrium under high-temperature conditions. This likely reflects multiple events of melt-rock interaction and sulfide precipitation. Notably, sulfides from the same thick section for the pyroxenites may display both residual-peridotite and melt-like HSE signatures. Because Totalp pyroxenites are enriched in Pt and Re, and depleted in Os, they will develop excess radiogenic 187Os and 186Os, compared to ambient mantle. These enrichments, however, do not possess the requisite Pt-Re-Os composition to account for the coupled suprachondritic 186Os-187Os signatures observed in some Hawaiian picrites, Gorgona komatiites, or the Siberian plume.  相似文献   

20.
Separation of a metal-rich core strongly depleted the silicate portion of the Earth in highly siderophile elements (HSE), including Pt, Re, and Os. To address the issues of how early differentiation, partial melting, and enrichment processes may have affected the relative abundances of the HSE in the upper mantle, 187Os/188Os and 186Os/188Os data for chondrites are compared with data for Os-rich alloys from upper mantle peridotites. Given that 187Os and 186Os are decay products of 187Re and 190Pt, respectively, these ratios can be used to constrain the long-term Re/Os and Pt/Os of mantle reservoirs in comparison to chondrites. Because of isotopic homogeneity, H-group ordinary and other equilibrated chondrites may be most suitable for defining the initial 186Os/188Os of the solar system. The 186Os/188Os ratios for five H-group ordinary chondrites range only from 0.1198384 to 0.1198408, with an average of 0.1198398 ± 0.0000016 (2σ). Using the measured Pt/Os and 186Os/188Os for each chondrite, the calculated initial 186Os/188Os at 4.567 Ga is 0.1198269 ± 0.0000014 (2σ). This is the current best estimate for the initial 186Os/188Os of the bulk solar system. The mantle evolution of 186Os/188Os can be defined via examination of mantle-derived materials with well-constrained ages and low Pt/Os. Two types of mantle-derived materials that can be used for this task are komatiites and Os-rich alloys. The alloys are particularly valuable in that they have little or no Re or Pt, thus, when formed, evolution of both 187Os/188Os and 186Os/188Os ceases. Previously published results for an Archean komatiite and new results for Os-rich alloys indicate that the terrestrial mantle evolved with Pt-Os isotopic systematics that were indistinguishable from the H-group ordinary and some enstatite chondrites. This corresponds to a Pt/Os of 2.0 ± 0.2 for the primitive upper mantle evolution curve. This similarity is consistent with previous arguments, based on the 187Os/188Os systematics and HSE abundances in the mantle, for a late veneer of materials with chondritic bulk compositions controlling the HSE budget of the upper mantle. It is very unlikely that high pressure metal-silicate segregation leading to core formation can account for the elemental and isotopic compositions of HSE in the upper mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号