首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在分析研究区地质及水文地质条件的基础上,根据对各类水样资料的研究,发现在都思兔河中段,对于相对惰性的组分,河水的化学成分由湖水与地下水混合形成;但对于易发生化学反应的组分,湖水在向下游运动的过程中,其化学成分明显受到了化学反应的影响。论文使用Cl-质量平衡方法,计算出该段河水中地下水的补给比例在50%以上;并且根据研究区的具体条件及矿物饱和指数的计算结果,确定石膏的溶解、方解石和白云石的沉淀以及CO2逸出是河水化学成分形成的主要化学作用,通过对化学反应量的计算,恢复了湖水与地下水仅发生了简单混合作用的混合水的成分。  相似文献   

2.
伊犁河支流大西沟河水与地下水转化关系研究   总被引:1,自引:1,他引:0       下载免费PDF全文
开展河流和地下水转换关系研究对于区域水资源合理开发利用具有重要意义。文章以大西沟河水与地下水转换关系为目标,在分析地下水动力场的基础上,通过水化学类型、溶解性总固体(TDS)、氯离子(Cl-)等水化学以及环境同位素18O、D、T等指标作为示踪剂,分析大西沟河和地下水的转换关系和转化强度。结果表明:研究区河流和地下水化学类型主要为HCO3—Ca,水化学类型空间分布特征相似;TDS和Cl-浓度表现为先增加后下降,但地下水的变化幅度大于河水。通过对大西沟河水和地下水中的水化学和环境同位素指标对比分析,发现研究区河流与地下水之间补给排泄关系具有明显的分段性;从河流出山口到下游地区,河水和地下水之间发生了三次转化关系:在山前倾斜砾质平原区以河水入渗补给地下水为主,补给量占该段潜水径流量的56%;到了细土平原区出现地下水补给河水地段,补给源为承压水越流补给潜水后的混合水体,潜水和承压水补给比例占该段河水径流量的20.4%与58.4%;风成沙漠区河水沿途渗漏补给地下水直至河流断流。本次研究结果为建立研究区水循环演化模式和水资源合理开发利用提供了理论和技术支持。  相似文献   

3.
汾河中游干流河水与大气降水和浅层地下水的转化关系   总被引:1,自引:0,他引:1  
文章通过分析太原盆地汾河中游干流河水和浅层地下水的水化学和同位素资料,研究汾河干流河水与浅层地下水和大气降水之间的转化关系。结果表明:总体而言,汾河中游干流河水的补给来源以浅层地下水为主,其次为大气降水;河水在向下游径流过程中,大气降水的补给比例逐渐增大,在河流流出太原盆地附近河水主要由大气降水补给。  相似文献   

4.
河水入渗路径和范围对确定地下水补给条件,以及水资源调控和合理利用有着重要意义。针对2015年以来怀柔地区地下水水位回升现象,开展了地下水动态影响因素研究,采集了河水和地下水样品,测试了水化学和氢氧稳定同位素组成。δD-δ18 O数据表明该区有河水入渗补给地下水,河流附近地下水为地下水与入渗河水的混合物。利用地下水δ18O值以及二元混合模型计算了地下水中入渗河水的比例,揭示出地下水中河水占比减小方向与地下水水力梯度下降方向一致;局部河段附近地下水Cl-含量增加,表明河水入渗会引起地下水水质变化。入渗河水影响范围的圈定为评价入渗河水对地下水的影响提供了重要数据。该项工作对理解研究区地下水水文过程、控制因素以及水资源管理具有指导意义。  相似文献   

5.
河水入渗补给是傍河水源地的主要补给来源,确定河水补给强度对于促进水源地长期安全的开采具有十分重要的意义。以沈阳黄家水源地为研究区,通过对比研究区河水、地下水的水化学及氢氧稳定同位素特征,分析了水源地地下水的补给来源及强度。结果表明:傍河水源地地下水主要接受河水的入渗补给和区域地下水的侧向补给;受河床沉积物和含水介质的岩性及结构在空间上的差异影响,河水入渗补给后在向地下水位漏斗中心流动的过程中具有浅层和深层两条地下水流路径,深层地下水与河水的水力联系更为紧密;河水对地下水的补给强度具有明显的时空变化特点,表现为雨季河水入渗强度明显大于旱季,并且随着与辽河距离的增加,水源地地下水获得的河水补给量呈逐渐减小的趋势。  相似文献   

6.
河水和地下水转化关系的定量评价是流域水资源量管理和合理利用的基础。在西北内陆马莲河流域下游开展氡同位素示踪,利用河水222Rn通量模型评价了地下水沿河排泄强度。结果表明:地下水222Rn活度高于河水1个数量级,潜流带水222Rn活度受河水、地下水混合作用及沉积物氡释放影响。马莲河下游均为白垩系环河组地下水排泄补给河水,累计排泄量4.5 m3/s,占河流流量的73.2%。排泄强度存在空间变异,上段及下段为地下水强排泄区,中段作用强度较低。模型不确定性主要受地下水端元、潜流带输入及气体逸散系数三个因素控制,222Rn示踪方法在地下水补给河水型地区较为适用。  相似文献   

7.
本文在对都思兔河流域水文地质条件进行介绍的基础上,根据实测结果对河流量及δ18O和δD沿流程的变化进行了讨论,分析了其变化机理。结果表明都思兔河流量沿流程的变化与地下水等水位线及河水与地下水的补排关系吻合很好。把河水的氢氧稳定同位素成分与流域内其他水体的成分进行比较发现,河水明显受蒸发作用的影响。河水同位素成分的变化主要由地下水的补给及河水的蒸发两种作用共同引起,地下水的补给使河水的1δ8O和δD减小,河水的蒸发则使其同位素成分增大。文章使用Rayleigh平衡分馏方程对河水的蒸发比例进行了计算,结果表明,河水的累计蒸发比例可达20%~48%。  相似文献   

8.
第二松花江流域地表水与地下水相互关系   总被引:8,自引:0,他引:8       下载免费PDF全文
通过野外采样和室内分析,采用稳定氢氧同位素和水化学相结合的方法,研究了第二松花江地表水和地下水的相互关系。地表水和地下水中稳定氢氧同位素(δD,δ18O)空间差异明显,上游水体中同位素最贫化,下游最富集。水化学类型从长白山源区的Na-HCO3型,演化成Ca-Mg-HCO3型;而在人类活动的影响下,向Ca(Mg)-Cl(SO4)演化。运用端元法定量计算了地表水与地下水的相互转换比例,上游山区深层地下水接受江水和浅层地下水的补给,浅层地下水补给比例占50%左右;下游平原区浅层地下水补给江水,补给比例占20%左右。研究结果可为综合利用地表水和地下水、促进水资源的可持续利用提供理论基础。  相似文献   

9.
赵振宏  王冬  李瑛 《地下水》2007,29(2):32-33,100
同一含水系统中在至少两个排泄区(点)之间有足够的地下水补给源情况下,两个排泄区(点)之间才能形成地下水分水岭.白于山中段和西段的洛河组含水层深埋于白垩系下部,在地层结构和地质构造控制下,基本上没有补给,在泾河最低排泄区控制下,洛河组地下水穿过白于山由北向南径流.因此,白于山中段和西段只是浅层地下水分水岭,对下层洛河组地下水流无控制作用,不是完全的地下水分水岭.  相似文献   

10.
黑河流域水循环过程中地下水同位素特征及补给效应   总被引:26,自引:2,他引:24  
通过环境同位素及其Tamers、IAEA模型应用研究表明,黑河流域水循环过程中地下水同位素特征与补给源属性和数量密切相关,具有非均一性;东部以山区降水通过出山地表径流补给为主,西部冰川雪融水和山区基岩裂隙水是主要补给源,下游区依赖中游区河水下泄状况,蒸发特征明显。东部同位素较新且地下水更新较快,西部同位素较老且地下水更新较慢;祁连山前戈壁带地下水同位素与山区河水相近,细土平原带地下水补给河水;高台一带受酒泉低氚值地下水补给影响而河水和地下水氚值都偏低;近河道带地下水年龄较新,远离河道则较老。因此,充分利用地下水与地表水之间转化规律,联合优化调控,有利于该区地下水资源可持续利用。  相似文献   

11.
The interaction between surface water and groundwater is not only an important part of the water cycle, but also the foundation of the study on regional water resources quantity. The field hydrogeological investigation and sampling in the Liujiang basin were conducted in the dry season, in April, 2015. The isotopic ratios of hydrogen and oxygen and ion compositions as well as the hydrogeochemical characteristics indicated that the groundwater in the basin was mainly HCO3-Ca and HCO3-Ca·Mg type low salinity water. The groundwater of each region had a unified connection, experiencing the same or similar hydrochemical formation, and the surface water had the same hydrochemical type and source of hydrochemical composition as groundwater. The hydrogen and oxygen isotopic compositions of surface water and groundwater were close to each other, which were mainly from the atmospheric precipitation. In the runoff process, the river water was affected by the evaporation concentration so that the heavy isotopes were slightly enriched. Under the influence of topographical, geological and hydrogeological conditions, the interaction between groundwater and surface water in the basin had obvious segmentation and mutual transformation. The river was recharged by both sides of groundwater in upstream region of Dashi River and Donggong River basin while river water supplied groundwater on both sides of it in downstream region of Dashi River.  相似文献   

12.
A hydrochemical investigation was conducted in the Ejina Basin to identify the hydrochemical characteristics and the salinity of groundwater. The results indicate that groundwater in the area is brackish and are significantly zonation in salinity and water types from the recharge area to the discharge area. The ionic ration plot and saturation index (SI) calculation suggest that the silicate rock weathering and evaporation deposition are the dominant processes that determine the major ionic composition in the study area. Most of the stable isotope δ18O and δD compositions in the groundwater is a meteoric water feature, indicating that the groundwater mainly sources from meteoric water and most groundwater undergoes a long history of evaporation. Based on radioactive isotope tritium (3H) analysis, the groundwater ages were approximately estimated in different aquifers. The groundwater age ranges from less than 5 years, between 5 years and 50 years, and more than 50 years. Within 1 km of the river water influence zone, the groundwater recharges from recent Heihe river water and the groundwater age is about less than 5 years in shallow aquifer. From 1 km to 10 km of the river water influence zone, the groundwater sources from the mixture waters and the groundwater age is between 5 years and 50 years in shallow aquifer. The groundwater age is more than 50 years in deep confined aquifer.  相似文献   

13.
 Before tunnel construction began, the groundwater chemical compositions and levels around the tunnel were studied to determine if water compositions could predict whether surface water will be influenced by tunnel construction. When the chemical composition of the well and springwater was similar to that of the tunnel seepage water, and the altitude of the well and spring was above the tunnel level, the groundwater level in the well and spring was influenced by draining tunnel seepage water. Therefore, comparing the chemical compositions of surface water and groundwater may be used for predictive purposes. However, the results of this study showed there was no noticeable chemical composition change in springwater prior to changes in groundwater level at a particular site. The changes in the hydrology of the plateau caused by tunnel construction were also studied, using measurements of the changes in groundwater chemistry as well as changes in groundwater levels. Prior to tunnel construction, river discharge was greater. Following tunnel construction, some river discharge decreased because springwater was drained as tunnel seepage water and the spring in the catchment dried up. Tritium concentration indicated that 3 years after tunnel construction, surface water did not reach tunnel levels in spite of groundwater level lowering and remaining unconfined groundwater being drained. Received: 17 January 1996 · Accepted: 10 July 1996  相似文献   

14.
某傍河研究区的地下水化学分析   总被引:3,自引:3,他引:0  
为研究常见地表污染源对地下水造成的影响,开展了某傍河区域的研究。在对傍河研究区开展野外调查、钻探取样分析等工作的基础上,从水化学角度对研究区地下水进行了系统分析,揭示了研究区内污染河水与地下水并没有明显的水力联系,深、浅含水层水力联系微弱;浅层地下水化学成分的形成以溶滤作用为主,并存在阳离子交换作用,易受到地表污染源及人为活动的影响;深层地下水化学成分的形成主要受到大区域水文地质环境演化的影响。  相似文献   

15.
Environmental tracers (CFCs, stable isotopes 18O, 2H, and 3H) and major ions were employed to study river infiltration and groundwater recharge in the aquifer system in the basin of the Lower Heihe River, Northwest China. Three groups of waters have been recognized: (1) young groundwater, connected to the river, with large variation of CFC apparent ages ranging from <10 a to 40 a, and δ18O and δ2H values which are similar to the river water; (2) regional background water, unaffected by the river, having CFC apparent ages >40 a, and being depleted in 18O and 2H compared with the river water; and (3) groundwater in Gurinai, a grassland located about 100 km from the river, in which the predominant discharge is from the Badain Jaran desert, with CFC apparent ages ranging from 25 to >50 a and being enriched in 18O and 2H compared to the river water. The groundwater along the river contains CFCs and 3H down to depths of about 120 m, and the shallow groundwater exhibits CFC apparent ages in a wide range which are not dependent on the well depth. Groundwaters along the river show a similar trend of enrichment in 18O and 2H as the river water whereas groundwaters in depression cones are depleted in heavier isotopes, and have low CFC and 3H concentrations. The CFC apparent age of the groundwater increases with increasing distance downstream, indicating that the dominant part of the groundwater is from infiltration of river water in the upper reaches. Modifications of groundwater recharge are reflected in variations of stable isotope compositions, as well as CFC and 3H concentrations in the groundwater that was recharged from the river over the last decades. Despite recharging from river water, groundwater abstraction has induced a water balance deficit. The riparian ecosystem in the Ejina Oasis is constrained by both decreased river flow and increased groundwater abstraction. The vegetation degradation in the Ejina Oasis is controlled not only by natural aridification but also worsened by heavy groundwater abstraction and decreased river flow.  相似文献   

16.
豫北山前冲洪积平原深层地下水硫酸盐(SO42?)呈现持续增高趋势,但其机制仍不清楚.为探讨深层地下水SO42?来源与污染机制,选择山前冲洪积平原不同赋存条件深层地下水作对比分析,借助水体水化学、氢氧同位素(δDH2O和δ18OH2O)、硫酸盐硫和氧同位素(δ34SSO4和δ18OSO4),示踪人类活动影响下深层地下水S...  相似文献   

17.
Despite its extreme aridity, the Ordos Basin in northern China is rich in groundwater. Many artesian wells or springs with large fluxes are utilized for drinking, irrigation and industrial production. In a search for the origin of the groundwater, a detailed investigation of the stable isotopes of oxygen and hydrogen in the local precipitation, the river water, the springs, the well water, as well as the soil water extracted from six soil profiles in the Ordos Basin, was carried out. The data show that δD, δ18O and TDS values of the river water are similar to those of groundwater, while the TDS values of the soil water are about ten times greater than those of groundwater. Furthermore, the mean isotopic compositions of the local precipitation are significantly higher than those of river water and groundwater. Based on the chloride mass balance method, the estimated recharge rates range from 5.2 to 17.2 mm/year, with a mean value of 10.5 mm/year. The results show that the main source of recharge of the groundwater in the Ordos Basin is not the local precipitation, but must come from a region where the precipitation is characterized by much lower δD and δ18O values. In addition, the groundwater in the Ordos Basin contains a component of mantle-derived 3He and crust-derived 4He suggesting that the groundwater may partly derive from flows through basement faults beneath the Ordos Basin.  相似文献   

18.
In a confined alluvial aquifer located between two rivers, discrete zones of anomalously high concentrations of redox species such as iron, are thought to be a result of groundwater flow dynamics rather than a chemical evolution along continuous flow paths. This new hypothesis was confirmed at a study site located between Nan and Yom rivers in Phitsanulok, Thailand, by analyzing concentrations of redox species in comparison with dynamic groundwater flow patterns. River incision into the confined alluvial aquifer and seasonally varying river stages result in truncated flow paths. The groundwater flow dynamics between two rivers has four phases that are cyclic, including: aquifer discharge into both rivers, direct flow from one river toward another, aquifer recharge from both rivers, and reverse of river-to-river flow. The resulting groundwater flow direction has a zigzag pattern and its general trend is almost parallel to the river flow. High iron anomaly appears as discrete zones in the transition areas of the confined alluvial aquifer because the lateral recharge from rivers penetrates into the aquifer only by tens of meters. The high iron anomaly, which is nearly constant in space and time, is a result of groundwater/surface-water interactions and related groundwater flow dynamics.  相似文献   

19.
新疆塔里木河下游物种多样性变化与地下水位的关系   总被引:21,自引:0,他引:21  
根据塔里木河下游9个断面40眼地下水位观测井和8个植物样地野外采集的数据,运用物种多样性指数对塔里木河下游物种多样性与地下水位变化进行了分析计算。研究表明,塔里木河下游物种多样性与地下水位变化有着密切的关系,地下水位对物种多样性的变化起着主导作用。塔里木河下游浅层地下水位埋深较大,并且表现为由上游段至下游段逐渐加深这样一个明显的递减变化。塔里木河下游物种多样性指数较低,Shannon Weiner指数和Simpon指数分别变化在1.93~0.53之间和0.82~0.35之间;随着由上游段至下游段地下水位埋深的加大,塔里木河下游植物种类减少、群落结构简单、物种多样性指数和丰富度指数呈明显降低的态势。反映了干旱区水分胁迫对生态系统的强烈影响。  相似文献   

20.
The relationship between surface water and groundwater not only influences the water quantity, but also affects the water quality. The stable isotopes (δD, δ 18O) and hydrochemical compositions in water samples were analysed in the Second Songhua River basin. The deep groundwater is mainly recharged from shallow groundwater in the middle and upper reaches. The shallow groundwater is discharged to rivers in the downstream. The runoff from upper reaches mainly contributed the river flow in the downstream. The CCME WQI indicated that the quality of surface water and groundwater was ‘Fair’. The mixing process between surface water and groundwater was simulated by the PHREEQC code with the results from the stable isotopes. The interaction between surface water and groundwater influences the composition of ions in the mixing water, and further affects the water quality with other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号