首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
The Tunnel Sealing Experiment (TSX), located on the 420 Level of the Underground Research Laboratory (URL) of Atomic Energy of Canada Limited (AECL), was used to study the behaviour of two bulkheads installed in situ: one composed of highly compacted bentonite-sand blocks, the other composed of low-heat high-performance concrete. Permeable sand was placed in an 11.2-m-long chamber between the bulkheads. The chamber was first pressurized with water to 4 MPa to simulate the conditions likely to develop in the period following installation of seals in an actual repository. A stage of circulating hot water in the chamber began on 2002 September 24. The maximum design temperature of 85 °C at the interior face of the bulkheads could not be achieved in the time available. The actual maximum temperature was 65 °C. The purpose of heating was to investigate the thermohydromechanical responses in the bulkheads and surrounding rock to increased temperature. A passive cooling stage followed the heating stage. To help understand the influence of natural cooling on the thermohydromechanical response, a series of coupled thermohydromechanical modelling exercises was carried out using the finite element program, Model Of Transport In Fractured/porous media (MOTIF), and the results were compared with measured data. The thermal response in the rock and the bulkheads was successfully simulated. The influence of hydraulic conductivity on the hydraulic response in the clay bulkhead was analyzed.  相似文献   

2.
Magnetite-Fluorite Rock:A New Rock Type of Hot Water Sedimentation   总被引:2,自引:0,他引:2  
The new type hot water sedimentary rock -- magnetite-fluorite rock occurs as quasi-layers in flat parts of contact zones between rock body and strata in Bamianshan of Changshan County, Zhejiang Province, China. The main mineral assemblage is fluorite+magnetite+cassiterite. The rock shows typical laminated structure and obvious mosaic texture. Its formation temperature is between 123℃-160℃, averaging at 142℃. The major chemical composition of the rock includes CaF2, SiO2, Al2O3, FeO, and Fe2O3; the high-content microelement association includes W, Sn, Be, Rb, Sr, S, and CI; and the total content of REE is low (∑REE between 35.34×10^-6-38.35×10^-6), showing LREE enrichment type of distribution pattern. Diagenesis: driven by the tectonic stress, the formation water heated in the deep strata had moved along the fissures or fractures in strata and had extracted components from the strata on the way, and finally stagnated in the flat parts of contact zones between rock body and strata. With drop in temperature, magnetite and fluorite were separated from the hot water and precipitated alternately, forming this hot water sedimentary rock with new type mineralogical composition, typical laminated structure, obvious mosaic texture and sub-horizontal occurrence. The characteristics of the new type mineralogical composition, sedimentary tectonic environment and chemical composition are different from that of the well-known traditional hydrothermai sedimentary rocks.  相似文献   

3.
Hydrothermal alteration of kimberlite by convective flows of external water   总被引:1,自引:0,他引:1  
Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130–400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water–rock ratios (estimated at <0.2). Such low water–rock ratios result in only small changes in stable isotope compositions; for example, δO18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.  相似文献   

4.
Palaeomagnetism of 273 specimens from 24 sites isolated a well‐defined characteristic remanent magnetization (ChRM) direction on AF and thermal demagnetization in seven host carbonate and 14 ore mineralization sites from the Galmoy Zn–Pb deposit. Thermal decay and saturation remanence data show that the ChRM is carried dominantly by single domain magnetite. Palaeomagnetic field stability tests indicate a post‐brecciation and post‐folding ChRM. The ChRM directions from the host rock and mineralized sites are indistinguishable at 95% confidence and give a palaeopole at 41.5°S, 8.4°W (dp = 1.5°, dm = 3.0°) with an age of 290 ± 9 Ma on the Laurentian apparent polar wander path. This Early Permian age at Galmoy records Variscan orogenesis and suggests an epigenetic model in which mineralization occurred during cooling from the regional Variscan thermal episode.  相似文献   

5.
Fresh mid-ocean ridge basalt glass and diabase have been reacted with seawater at 150–300°C, 500 bar, and water/rock mass ratios of 50, 62, and 125, using experimental apparatus which allowed on-line sampling of solution to monitor reaction progress. These experiments characterize reaction under what we have called “seawater-dominated” conditions of hydrothermal alteration.In an experiment at 300°C, basalt glass undergoing alteration removed nearly all Mg2+ from an amount of seawater 50 times its own mass. In the process, the glass was converted entirely to mixed-layer smectite-chlorite, anhydrite, and minor hematite. Removal of Mg from seawater occurred as a Mg(OH)2 component incorporated into the secondary clay. This produced a precipitous drop in solution pH early in the experiment, accompanied by a dramatic increase in the concentrations of Fe, Mn, and Zn in solution. As Mg removal neared completion and the glass was hydrolyzed, pH rose again and heavy metal concentrations dropped.At water/rock ratios of 62 and 125 and 150–300°C, the mineral assemblage produced was similar to that at a water/rock ratio of 50. Solution chemistry, however, contrasted with the earlier experiment in that Mg concentrations in solution were greater and pH lower. This caused significant leaching of heavy metals. At 300°C nearly all of the Na, Ca, Cu, Zn, and CO2 and most of the K, Ba, Sr, and Mn were leached from the silicates. H2S, Al, Si, and possibly Co were also significantly mobilized, whereas V, Cr, and Ni were not. Little or no seawater sulfate was reduced.Although submarine hot spring solutions sampled to date along mid-ocean ridges clearly come from rock-dominated hydrothermal systems, evidence from ocean floor metabasalts and from heat flow studies indicates that seawater-dominated conditions of alteration prevail at least locally both in axial hightemperature systems and in ridge flank systems at lower temperatures.  相似文献   

6.
Evaluation of the coupled heat transfer, water flow and stress changes in the engineered clay barrier is an important issue in the performance assessment of the high‐level radioactive waste disposal. To demonstrate the function of the engineered barrier system, the large‐scale experiment is conducted, which is called Big Bentonite facility (BIG‐BEN). The facility consists of an electric heater surrounded by glass beads, carbon steel overpack, buffer material and man‐made rock. The buffer is a mixture of bentonite and sand. The heater is operated at 0·8 kW. Water is injected from the interface between the buffer and the man‐made rocks at the pressure of 0·05 MPa. The duration of the experiment is 20 months. The change in temperature and swelling pressure are continuously monitored and gravimetric water content is measured by sampling. The coupled thermal, hydraulic and mechanical processes are simulated with a finite element code THAMES, which can simulate the fully coupled phenomena in the saturated and unsaturated clay under anisothermal condition. To examine the validity of the code, all the parameters used in the model are evaluated from the other laboratory tests. The simulated results are compared with the measured ones without calibration of the parameter values using the results from the BIG‐BEN experiment. It can be concluded that the changes in temperature and gravimetric water content within the buffer can be simulated reasonably well and that the mechanical effect such as swelling pressure is difficult to realize. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
A new numerical approach is proposed in this study to model the mechanical behaviors of inherently anisotropic rocks in which the rock matrix is represented as bonded particle model, and the intrinsic anisotropy is imposed by replacing any parallel bonds dipping within a certain angle range with smooth‐joint contacts. A series of numerical models with β = 0°, 15°, 30°, 45°, 60°, 75°, and 90° are constructed and tested (β is defined as the angle between the normal of weak layers and the maximum principal stress direction). The effect of smooth‐joint parameters on the uniaxial compression strength and Young's modulus is investigated systematically. The simulation results reveal that the normal strength of smooth‐joint mainly affects the behaviors at high anisotropy angles (β > 45°), while the shear strength plays an important role at medium anisotropy angles (30°–75°). The normal stiffness controls the mechanical behaviors at low anisotropy angles. The angle range of parallel bonds being replaced plays an important role on defining the degree of anisotropy. Step‐by‐step procedures for the calibration of micro parameters are recommended. The numerical model is calibrated to reproduce the behaviors of different anisotropic rocks. Detailed analyses are conducted to investigate the brittle failure process by looking at stress‐strain behaviors, increment of micro cracks, initiation and propagation of fractures. Most of these responses agree well with previous experimental findings and can provide new insights into the micro mechanisms related to the anisotropic deformation and failure behaviors. The numerical approach is then applied to simulate the stress‐induced borehole breakouts in anisotropic rock formations at reduced scale. The effect of rock anisotropy and stress anisotropy can be captured. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Poro‐mechanical and thermo‐mechanical processes change the fracture aperture and thus affect the water flow pattern in the fracture during the cold water injection into enhanced geothermal systems (EGS). In addition, the stresses generated by these processes contribute to the phenomenon of reservoir seismicity. In this paper, we present a three‐dimensional (3D) partially coupled poro‐thermoelastic model to investigate the poroelastic and thermoelastic effects of cold water injection in EGS. In the model, the lubrication fluid flow and the convective heat transfer in the fracture are modeled by the finite element method, while the pore fluid diffusion and heat conductive transfer in the reservoir matrix are assumed to be 3D and modeled by the boundary integral equation method without the need to discretize the reservoir. The stresses at the fracture surface and in the reservoir matrix are obtained from the numerical model and can be used to assess the variation of in situ stress and induced seismicty with injection/extraction. Application of the model shows that rock cooling induces large tensile stresses and increases fracture conductivity, whereas the rock dilation caused by fluid leakoff decreases fracture aperture and increases compressive total stresses around the injection zone. However, increases in pore pressure reduce the effective stresses and can contribute to rock failure, fracture slip, and microseismic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Speleothem fluid inclusions are a potential paleo-precipitation proxy to reconstruct past rainwater isotopic composition (δ18O, δD). To get a better insight in the extraction of inclusion water from heated speleothem calcite, we monitored the water released from crushed and uncrushed speleothem calcite, heated to 900 °C at a rate of 300 °C/h, with a quadrupole mass spectrometer. Crushed calcite released water in three not well individualised peaks between 25 and 360 °C, 360 and 650 °C and between 650 and 800 °C while uncrushed calcite released water in two distinct temperature intervals: between 25 and 550 °C and between 550 and 900 °C.Water from two speleothems from the Han-sur-Lesse cave was recovered using three different techniques: i) the crushing and heating to 360 °C technique, ii) the decrepitation by heating to 550 °C and iii) the decomposition by heating to 900 °C technique. Measurements of the δD of water recovered by the decomposition of Han-sur-Lesse calcite heated to 900 °C did not show a 20 to 30‰ offset as found by previous authors. However a difference of 7‰ was observed between water released before and after decomposition of the calcite. Water recovery from the Han-sur-Lesse samples suggests that a simple heating technique (up to 550 °C) without crushing could both (a) recover water with δD representative of that of the drip water and (b) double the water yield as compared to the crushing and heating method.Our study warns for possible contamination of the recovered inclusion water with hydration water of lime, responsible for the recovery of water with very negative δD values.  相似文献   

10.
《Applied Geochemistry》1999,14(2):223-235
Thermal spas in the Upper Rhine Graben recover their waters mainly from two different limestone aquifers, Hauptrogenstein (Middle Jurassic) and Muschelkalk (Middle Triassic). The thermal waters are heated along anomalous high thermal gradients in the Tertiary rift valley. The highest well head temperature is about 40°C in Hauptrogenstein wells and 60°C in Muschelkalk wells. Mineralization (TDS) is up to 5 g/kg in Hauptrogenstein and as high as 17 g/kg in the Muschelkalk aquifer. About 300 chemical analyses from 13 wells were used in this study.Compositional relationships between major chemical components (Na/Cl, K/Cl, Mg/Cl, SO4/Cl, Cl/Br and Na/Br) suggest that thermal water from the Hauptrogenstein originates from mixing of 3 components: (a) meteoric water, (b) fossil seawater (residual formation water) and (c) a third component that resulted from water–rock reaction.The total amount of dissolved solids and the water type from the deeper Muschelkalk aquifer depends on the depth of the aquifer at the well location. The chemical characteristics of the thermal water indicate that water composition is derived mainly from water–rock interaction.  相似文献   

11.
Owing to the lack o f terrestrial heat flow data, studying lithospheric thermal structure and geodynamics of the Yingen-Ejinaqi Basin in Inner Mongolia is limited. In this paper, the terrestrial heat flow o f the Chagan sag in the YingenEjinaqi Basin were calculated by 193 system steady-state temperature measurements of 4 wells, and newly measuring 62 rock thermal conductivity and 20 heat production rate data on basis o f the original 107 rock thermal conductivity and 70 heat production data. The results show that the average thermal conductivity and heat production rate are 2.11 ±0.28 W/(m.K) and2.42±0.25 nW/m~3 in the Lower Cretaceous o f the Chagan sag. The average geothermal gradient from the Lower Suhongtu 2 Formation to the Suhongtu 1 Fonnation is 37.6 °C/km, and that o f the Bayingebi 2 Formation is 27.4 °C/km. Meanwhile, the average terrestrial heat flow in the Chagan sag is 70.6 mW/m~2. On the above results, it is clear that there is an obvious negative correlation between the thermal conductivity o f the stratum and its geothermal gradient. Moreover, it reveals that there is a geothermal state between tectonically stable and active areas. This work may provide geothermal parameters for further research o f lithospheric thermal structure and geodynamics in the Chagan sag.  相似文献   

12.
Effect of metamorphic reactions on thermal evolution in collisional orogens   总被引:1,自引:0,他引:1  
The effects of metamorphic reactions on the thermal structure of a collisional overthrust setting are examined via forward numerical modelling. The 2D model is used to explore feedbacks between the thermal structure and exhumation history of a collisional terrane and the metamorphic reaction progress. The results for average values of crustal and mantle heat production in a model with metapelitic crust composition predict a 25–40 °C decrease in metamorphic peak temperatures due to dehydration reactions; the maximum difference between the P–T–t paths of reacting and non‐reacting rocks is 35–45 °C. The timing of the thermal peak is delayed by 2–4 Myr, whereas pressure at peak temperature conditions is decreased by more than 0.2 GPa. The changes in temperature and pressure caused by reaction may lead to considerable differences in prograde reaction pathways; the consumption of heat during dehydration may produce greenschist facies mineral assemblages in rocks that would have otherwise attained amphibolite facies conditions in the absence of reaction enthalpy. The above effects, although significant, are produced by relatively limited metamorphic reaction which liberates only half of the water available for dehydration over the lifetime of the prograde metamorphism. The limited reaction is due to the lack of heat in a model with the average thermal structure and relatively fast erosion, a common outcome in the numerical modelling of Barrovian metamorphism. This problem is typically resolved by invoking additional heat sources, such as high radiogenic heat production, elevated mantle heating or magmatism. Several models are tested that incorporate additional radiogenic heat sources; the elevated heating rates lead to stronger reaction and correspondingly larger thermal effects of metamorphism. The drop in peak temperatures may exceed 45 °C, the maximum temperature differences between the reacting and non‐reacting P–T–t paths may reach 60 °C, and pressure at peak temperature conditions is decreased by more than 0.2 GPa. Field observations suggest that devolatilization of metacarbonate rocks can also exert controls on metamorphic temperatures. Enthalpies were calculated for the reaction progress recorded by metacarbonate rocks in Vermont, and were used in models that include a layer of mixed metapelite–metacarbonate composition. A model with the average thermal structure and erosion rate of 1 mm year?1 can provide only half of the heat required to drive decarbonation reactions in a 10 km thick mid‐crustal layer containing 50 wt% of metacarbonate rock. Models with elevated heating rates, on the other hand, facilitated intensive devolatilization of the metacarbonate‐bearing layer. The reactions resulted in considerable changes in the model P–T–t paths and ~60 °C drop in metamorphic peak temperatures. Our results suggest that metamorphic reactions can play an important role in the thermal evolution of collisional settings and are likely to noticeably affect metamorphic P–T–t paths, peak metamorphic conditions and crustal geotherms. Decarbonation reactions in metacarbonate rocks may lead to even larger effects than those observed for metapelitic rocks. Endothermic effects of prograde reactions may be especially important in collisional settings containing additional heat sources and thus may pose further challenges for the ‘missing heat’ problem of Barrovian metamorphism.  相似文献   

13.
A semi‐analytical approach is developed for modeling 3D heat transfer in sparsely fractured rocks with prescribed water flow and heat source. The governing differential equations are formulated, and the corresponding integral equations over the fracture faces and the distributed heat source are established in the Laplace transformed domain using the Green function method with local systems of coordinates. The algebraic equations of the Laplace transformed temperatures of water in the fractures are formed by dividing the integrals into elemental ones; in particular, the fracture faces are discretized into rectangular elements, over which the integrations are carried out either analytically for singular integrals when the base point is involved or numerically for regular integrals when otherwise. The solutions of the algebraic equations are inverted numerically to obtain the real‐time temperatures of water in the fractures, which may be employed to calculate the temperatures at prescribed locations of the rock matrix. Three example calculations are presented to illustrate the workability of the developed approach. The calculations found that water flux in the fractures may decrease the rate of temperature rise in regions close to the distributed heat source and increase the rate of temperature rise in regions downstream away from the distributed heat source and that the temperature distribution and evolvement in a sparsely fractured rock mass may be significantly influenced by water flow exchange at intersection of fractures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The base of an upper Palaeozoic graben‐fill in eastern Canada was affected by mafic dyke intrusions shortly after deposition, resulting in the formation of peperite. Complex magma–sediment interactions occurred as the melts mingled with the wet and poorly consolidated clastic material of this sedimentary basin, which is separated from underlying rocks by the Acadian unconformity (Middle Devonian). As a result of these interactions, the mafic rocks are strongly oxidized, albitized and autobrecciated near and above the unconformity, where blocky juvenile clasts of mafic glass and porphyritic basalt have mingled with molten or fluidized sediments of the upper Palaeozoic Saint‐Jules Formation, forming a peperite zone several metres thick. In contrast to most peperite occurrences, the New‐Carlisle peperites are associated with the tip of dykes rather than with the sides of sills or dykes. We argue that more heat can be concentrated above a dyke than above a sill, as the former provides a more efficient and focused pathway for heated waters to invade the poorly consolidated host sediments. Superheated groundwaters that issued from the sides of the dykes appear to have promoted melting of carbonate components in calcareous sedimentary rock clasts of the Saint‐Jules Formation, locally generating carbonate melts that contributed to the mingling of juvenile and sedimentary clasts in the peperite. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Hypogene uytenbogaardtite, acanthite, and native gold parageneses have been revealed at the epithermal Yunoe gold-silver deposit, Magadan Region, Russia. Thermodynamic calculations in the system Si–Al–Mg–Ca–Na–K–Fe–Pb–Zn–Cu–Ag–Au–S–C–Cl–H2O were carried out at 25–400 °C and 1–1000 bars to elucidate the role of hydrothermal solutions in the formation of gold and silver sulfides. Several most probable scenarios for ore-forming processes in the deposit are considered: (1) interaction between cold and heated meteoric waters percolating along cracks from surface to depth and reacting with the host rock—rhyolite; (2) evolution of ascending postmagmatic fluid resulting in chloride–carbonic acid solution, which interacts with rhyolite at 100–400 °C; (3) stepwise cooling of hydrothermal ore-bearing solutions; (4) rapid cooling of ore-bearing hydrotherms on their mixing with cold surface waters. Rhyolite with Pb, Zn, Cu, Cl, S, Ag, and Au clarke contents was taken as an initial host rock. Calculations by model 3 showed the possible formation of uytenbogaardtite and petrovskaite at low-temperature stages. Gold and silver sulfides can be deposited during the mixing of ore-bearing acid chloride–carbonic acid hydrothermal solutions with surface alkaline waters.  相似文献   

16.
Following Appalachian orogenesis, metamorphic rocks in central Newfoundland were exhumed and reburied under Tournaisian strata. New zircon fission‐track (ZFT) ages of metamorphic rocks below the Tournaisian unconformity yield post‐depositionally reset ages of 212–235 Ma indicating regional fluid‐absent reheating to at least ≥220°C. Post‐Tournaisian sedimentary thicknesses in surrounding basins show that burial alone cannot explain such temperatures, thus requiring that palaeo‐geothermal gradients increased to ≥30–40°C/km before final late Triassic accelerated cooling. We attribute these elevated palaeo‐geothermal gradients to localized thermal blanketing by insulating sediments overlying radiogenic high‐heat‐producing granitoids. Late Triassic rifting and magmatism before break up of Pangaea likely also contributed to elevated heat flow, as well as uplift, triggering late Triassic accelerated cooling and exhumation. Thermochronological ages of 240–200 Ma are seen throughout Atlantic Canada, and record rifting and basaltic magmatism on the conjugate margins of the Central Atlantic Ocean preceding the onset of oceanic spreading at ~190 Ma.  相似文献   

17.
Temperature distribution in karst systems: the role of air and water fluxes   总被引:3,自引:0,他引:3  
A better understanding of heat fluxes and temperature distribution in continental rocks is of great importance for many engineering aspects (tunnelling, mining, geothermal research, etc.). This paper aims at providing a conceptual model of temperature distribution in karst environments which display thermal ‘anomalies’ as compared with other rocks. In temperate regions, water circulation is usually high enough to ‘drain‐out’ completely the geothermal heat flux at the bottom of karst systems (phreatic zone). A theoretical approach based on temperature measurements carried out in deep caves and boreholes demonstrates, however, that air circulation can largely dominate water infiltration in the karst vadose zone, which can be as thick as 2000 m. Consequently, temperature gradients within this zone are similar to the lapse rate of humid air (~0.5 °C 100 m?1). Yet, this value depends on the regional climatic context and might present some significant variations.  相似文献   

18.
The effect of thermal treatment on the dynamic fracture toughness of Laurentian granite (LG) was investigated in this work. Notched semi-circular bend (NSCB) LG specimens are heat treated at temperatures up to 850?°C. The micro-cracks in the rock samples induced by thermal treatment are examined by scanning electron microscope (SEM). The microscopic observations are consistent with the subsequent P-wave velocity measurements, which shows that the P-wave velocity decreases with the treatment temperature monotonically when the temperature is higher than 250?°C. Dynamic fracture toughness measurements are then carried out on these samples with the dynamic load exerted by a modified split Hopkinson pressure bar (SHPB) system. The relationship between fracture toughness and treatment temperature is investigated. Experimental results show that fracture toughness increases with the loading rate but decreases with the treatment temperature. However, when the heating temperature is below 250?°C and above 450?°C, the dependence of dynamic fracture toughness on the temperature is different from other temperatures, which can be explained by the physical processes at the microscopic level of the rock due to heating. At treatment temperatures below 250?°C, the thermal expansion of grains leads to an increase in the toughness of the rock. At treatment temperatures above 450?°C, the sources of weakness such as grain boundaries and phase transition of silicon are depleted, and as a result the decrease in fracture toughness is not as significant as other treatment temperature ranges.  相似文献   

19.
In respect to the weathering of cave art exposed to the sun, cognizance has yet to be taken of the modified thermal conditions and the potential for endolithic biotic activity where the art is located on a light‐transmissive lithology. Where light penetrates rock, the light‐to‐heat transfer is not solely at the surface, and this leads to a thermal gradient that is different from where the paintings are located (and all transfer is at the surface). Light values of up to 200 W/m2 were recorded at 0.5 mm depth and up to 100 W/m2 at 1mm depth in the dry sandstone; rock moisture data showed that at this site the rock remained dry irrespective of atmospheric conditions. The light penetration means that there can be rapid and large subsurface thermal fluctuations contemporaneous with those at the rock surface, and that the thermal gradient is not as steep (approximately 1°C/mm in the surficial part of the rock) as where light‐to‐heat transfer is solely at the surface. Further, the presence of subsurface photosynthetically active radiation can (potentially) facilitate colonization by endolithic organisms. Here, as part of a study of the weathering of San rock art on sandstone in southern Africa, a first attempt is made to monitor the extent of light penetration and the resulting thermal conditions in the outer few millimeters of the sandstone. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
This paper presents a study on the initiation and progress of anisotropic damage and its impact on the permeability variation of crystalline rocks of low porosity. This work was based on an existing micromechanical model considering the frictional sliding and dilatancy behaviors of microcracks and the recovery of degraded stiffness when the microcracks are closed. By virtue of an analytical ellipsoidal inclusion solution, lower bound estimates were formulated through a rigorous homogenization procedure for the damage-induced effective permeability of the microcracks-matrix system, and their predictive limitations were discussed with superconducting penny-shaped microcracks, in which the greatest lower bounds were obtained for each homogenization scheme. On this basis, an empirical upper bound estimation model was suggested to account for the influences of anisotropic damage growth, connectivity, frictional sliding, dilatancy, and normal stiffness recovery of closed microcracks, as well as tensile stress-induced microcrack opening on the permeability variation, with a small number of material parameters. The developed model was calibrated and validated by a series of existing laboratory triaxial compression tests with permeability measurements on crystalline rocks, and applied for characterizing the excavation-induced damage zone and permeability variation in the surrounding granitic rock of the TSX tunnel at the Atomic Energy of Canada Limited’s (AECL) Underground Research Laboratory (URL) in Canada, with an acceptable agreement between the predicted and measured data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号