首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 363 毫秒
1.
三峡库区巫山县翠屏小区岩溶引起的地质灾害危险性研究   总被引:2,自引:1,他引:1  
三峡库区移民迁建中发现的岩溶问题是一个重大工程地质问题。巫山县城翠屏小区是较早发现有确切岩溶证据的地方,研究证实小区三叠系嘉陵江组灰岩普遍遭受了强烈的岩溶作用。不同部位具有不同的岩溶特点和强度,在纵向上,从山顶到坡脚岩溶作用有增强的趋势;从地表向深部,有局部强烈岩溶层位。岩溶作用在小区产生了顺坡或顺层延伸的溶洞和深部蜂窝状溶孔。岩溶作用在小区形成了脖颈状溶蚀槽地、槽状谷地、溶蚀台地和与地貌相关的"飞雁状"褶皱、岩溶正断层及帚状密集节理带。岩溶过程中伴随着其他外营力作用,它们的相互耦合形成各种次生岩土体。岩溶轻则引起岩体质量降低,重则可能导致地面不均匀沉降、地裂缝、滑坡、崩塌、泥石流及地面塌陷地质灾害。  相似文献   

2.
三峡库区三叠系巴东组(T26)泥灰质岩石岩溶是移民迁建中发现的重大工程地质问题。泥灰质岩石中的构造非常复杂,包括老构造、新构造和表生构造,它们共同控制了岩溶作用。老构造中,褶皱和断裂带等局部构造控制着岩溶的重要部位和重要层位,节理和层理等小构造使岩溶普遍存在。新构造时期地表隆升和河流切割使岩体卸荷松动,岩溶通道扩宽。表生岩溶构造加密了岩溶通道,使岩溶作用增强。三峡库区泥灰质岩石斜坡带地质灾害形成的机理遵循着构造控制下岩溶发育的规律性,致使岩溶地质灾害具有范围广、规模大和结构复杂的特点。岩溶地质灾害的形式包括地面不均匀沉降、地裂缝、滑坡、崩塌、泥石流和地面塌陷。  相似文献   

3.
张加桂 《地球学报》2005,26(6):565-569
泥灰质岩石岩溶是岩溶研究一个薄弱环节,将工程稳定性与岩溶作用相结合是岩溶地区地质灾害评价和治理所面临的新课题。三峡地区巴东组(T2b)泥灰质岩石的岩溶问题是新近发现的重大工程地质问题。由于构造破碎和河流切割引起岩石卸荷与松动,使岩石有利于水的渗入和岩溶作用。水是岩溶的溶剂,在峡谷斜坡地带,雨水是地表水和地下水的主要水源,地处亚热带的三峡地区雨水丰沛。通过对15个不同类型水样的化学成分测试和计算表明,雨水呈酸性,方解石的饱和指数(SI)低,具有强烈的溶蚀性,在地表和地下运移的过程中对泥灰质岩石产生了强烈的溶蚀作用。不同的地貌位置和构造层位具有不同的地表水和地下水状态,从而产生不同强度和不同形式的地表和地下岩溶。地质历史时期,岩溶作用使岩石发生成分和结构的一系列变化,从而导致岩石力学强度降低,岩体发生不均匀沉降、地裂缝、滑坡、崩塌、泥石流和地面塌陷。测试和计算还表明,不仅雨水及其转化成的地表水和地下水,而且江水和自来水均有一定的溶蚀性。将来,水的岩溶作用和水的诱发作用可能导致地基不均匀沉降、地裂缝、滑坡、崩塌、泥石流和地面塌陷,从而破坏工程稳定性。防治三峡地区地质灾害的关键在于防止水向地基的入渗。建议对三峡地区泥灰质岩石斜坡带岩溶进行深入研究。  相似文献   

4.
三峡移民安置区泥灰质岩岩溶风化灾变性分析   总被引:5,自引:2,他引:3  
张加桂 《中国岩溶》2005,24(3):239-244
三峡移民安置区三叠系巴东组( T2b )泥灰质岩的岩溶风化问题是新近发现的重大工程地质问题。泥灰质岩具有灰岩和泥岩双重特性,在灰质成分遭受溶蚀的同时,泥质成分遭受风化,由此引起岩性的复杂变化,由室内测试得出,深灰色泥质灰岩经岩溶风化后, CaCO3 含量呈降低的趋势, Fe2O3 含量和蒙脱石含量增高,演变为一系列风化岩和残坡积土,包括灰绿色泥灰岩、黄绿色泥灰岩、粉红色钙质泥岩、棕红色钙质泥岩、棕红色泥砾层、黄褐色膨胀土,在深处地下水富集带,泥灰质岩则被溶蚀成为杏黄色泥质条带。随着岩性的变化,岩石的力学强度不断降低、完整性不断弱化,并可能产生普遍的地面不均匀沉降、地裂缝、滑坡、崩塌、泥石流及地面塌陷地质灾害,这些问题必须在移民迁建以及将来城镇运行过程中引起高度重视。   相似文献   

5.
由殷跃平研究员等撰写的专著《长江三峡库区移民迁建新址重大地质灾害及防治研究》近期已由地质出版社公开出版发行。本书对三峡工程库区滑坡及防治、边坡结构及加固、库岸坍塌及防护、工程弃渣处置加筋土技术、大型崩滑塌堆积体成因及开发利用、岩溶及岩溶地质灾害、易滑地层工程地质特征、人防硐室诱发塌陷灾害、地质灾害风险评估等移民迁建中的重大地质灾害问题进行了深入研究。本书注重与移民迁建相结合,介绍了作者在库区亲身实践的基于防治基础上的滑坡体和边坡防护与综合开发利用、建筑开挖弃渣超高加筋土挡墙处置、库岸防护等丰富的…  相似文献   

6.
研究泥灰质岩石区地貌对岩溶的控制机理是弄清岩溶过程的出发点.三峡河谷斜坡带泥灰质岩石区地貌对岩溶具有明显的控制作用.纵向上在陡坡地带和地形由陡变缓的转折部位岩溶作用强烈,纵比降小的山梁部位岩溶作用较弱;横向上冲沟部位岩溶作用最强,坡肩部位岩溶作用较弱,山梁部位岩溶作用又增强.哪里的岩溶通道发育、水流汇集量大,哪里的岩溶就强烈.在三峡移民迁建中,应注意不同的地貌部位具有不同的地基变形破坏型式.  相似文献   

7.
巫山县新城区主要衍生地质灾害调查与评价   总被引:3,自引:0,他引:3  
三峡水库区自然地质灾害调查和研究已广为报道。但对衍生地质灾害调查研究涉及甚少。三峡移民迁建的县城、乡镇和工厂多位于长江沿岸低山斜坡地带,迁建区内沟谷密布、切割强烈、地形复杂,几乎无可供成片建设的平坦地带。为满足移民工程的需求,迁建业主都采用“削坡填沟”的施工方式,即在道路、迁建场地内侧开挖高边坡,外侧修建挡土墙,并将开挖的弃土弃渣堆积于挡土墙内或冲沟中。这在道路、迁建场地两侧形成了众多的人工高边坡、高挡墙,沿冲沟堆放了成串的弃土弃渣。对巫山县新城区详细的衍生地质灾害调查表明,三峡移民迁建工程施工中开挖的高边坡、修建的挡土墙和沿冲沟堆放的弃土弃渣都不同程度地破坏了天然山坡的稳定性,堵塞了地表迳流的排泄途径,在某些地段存在发生崩塌、滑坡、泥石流等衍生地质灾害的内在因素.直接威胁移民建设工程。论文以巫山县新城区为重点,采用遥感调查与地面调查相结合的方法对人工高边坡、高挡墙和弃土弃渣堆放场进行调查评价。经调查共计人工高边坡、高挡墙、弃土弃渣堆放场122个,选定了重点监测对象20个,并对可能发生衍生地质灾害的3个地段进行了分析,为各级移民管理部门进行适时管理和决策提供现时性强、数据准确的资料。  相似文献   

8.
三峡库区巫山县城秀峰寺-大块子古滑坡特征及形成过程   总被引:1,自引:0,他引:1  
将以前认识的秀峰寺滑坡扩展为秀峰寺—大块子古滑坡,并探讨了它的形成过程。滑坡介于两条冲沟之间,呈不规则"哑铃"状。滑坡体原岩是巴东组第一段泥灰岩,体积约200×104m3。滑坡在特殊的地貌和地质环境下形成,并受岩溶作用控制。构成滑体、滑带和滑床的岩体均遭受了强烈的岩溶作用,具有复杂的结构。滑坡的形成过程是:①燕山运动形成巫山向斜,秀峰寺—大块子位于向斜NNW陡倾翼;②新构造运动期地表剥蚀、深部溶蚀、泥化,软弱地层沿灰岩顶面下滑,在潜水面附近形成和缓的局部褶皱带;③泥岩被剥蚀,冲沟切入褶皱带,泥灰岩继续下滑,滑体剪断下部褶皱带,滑坡贯通,同时,下部灰岩溶蚀变形;④进一步岩溶和剥蚀使滑坡体离散、分化、变小,同时,岩溶作用导致石板沟边灰岩倾向变反倾,顶面降低,成为目前的面貌。可以将这种滑坡形式总结为岩溶过程中的顺层推移—躺平—减速滑坡。  相似文献   

9.
广州市白云区夏茅村岩溶塌陷地质灾害严重,塌陷区内地质环境条件极其复杂,隐伏灰岩岩溶土洞发育强烈,溶洞、土洞规模较大,且发育多层溶洞,溶洞间相互连通,岩溶塌陷区基岩面起伏较大,高程变化剧烈,第四系覆盖层厚度较大,底部粉质黏土层土洞发育,土体中规模巨大的土洞是产生岩溶地面塌陷的基础条件。基岩断裂构造带及其影响带范围内,岩石破碎,形成导水断层,存在地下水迳流通道,沿断裂带地下水循环活跃,溶蚀强烈,形成岩溶强发育带,为岩溶塌陷的发生提供了良好的动力条件。区内楼房基础施工扰动了地下水和土洞间的平衡状态从而成为了地面塌陷发生的诱发因素。运用7项地质环境条件指标和5项经济人口指标分别定性评估岩溶地面塌陷的易发度和易损度,并将二者叠加进行地质灾害风险评估。研究结果表明,夏茅村潜在地质灾害风险大,只有严格控制地下水动力条件,才能避免再次发生岩溶地面塌陷。  相似文献   

10.
近年,广东省粤北山区隐伏区岩溶地面塌陷日益增加,直接影响人民生产生活。英德市沙口镇某村地质环境复杂,第四系覆盖层厚度薄,底部卵石层与下覆天子岭组灰岩直接接触,溶洞与断层破碎带发育,溶洞与溶洞间连通性较好,岩溶地面塌陷地质灾害严重。在综合分析沙口镇某村地质环境条件基础上,从内、外两方面因素,对岩溶地面塌陷发育特征及形成机理进行分析,认为在长期地下水位波动、潜蚀及淘蚀等作用松散盖层土体颗粒流失形成土洞,地表水与地下水强烈交替形成正负压力等作用下,土洞上部盖层发生塌陷。研究结论为科学制定岩溶地面塌陷防治方案提供依据。  相似文献   

11.
The Pering deposit on the Ghaap Plateau, Northwestern Province, South Africa, was the largest of several Zn–Pb occurrences hosted by Neoarchean platform dolostones of the Transvaal Supergroup. With a Paleoproterozoic mineralization age, these occurrences are widely regarded as the oldest representatives of Mississippi Valley-type Pb–Zn deposits. Hosting an initial resource of 18 Mt at an average grade of 3.6 wt% Zn and 0.6 wt% Pb, the Pering deposit was mined from 1984 until its final closure at the end of November 2002. In this study, available geological and grade distribution maps were evaluated and complemented by the examination of mining-related outcrops, drill core, and a large set of ore and host rock samples. Four different styles of brecciation can be distinguished at the Pering deposit: (1) pyritic rock matrix breccia; (2) chemical wear breccia; (3) mosaic breccia; and (4) crackle breccia. Geological and mineral paragenetic observations on these different breccia types suggest that the formation of the Pering deposit commenced with an initial stage of hydrothermal karstification. Large volumes of pyritic rock matrix breccia formed by wall rock collapsing into the open space attributed to carbonate dissolution. This stage of hydrothermal karstification acted as ground preparation for the subsequent mineralization event. By the upward advance of the hydrothermal karstification process, fluid reservoirs in the previously undisturbed dolostone host rock succession were tapped, ultimately leading to fluid mixing. Hydrothermal sulphides are the most abundant where fluid mixing was most effective, i.e. along the outer and upper margins of the breccia bodies, and in stratabound zones along permeable host rock units. Chemical wear brecciation and formation of large volumes of fine-grained replacive sphalerite mineralization mark the early stage of hydrothermal Zn–Pb mineralization associated with this fluid mixing. The fine-grained stage of sulphide mineralization was succeeded by very coarse-grained open-space-infill mineralization. The latter is very uniform across the entire deposit and typically cements mosaic and crackle breccia, but also fills remaining open space within chemical wear brecciated portions of the deposit.  相似文献   

12.
滇西北衙地区热水岩溶作用及其伴生的地质灾害   总被引:12,自引:0,他引:12  
报道了滇西北衙地区新发现的热水角砾岩及其显示的热水岩溶与伴生地质灾害的特征。北衙地区热水角砾岩和热水岩溶可分为 4种类型和层次,即①地表相爆发-沉积作用形成的沉积凝灰-角砾岩、热水沉积鲕状灰岩与钙华胶结角砾岩;②与近地表洞穴沉积和垮塌作用有关的热水沉积砾岩和汽爆射流角砾岩;③与热水通道相蚀裂和爆破角砾化作用有关的网络状灰岩角砾岩筒和热水隐爆角砾岩筒;④深部相热水浸煮-蚀变灰岩。除深部相浸煮蚀变作用外,其余 3种热水岩溶作用都可伴生和引起地质灾害。万洞山-五里排一带呈席状覆盖于第三系河湖相的砂砾岩和粘土沉积之上的灰岩质热水角砾岩为一套从陈家庄角砾岩筒滑覆过来的热水角砾岩滑体,其可能是造成金沙江古河道淤塞并使古金沙江改道和形成大拐弯的主要原因。  相似文献   

13.
文章通过对戈塘金矿硅质角砾岩的地质特征、地球化学特征综合分析,认为矿区的角砾硅化灰岩、硅化黏土岩等蚀变地质体为热液成因,其中硅质来源可分为成岩期与成矿期:成岩期硅质来自热泉型生物沉积;成矿期硅质来自成矿流体。成矿流体是来源于深部流体与天水、地层建造水的混合作用形成的混合流体。根据矿石结构构造特征及含金蚀变地质体产状特征,结合在戈塘地区茅口组底部及以下地层中新近发现呈筒状产出的含金蚀变角砾岩,认为戈塘金矿矿区含金角砾岩具有隐爆角砾岩的特征,得出戈塘金矿成因类型可能为隐爆角砾岩型金矿的新认识。此认识可供黔西南金矿成矿理论研究、探讨新的找矿方向和成矿预测提供参考。  相似文献   

14.
基于野外露头、岩心、薄片和测录井等地质及地球物理资料分析,并结合区域地质背景,深入研究了鲁西豫东(东濮)地区奥陶系顶部峰峰组和上马家沟组岩溶储集层发育特征、演化过程,并进一步分析优质储集层形成的主控因素,预测了有利储集层分布区。结果表明,奥陶系顶部储集层主要岩性为颗粒石灰岩、云质石灰岩、泥晶石灰岩、粉细晶白云岩、含膏白云岩和藻粘结白云岩等,裂缝和溶洞是主要储集空间类型。白云岩类储集层平均孔隙度为2.5%,平均渗透率为7.43×10-3μm2;石灰岩类储集层平均孔隙度为2.2%,平均渗透率为2.72×10-3μm2。储集层经历了沉积—准同生期成孔(寒武纪—中奥陶世)→风化淋滤(晚奥陶世—早石炭世)→矿物充填(晚石炭世—白垩纪末期)→溶蚀改造(古近纪)4个演化阶段。沉积相、成岩作用及构造应力控制了研究区优质储集层的形成。颗粒滩及潮坪相带、断裂发育带、白云石化作用和准同生岩溶、表生岩溶、埋藏岩溶作用6项叠合区储集层质量最优;颗粒滩及潮坪相带、白云石化作用和准同生岩溶作用、表生岩溶作用4项叠合区,以及断裂发育带、表生岩溶作用、埋藏岩溶作用3项叠合区储集层质量次之;颗粒滩及潮坪相带、断裂发育带、白云石化作用和准同生岩溶作用、埋藏岩溶作用5项叠合区储集层质量一般。  相似文献   

15.
黔东南凯里—麻江—丹寨地区(构造上位于黔南坳陷东北部)下奥陶统红花园组为一套生物碎屑灰岩。该区已发现的麻江古油藏尚未取得油气勘探进展。对区内多处露头剖面中—下奥陶统进行了宏观勘查和采样以及岩样微观薄片分析,证实该套地层曾发生古岩溶作用,并可识别出埋藏岩溶和风化壳岩溶两类古岩溶作用。基于这些岩溶剖面的对比分析,发现古风化壳岩溶受早中奥陶世古隆起及剥蚀时间控制,主要发育于古隆起区麻江古油藏一带,而其它地区为埋藏岩溶。认为古风化壳岩溶形成大量溶蚀孔洞缝,为红花园组提供了优质储层条件。此外在中—下奥陶统大湾组碎屑岩覆盖下的红花园组碳酸盐岩也可以发生埋藏岩溶并形成较好的岩溶型储层。红花园组在黔南坳陷东北部的油藏大多有过暴露或破坏。认为在坳陷西南部寻找古隆起区附近的上述两类储层应是油气勘探方向。  相似文献   

16.
发展中的板块边界:天山-贝加尔活动构造带   总被引:5,自引:0,他引:5  
不同的土地利用方式可使土地理化性质产生一系列的变化和差异,从而影响到岩溶作用的方向和强度。通过野外溶蚀试片实验法,对金佛山典型岩溶区碧潭泉和水房泉两泉域岩溶生态系统的5种典型土地利用方式下的土壤溶蚀速率进行雨季短时间尺度变化的野外观测。2006年7月中旬开始,重庆地区罕遇43天高温无雨的特殊天气,测试结果表明不同土地利用方式甚至同一土地利用方式下不同海拔的岩溶区石灰岩试片溶蚀速率都存在较大差异,碧潭泉域雨季绝对溶蚀量仅为水房泉域的13.3%,6个测试点土下溶蚀量由大到小依次为水房泉竹林地、水房泉林地、水房泉草地、碧潭泉林地、碧潭泉灌草丛、碧潭泉耕地。在研究时间内降雨量、温度和土壤CaCO3含量差异的基础上,金佛山两泉域岩溶作用主要有两个控制因素:土壤CO2浓度、土壤有机质。  相似文献   

17.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   

18.
The Cablac Limestone, widely recorded in Timor, has its type area on Cablac Mountain where it was regarded as a Lower Miocene shallow-marine carbonate-platform succession. The Bahaman-like facies placed in the Cablac Limestone are now known to belong to the Upper Triassic–Lower Jurassic rather than the Lower Miocene. On the northern slopes of Cablac Mountain, a crush breccia, formerly regarded as the basal conglomerate of the formation, is now considered to have developed along a high-angle fault separating Banda Terrane units of Asian affinity from an overthrust limestone stack containing units belonging to the Gondwana and Australian-Margin Megasequences. The Cablac breccia includes rock fragments that were probably derived locally from these tectonostratigraphic units after terrane emplacement and overthrusting. Clasts include peloid and oolitic limestones of the Upper Triassic–Lower Jurassic derived from the Gondwana Megasequence, deep-water carbonate pelagites of the Cretaceous and Paleogene derived from the Australian-Margin Megasequence, Upper Oligocene–Lower Miocene (Te Letter Stage) shallow-water limestone derived from the Banda Terrane, and a younger Neogene calcarenite containing clasts of mixed tectonostratigraphic affinity. There is no evidence for significant sedimentary or tectonic transport of clasts that form the breccia. The clast types and the present understanding of the geological history of Timor suggest that the crush breccia formed late in the Plio-Pleistocene uplift history of Timor. It is not the basal conglomerate of the Cablac Limestone. However, the clasts of an Upper Oligocene–Lower Miocene limestone found in the breccia suggest that a shallow-marine limestone unit of this age either outcrops in the region and has not been detected in the field, or has been eroded completely during late Neogene uplift. The clasts are similar in age and lithology to an Upper Oligocene–Lower Miocene formation that unconformably overlies a metamorphic complex in the Booi region of West Timor, similar to the Lolotoi Metamorphic Complex (Banda Terrane) that is juxtaposed against the crush breccia of Cablac Mountain. The Cablac Limestone at its type area includes a mixed assemblage of carbonate rock units ranging in age from Triassic to Plio-Pleistocene and representing diverse facies. As a formation, the name “Cablac Limestone” should be discarded for a Cenozoic unit. The Upper Oligocene–Lower Miocene shallow-water limestone unit that is typified by outcrops in the Booi region of West Timor, and that has contributed to clasts in the Cablac breccia, is informally named the Booi limestone. It is considered part of the allochthonous Banda Terrane of Asian affinity and represents the only shallow-marine Lower Miocene unit known from Timor. The only other Miocene sedimentary unit known from Timor includes carbonate pelagites – designated the Kolbano beds – probably deposited on an Australian continental terrace at water depths between 1000 and 3000 m. On the northeastern edge of Cablac Mountain, oolitic limestone and associated units of the Gondwana Megasequence, the Kolbano beds of the Australian-Margin Megasequence, and the Booi limestone and associated metasediments of the Banda Terrane were juxtaposed by a Plio-Pleistocene high-angle fault along which the Cablac crush breccia formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号