首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
生物碎屑灰岩、生物礁是造山带内最为常见的岩石类型之一,它们可以形成于多种构造环境。研究这些岩石组合的结构组成及生物赋存状态可为古地理恢复及造山带演化提供依据。分布于北大巴山地区与富TiO2碱性火山岩紧密相关的碳酸盐岩组合长期以来被认为是被动陆缘台地相组合。该套碳酸盐岩组合主要由生物礁、生物碎屑灰岩、砂屑灰岩、泥质灰岩、角砾灰岩共同构成。砂屑灰岩及生物灰岩中常伴随有薄层凝灰岩夹层;同时这些碳酸盐岩中富含不同比例的火山碎屑成分,发育粒序层理、平行层理、波纹斜层理和滑塌构造。生物碎屑灰岩通常与凝灰质砂岩、泥岩构成韵律层,火山质碎屑在类岩石中主要表现为粒径0.5~3 mm的棱角状—次棱角状玄武岩和凝灰岩碎屑,具有近源沉积特征;生物礁中通常出现1~2.5 cm棱角状—次棱角状玄武岩碎屑,且在生物礁之间的砂岩夹层中含有丰富的0.5~1 mm的次圆状玄武岩碎屑;砂屑灰岩中含有棱角状—次棱角状玄武岩和辉石两类碎屑,其中辉石碎屑粒径通常为1~2 mm,同时该类岩石中还含有丰富的黄铁矿,这些黄铁矿通常因其粒径变化而发育粒序结构特征。角砾状灰岩可分别由砂屑灰岩、生物礁及生物碎屑灰岩构成,也可由三者共同构成,玄武岩碎屑仅出现于角砾状生物礁灰岩中。这些碳酸盐岩中的生物化石具有曾经历过明显的搬运改造特征,其中生物碎屑灰岩和砂屑灰岩中的化石碎屑以次圆状为主,生物礁中的生物化石平行于砂岩夹层分布且发生不同程度的压扁和挤压变形,岩石中普遍发育滑塌沉积构造。这些特征共同表明,该套碳酸盐岩与下伏的碱性玄武岩形成密切相关,二者共同构成了与现代大洋中典型洋岛/海山相一致的结构特征,且这些碳酸盐岩多沿着下伏玄武岩的周边沉积,具有深水—斜坡环境的沉积组合,同时因其中所包含的生物化石经历了一定距离搬运作用而发生再沉积,进一步表明这些生物发育时代可能要略微早于该套火山—沉积组合的形成时代。  相似文献   

2.
广东长坑—富湾银金矿区的金银矿化产于碳质硅质岩—灰岩岩系中。该岩系下部为下石炭统,由下向上为石磴子组、测水组、梓门桥组,以含碳灰岩及砂泥岩为主,化石较多。硅质岩—灰岩岩系被认为属于梓门桥组上部,其上为碳质泥岩、碳质砂岩、碳质含砾砂岩等,有晚三叠世化石。但硅质岩及其上部紧邻的砂泥岩中化石很少。  相似文献   

3.
胡国辉  周艳艳  赵太平 《岩石学报》2012,28(11):3692-3704
河南嵩山地区位于华北克拉通南缘,保存有较为完整的太古宙-古元古代变质结晶基底和之后的沉积盖层。五佛山群直接角度不整合覆盖于新太古界登封群和古元古界嵩山群之上,为嵩山地区结晶基底之上分布广泛的第一沉积盖层。其主要由(长石)石英砂岩组成,夹少量的粉砂质页岩、泥岩和薄层灰岩。从下而上岩性相变明显,代表两次较大的沉积旋回。地球化学特征上,五佛山群砂岩的SiO2含量(70.18%~95.21%)明显比泥质岩(20.79%~52.27%)高,但Fe2O3、MgO、CaO和K2O含量比泥质岩低,表明泥质岩中含有较多的基性组分和富钾矿物。泥质岩的稀土总量(∑REE=131×10-6~169×10-6)比砂岩(∑REE=7.30×10-6~158×10-6)高,反映泥质岩中较高含量的粘土矿物对稀土元素具有较强的吸附作用。砂岩样品的成分变异指数(ICV=0.89~3.59)较低,说明其成熟度较高,为稳定构造环境下沉积的产物。泥质岩的ICV值为4.04~17.50,SiO2/Al2O3比值(3.90~5.58)和La/V比值较低(0.45~0.65),说明其成熟度较低,形成环境相对比较活动。较低的化学蚀变指数(CIA=7.52~66.1)反映碎屑沉积岩 的源区遭受相对较弱的化学风化作用,其中砂岩(CIA=27.6~66.1)的化学风化强度比泥质岩(CIA=7.52~24.9)高。五佛山群碎屑沉积物主要来源于古元古代中酸性组分,有少量基性组分的加入。其下部和中部的砂岩与华北南缘同时代的沉积地层均形成于被动大陆边缘的沉积环境,说明华北克拉通南缘在熊耳群之后进入了一个稳定的沉积阶段。而五佛山群上部泥质岩形成于与大陆岛弧相关的沉积盆地,显示地壳活动性增强,沉积环境上暗示由被动大陆边缘向活动大陆边缘过渡的过程,可能与秦岭造山带形成初期的板 块活动有关。  相似文献   

4.
陕西宁强县中坝锰矿床形成于扬子地块西北缘伸展裂陷沉积环境内,是近年新发现的锰矿床,赋存于下寒武统牛蹄塘组黑色岩系内,含锰岩系岩性主要为含碳粉砂质板岩、含碳泥质板岩、硅质岩,夹有灰岩条带和灰岩透镜体,矿石类型为层状、似层状的含锰硅质岩及条纹条带状的含锰灰岩,含锰矿物主要为硬锰矿,可见极少量的菱锰矿。对中坝一带MnⅠ号锰矿体常量及微量元素地球化学特征分析表明:中坝锰矿体相对围岩亏损Ti和Al元素,SiO2/Al2O3比值较高,Th含量低,Y/Ho比值高,且含锰岩系的PAAS标准化的稀土元素配分模式具有轻稀土元素亏损、重稀土元素富集、Ce负异常、Y正异常的特征,与现代海水稀土元素配分模式一致,说明海水自生沉积作用对含锰岩系中元素的富集具有重要影响,陆源碎屑物质的影响较小;含锰岩系的Al/(Al+Fe+Mn)、Fe/Ti、(Fe+Mn)/Ti、U/Th、Sr/Ba比值、δEu及SiO2-Al2O3图解、Fe/Ti-Al/(Al+Fe+Mn)图解、Lg (U)-Lg (Th)图解、Fe-Mn-(Cu+Co+Ni)×10图解、La/Yb-REE图解、δEu-Mn图解均表明锰矿沉积为热水沉积和正常海水混合作用的结果。含锰岩系的δCe、V/Cr、V/(V+Cr)、Ni/Co比值、富集U、V、Mo等特征表明锰矿形成于还原-硫化的沉积环境。中坝锰矿的形成机制为在弱碱性、还原、富CO32-的条件下,Mn2+和CO32-结合形成菱锰矿而沉淀。由此总结出中坝锰矿的成矿模式为:在早古生代,富含Fe、Mn多金属的硅质热水溶液沿着刘家坪古火山通道上涌,上涌的热水与海水混合,在弱碱性、还原、富CO32-的条件下,Mn2+和CO32-结合形成菱锰矿而沉淀,形成Fe、Mn硅质岩,且在沉积凹陷处成矿更有利,溶于海水中的Mn同碳酸盐一同沉淀,形成含锰灰岩。  相似文献   

5.
粤中三水盆地长坑赋金硅质岩主要呈层状分布于下石炭统梓门桥组生物碎屑灰岩与上三叠统碳质泥岩(或下石炭统梓门桥组粉砂岩)之间,厚度1—50m,主要由层状、块状及角砾状硅质岩组成。金矿主要呈细脉浸染状产于角砾状硅质岩中。长坑赋金硅质岩层具纹层状构造特征,在其中发现放射虫、微体古生物化石,角砾长轴与硅质纹层平行分布,含有草莓状黄铁矿,这些特征以及长坑金矿床与富湾银矿床成矿时代等资料都表明长坑金矿赋金硅质岩不是简单热水沉积或热液蚀变作用形成的,而是多次硅化作用的产物,至少经历了热水沉积硅化、成岩硅化、金矿成矿热液蚀变硅化及银矿成矿热液蚀变硅化作用的叠加。热水沉积硅质岩形成富金矿源层,为成矿提供了物质基础。  相似文献   

6.
郑春子  王光奇 《地质论评》1999,45(6):632-639
吉林晚石炭世要期石头口门裂陷槽位于长春东50km。该裂陷槽以海底火山沉积--硅质岩沉积为主。早期以含锰结核的碎屑岩和泥岩、硅质岩为主,并有少量的凝灰碉和玄武岩;中期以海底火山喷发的高钠质细碧岩、角地为主,并伴有规模不大的蛇纹岩;晚期以硅质岩、长石杂砂岩、泥岩、生物碎屑灰岩为主,在生物碎屑灰岩中首次发现Fusulina lanceolata F.sp.、Pseudostaffella khotune  相似文献   

7.
在一定温度下,硅质岩的氧同位素组成是水介质氧同位素组成的函数(δ18OSiO218O+A,在一定温度下A为常数),而水介质的氧同位素组成在又是盐度的函数(δ18O=BS+C,S代表盐度,B、C是常数)。因此,根据硅质岩的氧同位素组成可以推断形成介质的盐度,进而判别形成环境类型。  相似文献   

8.
鄂西渔塘坝含碳硅质岩段(P31m)为硒矿床的主要赋硒层位,其硅、氧同位素组成δ30Si变化范围为0.5‰~1.8‰(平均1.25‰);δ18O为22.7‰~27.1‰ (平均25.3‰);硅质岩中黄铁矿 δ34S的值变化范围为-27.7‰~-5.65‰,幅度大于20‰;硅质岩层位中方解石样品的δ13C值范围为4.19‰~0.52‰。综合研究表明,渔塘坝硅质岩在成因上主要表现为热水沉积特征,成岩温度为45℃,形成于半封闭的浅海至滨浅海(滞留的盆地)缺氧沉积环境。  相似文献   

9.
钱青  张旗  孙晓猛  王岳明 《地质科学》2001,36(4):444-453
北祁连老虎山地区玄武岩与沉积岩呈互层产出,玄武岩主要为E-MORB,少数为N-MORB;多数样品具Nb负异常,表明很可能形成于弧后盆地环境。玄武岩中的沉积岩夹层主要为浊积岩、硅岩和硅质泥岩,有少量含棘皮类和双壳类化石的层状生物碎屑灰岩。浊积砂岩中含有大量陆源石英碎屑,硅岩具较高的Al2O3Fe2O3比值和较低的MnO/TiO2比值,不具有明显的Ce负异常。上述特征表明老虎山玄武岩及其中的沉积岩夹层形成于弧后盆地中靠近陆缘的环境。  相似文献   

10.
桂西南柳桥地区深水相二叠系-三叠系界线剖面   总被引:9,自引:1,他引:8  
桂西南柳桥地区上二叠统为厚约84m的浅灰—灰白色块状海绵蓝藻生物灰岩(生物礁),之上为浅灰绿色—暗灰色薄层状含远洋浮游生物硅质岩、含泥质硅质岩、硅质泥岩(大隆组),这套深水相的沉积岩夹有大量浅灰白色的粘土岩。上覆的三叠系罗楼组底部为黄色泥岩,夹多层灰白色粘土岩,往上渐变为灰色薄层状含大量双壳类、菊石化石的钙质泥岩、泥灰岩。柳桥地区晚二叠世末期沉积岩和中基性火山岩的特征显示其是在地壳裂解、快速沉降、相对海平面快速上升过程中迅速淹没台地边缘的生物礁而形成的深水相海盆,造成深水盆地与浅水台地并存,具有多岛洋的地理分布格局。东攀二叠系-三叠系界线剖面的露头完整,对剖面的岩石学特征、生物化石组合特征等方面的详细研究显示,该地区一直处于连续沉积的深水环境中,没有发生沉积间断,界线上下的岩石特征和生物组合特征较清楚。  相似文献   

11.
With depleted coal resources or deteriorating mining geological conditions, some coal mines have been abandoned in the Fengfeng mining district, China. Water that accumulates in an abandoned underground mine (goaf water) may be a hazard to neighboring mines and impact the groundwater environment. Groundwater samples at three abandoned mines (Yi, Er and Quantou mines) in the Fengfeng mining district and the underlying Ordovician limestone aquifer were collected to characterize their chemical and isotopic compositions and identify the sources of the mine water. The water was HCO3·SO4-Ca·Mg type in Er mine and the auxiliary shaft of Yi mine, and HCO3·SO4-Na type in the main shaft of Quantou mine. The isotopic compositions (δD and δ18O) of water in the three abandoned mines were close to that of Ordovician limestone groundwater. Faults in the abandoned mines were developmental, possibly facilitating inflows of groundwater from the underlying Ordovician limestone aquifers into the coal mines. Although the Sr2+ concentrations differed considerably, the ratios of Sr2+/Ca2+ and 87Sr/86Sr and the 34S content of SO42? were similar for all three mine waters and Ordovician limestone groundwater, indicating that a close hydraulic connection may exist. Geochemical and isotopic indicators suggest that (1) the mine waters may originate mainly from the Ordovician limestone groundwater inflows, and (2) the upward hydraulic gradient in the limestone aquifer may prevent its contamination by the overlying abandoned mine water. The results of this study could be useful for water resources management in this area and other similar mining areas.  相似文献   

12.
湘中南地区奥陶系由"细碎屑岩-硅质岩系-粗碎屑岩"构成,三者厚度变化具有明显的规律性:厚度等值线的展布逐渐趋于北东方向,厚度最大区域向南东方向迁移。区内岭口剖面烟溪组硅质岩SiO_2含量(89.08%~94.32%)和Al/(Al+Fe+Mn)值(0.52~0.79)较高,具有轻稀土略富集、无明显铈异常和铕异常的特点;大桥剖面烟溪组硅质岩SiO_2含量高(91.74%~95.14%),Al/(Al+Fe+Mn)值为0.34~0.56,具有轻稀土富集、无明显铕异常和间歇性铈负异常、Y/Ho比值低(20.65±1.63)的特点。硅质岩地球化学特征及图解说明其主要为正常海相生物成因,形成于开阔的大陆边缘背景。对比邻近地区相应层位数据发现,湘中南及其邻区中—晚奥陶世硅质岩成因与沉积背景相似,指示其形成于统一盆地中,结合地层等厚度图分析认为,盆地经历了被动大陆边缘—前陆盆地的转换,硅质岩系可能是前陆盆地初始阶段的产物,在其展布范围内无明显热液影响,暗示造成华夏地块抬升的地球动力学来源可能还在该套硅质岩系展布范围的更南部或东南部。  相似文献   

13.
塔中地良奥陶系地层格架与沉积演化   总被引:1,自引:0,他引:1  
塔里木中部地区奥陶系大致以Ⅰ号断裂为界分东北和西南两个地层分区,自下而上分白云岩段、灰岩段、泥质灰岩段、泥岩夹灰岩段、泥岩夹砂岩段、砂砾岩段、泥岩夹砂岩段、泥岩灰岩互层段和砂岩段等9个岩性段。早奥陶世,塔中地区以碳酸盐岩台地相为主,自西向东为局限台地相、开阔台地相、台地边缘相和深水斜坡相。中——晚奥陶世,塔中地区西部以混积陆架相为主,东部以深水斜坡相为主。中—晚奥陶世,塔中东部及塔东地区在构造上具弧后前陆盆地性质。中—上奥陶统地层完整地记录了该盆地从形成发展到消亡的过程,即早期为深水斜坡相复理石活动沉积,晚期演化为浅海陆架相稳定沉积。  相似文献   

14.
徐跃通 《地质科学》1998,33(1):39-50
在信江盆地中存在数层和石炭纪海相火山岩及其海底块状硫化物矿层相伴生,与石炭纪地层整合产出的层状硅质岩。由对硅质岩常量元素、微量元素、稀土元素、硅和氧同位素等地球化学特征研究表明,本区硅质岩具有一定的热水沉积硅质岩地球化学特征。在Al-Fe-Mn和Fe-Mn-(Ni+Co+Cu)三角图上,本区硅质岩属热水沉积硅质岩。由硅质岩MnO/TiO2比值、δCe值和δ30Si值分析表明,信江盆地石炭纪硅质岩的沉积环境主要为浅海。  相似文献   

15.
东濮凹陷天然气生成模拟与煤成气的新证据   总被引:3,自引:0,他引:3  
通过对东濮凹陷三种类型的气源岩加水高温模拟实验研究发现,石炭一二迭系煤生气能力是奥陶系灰岩的9倍,下第三系低有机质丰度的泥岩仅为煤的生气量的1/2,煤是东濮凹陷天然气最主要的气源岩;通过对模拟组分分析,煤生成的气体主要为甲烷含少量的重烃与CO2,低有机质丰度的泥岩与灰岩主要生成CO2;煤的模拟气体组分甲烷同位素值与W23井,M70井天然气甲烷同位素接近应该来源于石炭-二叠系煤系地层,灰岩与WG2井甲烷碳同位素接近,天然气来源于奥陶系灰岩地层。  相似文献   

16.
滇西昌宁—孟连带的地层格架   总被引:2,自引:2,他引:2  
显生宙地层在昌宁—孟连带呈南北向条带状分布,根据不同岩性的横向分布和纵向变化情况,可将带中的地层序列大致划分成4种类型:(1)碎屑岩向上夹灰岩透镜体,并变成细粒碎屑岩和硅质岩交互出现;(2)碎屑岩向上夹灰岩透镜体、少量硅质岩,顶部为二叠纪基性火山岩;(3)碎屑岩—基性火山岩/火山碎屑岩—碳酸盐岩—碎屑岩;(4)灰岩、白云质灰岩—灰黑色薄层灰岩、泥质灰岩、泥岩夹硅质泥岩。理清不同岩石地层单位间的关系是客观解释昌宁—孟连带发展演化的前提。  相似文献   

17.
湘南地区奥陶系岩石组合及其沉积环境   总被引:1,自引:0,他引:1  
罗薇  何幼斌  蒋金晶  游国庆 《地质通报》2012,31(7):1105-1114
湘南地区奥陶系的岩石类型以砂岩、泥岩和页岩为主,硅岩、灰岩较少。按照岩石成分,可进一步划分为砂岩-泥岩韵律性互层型和泥(页)岩(板岩)-硅岩型2种岩石组合类型。其中,砂岩-泥岩韵律性互层型岩石组合分布于爵山沟组、桥亭子组、天马山组,泥(页)岩(板岩)-硅岩型岩石组合分布于烟溪组。通过岩性、古生物、沉积构造等相标志分析,认为研究区奥陶系沉积环境为深水斜坡至盆地环境,发育深水原地沉积和浊流沉积,并建立了沉积模式,同时分析其沉积演化过程。研究区奥陶系总体表现为水体逐渐上升,经历过一次完整的海进-海退旋回:第一次海进始于下奥陶统桥亭子组,上奥陶统天马山组海退开始。  相似文献   

18.
The Istanbul Terrane along the Black Sea coast in NW Anatolia, is a Gondwana-derived continental microplate, comprising a well-developed Paleozoic succession. Petrographic and X-ray diffraction studies were performed on rock samples from measured sections throughout Ordovician?CCarboniferous sedimentary units. Diagenetic-very low-grade metamorphic clastic (shale/mudstone, siltstone, sandstone) and calcareous rocks (limestone, dolomite) mainly contain phyllosilicates, quartz, feldspar, calcite, dolomite, hematite and goethite minerals. Phyllosilicates are primarily represented by illite, chlorite, mixed-layered chlorite?Cvermiculite (C?CV), chlorite?Csmectite (C?CS) and illite?Cchlorite (I?CC). Feldspar is commonly present in the Ordovician and Carboniferous units, whereas calcite and dolomite are abundant in the Silurian and Devonian sediments. The most important phyllosilicate assemblage is illite?+?chlorite?+?I?CC?+?C?CV?+?C?CS. Illite and chlorite-bearing mixed layer clays are found in all units. The amounts of illites increase in the upper parts of the Silurian series and the lower parts of the Devonian series, whereas chlorite and chlorite-bearing mixed-layers are dominant in the Ordovician and Carboniferous units. Kübler index values of illites reflect high-grade anchimetamorphism for the Early Ordovician rocks, low-grade metamorphism to high-grade diagenesis for the Middle Ordovician?CEarly Silurian rocks and high-grade diagenesis for the Late Silurian?CDevonian units. The K-white micas b cell dimensions indicate intermediate pressure conditions in the Early Ordovician?CEarly Silurian units, but lower pressure conditions in the Middle Silurian?CDevonian units. Illites are composed of 2M 1?±?1M d polytypes in all units, except for Upper Ordovician?CLower Silurian units which involve 1M polytype in addition to 2M 1 and 1M d polytypes. The 2M 1/(2M 1?+?1Md) ratios rise from Devonian to Ordovician together with the increasing diagenetic-metamorphic grade. Chlorites have IIb polytype. In general, crystal-chemical data of clay minerals in the Istanbul Terrane show a gradual increase in the diagenetic/metamorphic grade together with increasing depth. The new data presented in this work indicate that the diagenetic/metamorphic grade of the Paleozoic of the Istanbul Terrane is higher than that of the neighboring Zonguldak Terrane and generated by a single metamorphic phase developed at the end of Carboniferous. This finding contrasts with the metamorphic history of the neighboring Zonguldak Terrane that displays a distinct Early Devonian unconformity and a thermal event.  相似文献   

19.
Cambrian to Ordovician pelagic radiolarian cherts in the Lachlan Fold Belt in southeastern Australia contain trace fossils demonstrating the faunal diversification that occurred during the Ordovician on the deep-sea floor. The Cambro-Ordovician Howqua Chert has a very low degree of bioturbation, and the trace fossils are small and shallow. In contrast, the late Middle to Late Ordovician cherts are strongly bioturbated with larger, deeper burrows, and contain more morphologically diverse trace fossils. This records a substantial increase in the size, abundance and activity of deep-ocean benthic animals living on the floor of the ocean bordering Australia.  相似文献   

20.
The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. εNd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号