首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 841 毫秒
1.
冀京津地区燕山构造旋回岩石圈的演化构成一个完整的构造演化旋回,岩石圈经历了晚三叠世早期拉张裂解(非造山)、晚三叠世晚期稳定过渡(前造山)、早侏罗世至早白垩世中期挤压板内造山(同造山)、早白垩世晚期至古新世稳定过渡(后造山)的发展演化阶段。在燕山构造旋回板内造山过程中,原有克拉通型岩石圈被强烈改造与再造,形成新的造山型岩石圈,这是燕山构造旋回最为重要的内容和板内造山的实质性结果。  相似文献   

2.
华北燕山造山带结构要素组合   总被引:19,自引:0,他引:19  
采用造山带结构要素组合的概念,对华北燕山造山带进行了研究。燕山造山带各演化阶段的结构要素组合特征如下:前造山和初始造山幕(J1),早侏罗世早期为前造山伸展构造,结构要素组合有:三又式裂谷带、板内型玄武岩、含煤建造;早侏罗世晚期为初始造山收缩构造,结构要素组合有:向北倾伏的褶曲与逆冲、九龙山组类磨拉石建造,硬绿泥石一十字石一蓝晶石为标志的低温、中一高压变质带。早期造山幕(J2),中侏罗世早期为同造山伸展构造,结构要素组合有:岩石圈上隆伸展有关的火山盆地及可能的同期侵入岩,火山岩线型分布;中侏罗世晚期为收缩构造,有关的结构要素组合为:逆冲推覆和褶曲变形、磨拉石建造、同构造侵入体和角闪岩相变质岩。峰期造山幕(J3),晚侏罗世早期同构造伸展构造,结构要素组合有:岩石圈上隆伸展有关的火山盆地与同期侵入岩,火山岩面型分布,火成岩组合中出现高压粗面岩类,较大量的流纹岩;晚侏罗世晚期收缩构造有关结构要素组合为:逆冲推覆和褶曲变形、磨拉石建造、同构造侵入体和角闪岩相变质岩,侵入岩中出现高压正长岩类。早白垩世早期(K1^1)晚造山幕有关的结构要素组合为:收缩变形分布较局限,湖相沉积建造替代磨拉石建造,侵入岩组合中出现过碱性石英正长岩,大晶洞构造的花岗岩及科马提质辉长岩等。早白垩世晚期(K1^2)后造山幕伸展有关的结构要素组合为:正断层、变质核杂岩、双峰式岩墙辟、典型的过碱性花岗岩和含煤建造。  相似文献   

3.
The Yanshan thrust belt (YTB) is located at the northern edge of the North China plate. Because of the intense thicking and subsequent delamination of the lithosphere in north China, geologists have been focused on the Late Mesozoic deformation in the Yanshan belt. The Yanshan belt has been regarded as part of a stable craton from the Proterozoic to the early Mesozoic. In this paper, the authors present that the Yanshan area was deformed during the early Mesozoic. This deformation could be related to ocean basin closure along the northern margin of North China, or related to the collision between the north China and Yangtze Plates along the Qinling-Dabie ultrahigh pressure belt. Three stages of early Mesozoic deformation are identified in the eastern Yanshan at Lingyuan County. The first stage is characterized by westward thrusting (D1), the second stage comprises a top-to-east thrust system (D2), and the third stage comprises extensional gravity-induced collapse and landsliding (D3). The timing of these evens is constrained by both the crosscutting relationships of faults and the isotopic dating of volcanic rocks and gravels. The D1 and D2 events took place in the Late Triassic and Early Jurassic, whereas D3 event occurred at the end of the Middle Jurassic. The Dengzhangzi formation was deposited during the D1–D2 period and recorded a rapid uplift, erosion, and deposition sequence. These early Mesozoic contractional deformations in the YTB were probably related to the closure of ancient Asian ocean and ancient Qinling ocean. The later crustal extension was caused by gravitational collapse of the eastern China plateau during early Mesozoic.  相似文献   

4.
利用地层序列中火山碎屑岩、凝灰岩及其火山岩锆石U-Pb同位素测年,对晋东北地区侏罗纪地层时代进行了重新厘定。取得了以下主要认识:(1)确认宁武—静乐盆地下侏罗统永定庄组的存在;(2)宁武—静乐盆地天池河组可以与鄂尔多斯盆地安定组相对比,归属于中侏罗统;(3)浑源盆地髫髻山组应归属于中侏罗统上部,该套火山岩地层在整个燕—辽地区具有穿时性;(4)广灵盆地中侏罗统窑坡组底部厚层砾岩的沉积时代可能与燕山造山带的南大岭组相当,应该属于早侏罗世至中侏罗世早期构造运动的产物。通过地层序列的重新厘定,确认了159.0~(152.77±0.63)Ma区域角度不整合的存在,该期构造运动可能与侏罗纪东亚大陆多向汇聚产生的远程效应有关。  相似文献   

5.
燕山东段下辽河地区中新生代盆山构造演化   总被引:9,自引:1,他引:8  
笔者通过分析燕山东段-下辽河地区的前中生代构造背景和中新生代盆山构造演化认为,该区中新生代的构造演化过程是在前中生代华北克拉通岩石图基础上发育起来的克拉通内(陆内或板内)盆山构造与挤压构造的交替演化过程,经历了早-中三叠世、晚三叠世-早侏罗世、中-晚侏罗世、白垩纪、新生代5个盆山构造演化阶段和中三叠世末、早侏罗世末、晚侏罗世末和白垩纪末、老第三纪末5期挤压作用。每次挤压作用都使得早期盆地萎缩或消亡,造成早期盆地反转。中-晚侏罗世、白垩纪和新生代三个阶段的伸展作用形成中-晚侏罗世断陷盆地、白垩纪断陷盆地和新生代裂谷盆地。在这一构造演化过程中,挤压作用和伸展作用交替出现,挤压构造和伸展构造间互发育。   相似文献   

6.
With acquisition and accumulation of new data of structural geological investigations and high-resolution isotopic dating data, we have greatly improved our understanding of the tectonic events occurring in eastern China during the period from the Late Jurassic to Early Cretaceous and may give a new interpretation of the nature, timing and geodynamic settings of the “Yanshan Movement”. During the Mid-Late Jurassic (165±5 Ma), great readjustment of plate amalgamation kinematics took place in East Asia and the tectonic regime underwent great transformation, thus initiating a new tectonic regime in which the North China Block was the center and different plates converged toward it from the north, east and southwest and forming the “East Asia convergent” tectonic system characterized by intracontinental subduction and orogeny. As a consequence, the crustal lithosphere of the East Asian continent thickened considerably during the Late Jurassic, followed immediately by Early Cretaceous substantial lithospheric thinning and craton destruction featured by drastic lithospheric extension and widespread volcano-magmatic activities, resulting in a major biotic turnover from the Yanliao biota to Jehol Biota. Such a tremendous tectonic event that took place in the continent of China and East Asia is the basic connotation of the “Yanshan Movement”. In the paper, according to the deformation patterns, geodynamic settings and deep processes, the “Yanshan Movement” is redefined as the Late Jurassic East Asian multi-directional plate convergent tectonic regime and its associated extensive intracontinental orogeny and great tectonic change that started at -165±5 Ma. The substantial lithospheric attenuation in East China is considered the post-effect of the Yanshanian intracontinental orogeny and deformation.  相似文献   

7.
Integrated geochemical and Sr–Nd–Pb isotopic studies of the Early Jurassic Nandaling flood basalts (NFB) in the Yanshan belt, northern margin of the North China Craton (NCC), are presented in this paper. These sub-alkaline basalts evolved from a more magnesium-rich parental magma through fractional crystallization of olivine and clinopyroxene. The primitive magma of the NFB originated from 2–5% partial melting of spinel to garnet transitional peridotite at about 70–80 km depth in the Mesozoic lithosphere mantle. The NFB contain a distinctive lithospheric component, characterized by Nb (Ta), Th, U and Ti depletions, LREE enrichments, moderate Sr, and low Nd and Pb initial isotopic ratios, as a result of an interaction between lower crust (15–25%) and primitive magma evoked by magmatic underplating at crust–mantle boundary. The Early Jurassic NFB extruded in an intraplate extensional setting related to post-orogenic collapse in the northern margin of the NCC, indicating an event of lithospheric modification earlier than that in the southern margin (Early Cretaceous). The temporal similarity of the Jurassic–Cretaceous mantle-derived mafic rocks to lower crust replacement, and the decoupling of surface shortening with lithospheric thinning during the Late Jurassic–Early Cretaceous, suggest the important role of magmatic underplating and subsequent crust–mantle interaction accompanied by asthenosphere upwelling on the evolution of the Mesozoic lithosphere of the NCC. The correlation between lithospheric thinning and magmatic underplating may be an important process in continental rifting.  相似文献   

8.
大别造山带北部的中生代火山岩   总被引:17,自引:0,他引:17  
杜建国  张鹏 《现代地质》1999,13(1):57-65
大别造山带北部的北淮阳中生代火山喷发岩带形成于后造山阶段的晚侏罗世—早白垩世。火山岩可以划分为2个独立的火山旋回,分别对应于高钾钙碱性系列(HKCA)和钾玄岩系列(SHO),从岩石构造组合和岩石地球化学数据提供的约束条件分析,前者形成于晚侏罗世的陆内挤压环境,造山带是有“山根”的增厚陆壳,而早白垩世钾玄岩系列岩石的出现表征着造山带已发生“去根”作用,北淮阳处于陆壳减薄的拉张环境  相似文献   

9.
This paper reports results from detrital zircon U–Pb geochronology, Hf isotopic geochemistry, sandstone modal analysis, and palaeocurrent analysis of the early Mesozoic strata within the Ningwu basin, China, with the aims of constraining the depositional ages and sedimentary provenances and shedding new light on the Mesozoic tectonic evolution of the northcentral North China Craton (NCC). The zircons from early Mesozoic sandstones are characterized by three major populations: Phanerozoic (late Palaeozoic and early Mesozoic), late Palaeoproterozoic (with a peak at approximately 1.8 Ga), and Neoarchaean (with a peak at approximately 2.5 Ga). Notably, three Phanerozoic zircons in the Early Triassic Liujiagou Formation were found to have positive εHf(t) values and characteristics typical of zircons from the Central Asian Orogenic Belt (CAOB). Therefore, the CAOB began to represent the provenance of sediment in the sedimentary basins in the northern NCC no later than the Early Triassic (261 Ma), implying that the final amalgamation of the NCC and CAOB occurred before the Early Triassic. The U–Pb geochronologic and Hf isotopic results show that the Lower Middle Triassic sediments were mainly sourced from the Yinshan–Yanshan Orogenic Belt (YYOB), and that a sudden change in provenances occurred, shifting from a mixed YYOB and CAOB source in the Middle Jurassic to a primarily YYOB source in the Late Jurassic. The results of the sandstone modal analysis suggest that the majority of the samples from the Lower Middle Jurassic rocks were derived from either Continental Block or Recycled Orogen sources, whereas all the samples from the Upper Jurassic rocks were derived from Mixed sources. The change in source might be ascribed to the southward subduction and closure of the Okhotsk Ocean and the resulting intense uplift of the YYOB during the Late Jurassic. This uplift likely represents the start of the Yanshan Orogeny.  相似文献   

10.
鄂尔多斯盆地西缘前陆盆地构造-沉积响应   总被引:2,自引:0,他引:2  
鄂尔多斯盆地西缘前陆地区在晚三叠世-中侏罗世经历了印支运动和燕山运动早期的影响,西缘整体抬升,西南和西北两个造山带开始显现,古地理为继承性的南湖北河格局,此时秦岭造山带的形成使西南地区由滨海相向湖沼相过渡。晚侏罗世-早白垩世是西缘地区前陆盆地形成时期,燕山中期逆冲推覆作用强烈,该区地层角度不整合发育,沉积记录的响应表现为南北向隆坳相间的前陆盆地格局,有别于前陆盆地形成始于晚三叠世的认识。晚白垩世-新生代是喜山运动的后期改造时期,地层角度不整合发育,沉积响应为平原沼泽相沉积。  相似文献   

11.
燕山地区位于华北板块的东北部 ,自晚古生代华北板块与蒙古板块的拼合后 ,燕山地区进入板内构造演化阶段。以往燕山造山带的研究主要集中于中侏罗世开始的燕山运动 ,而对已经发现的印支期构造的详细研究比较缺乏。通过对辽西凌源太阳沟地区进行详细的构造解剖分析和大比例尺地质填图 ,揭示出在晚三叠世到早侏罗世期间 ,该区经历了三次重要的构造变形。即晚三叠世到早侏罗世早期 ,发育由东往西逆冲的后展式逆冲推覆 ,早侏罗世晚期由西往东逆冲的前展式逆冲推覆和早侏罗世晚期崩塌滑覆构造。三期构造变形显示了燕山造山带早期构造的非极性演化特征 ,也显示了燕山地区的快速抬升和剥露过程。短时期内三期逆冲构造推覆方向的反转 ,显示了板内变形的特征 ,结合已经确定的变形时代及构造指向 ,作者认为它们很可能是对晚三叠世秦岭—大别碰撞带和侏罗—白垩纪蒙古—鄂霍茨克碰撞带的远程构造响应的结果  相似文献   

12.
内蒙古中部石拐侏罗纪陆相含煤盆地构造变形   总被引:1,自引:1,他引:0  
对华北陆块北缘大青山推覆构造前缘石拐侏罗纪陆相含煤盆地的构造进行了分析。结果表明:早侏罗世早期,石拐盆地受NNE-SSW方向的拉张作用力,形成近东西走向的断陷盆地,而后沉积了早-中侏罗世五当沟组含煤沉积;中侏罗世末受近东西向挤压,在早先沉积地层中形成一套共轭节理;晚侏罗世受大青山推覆构造影响,盆地内侏罗系形成一系列代表推覆构造体系前缘带的紧闭同斜-直立宽缓褶皱及断层相关断层,具明显构造分带性。早侏罗世早期的拉张可能是印支造山后地壳的伸展垮塌,而晚侏罗世的挤压可能是板缘碰撞的板内响应。   相似文献   

13.
辽西早白垩世义县组火山夺的起源及壳幔相互作用   总被引:11,自引:1,他引:11  
对燕山造山带辽西早白垩世义县组火山岩的Nd,Sr,Pb同位素分析,作者认为义县组火山岩起源于岩石圈地幔的部分熔融,岩浆在上侵过程中发生了结晶分异和同化混染作用,即AFC过程。与新生代汉诺坝玄武岩中的中生代镁铁质麻粒岩捕虏体和太古代片麻岩对比研究,发现义县组火山岩与这些镁铁质麻粒岩捕虏体有许多地球化学相似之处,而与长英质麻粒岩捕虏体和太古代各种片麻岩差别较大。作者认为早白垩世燕山板内造山带发生了强烈的岩石圈伸展作用,辽西义县组火山岩和汉坝新生代玄武岩中的镁铁质麻粒岩捕虏体均为这一构造背景下的产物,它们属于幔源岩浆喷发与大规模玄武zh质岩浆底侵作用形成的“同质异相体”。  相似文献   

14.
Khromykh  S. V.  Semenova  D. V.  Kotler  P. D.  Gurova  A. V.  Mikheev  E. I.  Perfilova  A. A. 《Geotectonics》2020,54(4):510-528

Studies of volcanic rocks in orogenic troughs of Eastern Kazakhstan were carried out. The troughs were formed at late-orogenic stages of evolution of Hercynian Altai collision system. Volcanic rocks are represented by basalts, andesites, dacites and rhyolites. Based on geochemical and isotopic data, the basalts and andesites derived from mafic magmas that formed as a result of partial melting of garnet peridotites in the upper mantle under the orogen. U–Pb zircon data prove two volcanic stages: more-scaled Middle Carboniferous (~311 Ma) and less-scaled Early Permian (297–290 Ma). Basalts and andesites in lower parts of the orogenic troughs and independent dacite-rhyolite structures were formed at the Middle Carboniferous stage. Parental mafic magmas were formed as a result of partial melting of mantle substrates in local transtensional zones along large shear faults. The formation of dacites and rhyolites could have been caused by partial melting of crustal substrates under effect of mafic magmas. Transtensional movements in the lithosphere of orogenic belts may indicate the beginning of collapse of orogens. A smaller volume of basalts and andesites formed at the Early Permian stage. Geochemical data prove the independent episode of partial melting in upper mantle. Synchronous basalts and andesites also appeared at wide territory in Tian Shan, Central Kazakhstan, and Central and Southern Mongolia. Early Permian volcanism indicates general extension of the lithosphere at the postorogenic stages. Large-scaled Early Permian mafic and granitoid magmatism in Central Asia has been interpreted in recent years as the Tarim Large Igneous Province caused by Tarim mantle plume activity. Thus, the extension of the lithosphere and associated volcanism in the Early Permian can be an indicator of the onset of the plume–lithosphere interaction process.

  相似文献   

15.
《International Geology Review》2012,54(12):1528-1556
ABSTRACT

The intra-continental orogeny and tectonic evolution of the Mesozoic Yanshan fold-thrust belt (YFTB) in the northern North China Craton (NCC) have been strongly debated. Here, we focus on the Shangyi basin, located in the centre of the YFTB. An integrated analysis of sedimentary facies, palaeocurrents, clast compositions, and detrital zircon dating of sediments was adopted to determine the palaeogeography, provenance, basin evolution, and intra-continental orogenic process. The Shangyi basin comprises the well-exposed Early–early Middle Jurassic Xiahuayuan Formation and the Longmen Formation, and the Late Jurassic–Early Cretaceous Tuchengzi Formation. Based on the 18 measured sections, five facies associations – including alluvial fan, fluvial, delta, lacustrine, and eolian facies – have been identified and described in detail. The onset of the Shangyi basin was filled with fluvial, deltaic, and lacustrine deposits controlled by the normal fault bounding the northern basin, corresponding to the pre-orogeny. In the Middle Jurassic, the cobble–boulder conglomerates of alluvial fan, as molasse deposits, were compatible with the syn-orogeny of the Yanshan movement, which played a critical role in northern North China and even East Asia. After the depositional break in the Middle–Late Jurassic, the Shangyi basin, controlled by the normal fault present in the north of the basin, re-subsided and quickly expanded southward with thick sedimentation, which is correlative with the post-orogeny. Combined with A-type granites, metamorphic core complexes, mafic dikes, and rift basins of the Late Jurassic–early Early Cretaceous present in the northern NCC and Mongolia, significant extension was widespread in the northern NCC and even in northeast Asia. Moreover, vertical changes of provenance indicate that the Taihang Mountain and the Inner Mongolia palaeo-uplift (IMPU) present at the west and north of the basin, respectively, experienced uplift twice in the Middle–Late Jurassic and Early Cretaceous, resulting in a regional depositional break.  相似文献   

16.
《International Geology Review》2012,54(16):1843-1869
Numerous molybdenum (Mo) ore deposits have been discovered in the East Xingmeng orogenic belt (East Central Asian orogenic belt), over the past 10 years, and this region is becoming one of the world's most important Mo production areas. It contains 6.18 Mt of proven Mo metal reserves, which accounts for 30% of the total proven Chinese Mo reserves. The ore district includes 37 deposits and 15 occurrences, with three major Mo ore types, that is porphyries, skarns, and hydrothermal veins. The latter can be subdivided into quartz- and volcanic hydrothermal-vein types. With the exception of the Ordovician Duobaoshan porphyry Cu–Mo deposit (477 Ma), all the East Xingmeng Mo deposits formed during the Mesozoic. Re–Os dating of molybdenite has documented three episodes of Mo mineralization: Early Triassic (248–242 Ma), Jurassic (178–146 Ma), and Early Cretaceous (142–131 Ma). Early Triassic Mo deposits are distributed along the northern margin fault of the North China Craton (NCC) and include porphyry and quartz vein types. They are characterized by the association of Mo + Cu. Jurassic Mo deposits are mainly distributed in the eastern area and include porphyry, quartz vein, and skarn types. They are typified by Mo alone and/or the association of Mo, Pb, and Zn. Cretaceous Mo deposits are distributed in all areas and include porphyry and volcanic hydrothermal vein types. Similar to the Jurassic ores, they are simple Mo or Mo + Pb + Zn deposits. Volcanic hydrothermal vein deposits are characterized by an association of molybdenum and uranium. The Triassic Mo deposits formed in a syn-collision setting between the Siberian and North China plates. The Jurassic Mo deposits formed in a compressional setting, which was probably triggered by the westward subduction of the palaeo-Pacific plate. The Early Cretaceous Mo deposits are linked to a tectonic regime of lithosphere thinning, which was caused by delamination of thickened lithosphere. However, the Mo deposits in the Erguna terrane of the northwest Xingmeng orogenic belt may be related to the evolution of the Okhotsk Ocean.  相似文献   

17.
福建早中生代火山作用研究进展   总被引:2,自引:1,他引:2  
陈润生  林东燕 《福建地质》2006,25(4):169-179
总结了近十余年来福建省早中生代,尤其是早侏罗世火山作用研究的最新进展:早侏罗世火山地层在全省都有发现,采用化石和同位素测年对火山地层时代进行了精细确定,认为其主要形成于早侏罗世晚期。通过火山岩石地球化学特征的深入研究,永定地区的拉斑质玄武岩浆主要源于岩石圈地幔,但与来自富集岩石圈地幔的早白垩世玄武岩对比又具有明显的地球化学差异,不排除有来自软流圈地幔岩浆的加入。早侏罗世火山岩主要形成于板内的拉张环境,由于后造山应力松弛,沿北北东或北东向构造伸展致使地幔上隆(涌)-底侵的动力学机制是形成双峰式火山岩的内在因素。从早侏罗世火山作用入手来研究华南地区两大构造域的转换也取得了新的进展。论述了我省早侏罗世火山作用的研究方向,认为早中生代构造体制的转换与多金属成矿关系密切。  相似文献   

18.
在晚侏罗世华北克拉通东部破坏之初出现了区域性隆起,全区缺失上侏罗统沉积。在早白垩世早期,出现了区域性的伸展活动,断陷盆地形成,克拉通南、北缘伸展活动最强,北部燕山构造带以出现变质核杂岩为特征,南部出现宽裂谷型盆地。早白垩世中期华北克拉通东部普遍出现了火山活动与岩浆侵入。早白垩世晚期克拉通上以出现窄裂谷型盆地为特征,沿北北东走向的郯庐断裂带断陷活动最强。这些断陷盆地的演化过程揭示,经历地表抬升后,克拉通破坏之初的岩石圈热而弱,从而形成变质核杂岩或宽裂谷型盆地。这期间的破坏强度在空间上具有不均匀分布的特征,受控于早期岩石圈地幔的结构。经过早白垩世中期的大量岩浆活动之后,早白垩世晚期克拉通岩石圈温度降低、强度变大,从而利用早期大型断裂构造形成窄裂谷型盆地。这现象支持华北克拉通东部晚中生代的岩石圈减薄是以逐渐拆沉机制为主。  相似文献   

19.
冷口断裂在区域上整体构造格架以EW向和NNE向占主导地位的情况下,其构造线方向却为NW向.在对冷口断裂进行了详细的野外追踪的基础上,结合前入区域上的研究成果,认为冷口断裂是多期构造活动的产物,控制了中元古界的沉积.中生代以来断裂活动分为四期:①中侏罗世早期由南向北逆冲;②中侏罗世末-早白垩世正-左行走滑;③晚白垩世由北向南逆冲;④后期右行走滑.   相似文献   

20.
燕山地区土城子组划分、时代与盆地性质探讨   总被引:13,自引:2,他引:13       下载免费PDF全文
燕山地区土城子组分布广泛,顶底清晰,是本区最具特色的岩石地层单位之一。区域地质对比研究表明,燕山西部土城子组与燕山中东部土城子组在地层、时代上有较大的不同,西部盆地中髫髻山组火山岩不发育或很少发育,土城子组在地层划分上常包含九龙山组或髫髻山期火山岩,时代为中晚侏罗世(J2—J3);东部盆地普遍发育髫髻山组火山岩浆或火山-沉积地层,土城子组划分与层型剖面一致。古生物化石和同位素年龄研究表明:土城子组时限在156~139Ma之间,属于晚侏罗世—早白垩世。土城子期盆地沉积的不对称性,相分布特征,古水流等指示其形成在一个挤压作用下的陆内火山-沉积盆地环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号