首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
大陆漂移, 板块构造, 地质力学   总被引:2,自引:0,他引:2  
赵文津 《地球学报》2009,30(6):717-731
本文简要地介绍了魏格纳大陆漂移说的主要内容及其提出的依据; 论述了在大陆漂移说的基础上, 由于海洋地质地球物理调查发现了大洋中脊、洋底扩张, 解释了大陆张裂的机制, 并建立了全球板块构造理论, 形成现代地学思想的革命; 李四光在大陆漂移说提出的同时已在积极地探讨和论述大陆地壳水平运动问题, 并结合中国大陆实际, 发展了陆内碰撞变形理论, 即包括全球大陆构造体系在内的地质力学理论和方法。他强调地质力学是一支脚站在地质上, 另一支脚站在力学上来研究地壳运动和变形现象。后来更扩大了其在资源、环境方面的应用。文章对魏格纳大陆漂移说、全球板块构造理论及地质力学三者的关系做了深入探讨, 论述了李四光地质力学理论方法的现代意义、超前意义, 提出要重视和发扬李四光留给中国人民的宝贵遗产, 建议深入学习李四光的著述, 结合地质调查新成果去丰富它和发展它。  相似文献   

2.
The long controversy over the term ‘Quaternary‘ as a chronostratigraphic unit may be reaching an apotheosis, judging from recent papers (Pillans and Naish, 2004; Gibbard et al., 2005; and referencest herein). The debate is no longer centered on whether there should be a place in the geological time scale for a unit termed ‘Quaternary‘-despite its dubious past, it cannot be denied that a large body of earth-historical research is strongly identified with this term. The challenge now concerns an appropriate rank and definition of Quaternary with regard to other chronostratigraphic units. Several options have been proposed (Pillans and Naish, 2004), and Gibbard et al. (2005) encourage a debate on these before decision is reached. In this brief note, we describe an arrangement not previously considered that seems advantageous. It is instructive, however, to first review the Pleistocene Series and Neogene System, the two units that are directly affected by introduction of the Quaternary into the chronostratigraphic hierarchy.  相似文献   

3.
人发中铜,锌,铁,锰,钙,镁,钾,钠的测定   总被引:3,自引:1,他引:3  
  相似文献   

4.
以泥盆系占优势的南秦岭成矿带中存在有重要的Pb-Zn-Ag,Au,Hg-Sb及Cu矿床。它们形成中晚古生带扬子地块北部被动大陆边缘的沉积盆地演化与造山期中,成矿系列显示出时间与空间的演化特征,构在了一个热水沉积成矿系列,成矿发生于一个热旋回中,各种矿化有相似的物源,每一种地质事件都有特定的金属富集及富集在型和大型矿床是该地区构造-岩浆变质变形作用的最终产物。  相似文献   

5.
201富铀矿床氢,氧,碳,硫,铅同位素研究   总被引:5,自引:0,他引:5  
李月湘  李田港 《铀矿地质》1995,11(5):273-277
产于花岗岩中的201铀矿床是我国花岗岩型铀矿富矿之一。本文通过氢、氧、碳、硫、铅同位素组成的研究,探讨成矿溶液和成矿物质的来源,推测成矿环境。研究结果表明,该矿床成矿流体是以大气降水为主,主要成矿物质来自前燕山期花岗岩体,可能部分来自下部地壳,成矿作用是在较稳定的物化条件下进行。  相似文献   

6.
原子吸收法测定茶叶中钙,镁,钾,钠,铁,锰,铷   总被引:6,自引:0,他引:6  
  相似文献   

7.
8.
9.
10.
张海政  阎欣 《地质实验室》1996,12(6):330-332
应用ICP-MS法测定了岩石中的痕量Nb、Ta、Zr、Hf、Th、U,给出了检出限,并对酸溶和碱熔两种制样方法进行了对比实验。  相似文献   

11.
The Chilas Complex in the Kohistan Terrane, Pakistan, is a huge basic intrusion, about 300 km long and up to 40 km wide, which is regarded as tilted island-arc type crust. It has been interpreted as the magma chamber root zone of the Kohistan Island Arc. The Chilas Complex is composed mainly of gabbronorite (main facies) and several masses of ultramafic–mafic–anorthosite (UMA) association. The UMA association consists mainly of olivine-dominant cumulate (dunite, wehrlite, lherzolite) and plagioclase-dominant cumulate (troctolite, olivine gabbro, gabbronorite, anorthosite), with minor amount of pyroxene-dominant cumulate (clinopyroxenite, websterite).The major element geochemistry of the gabbronorite (main facies) and rocks of the UMA association, plotted on Harker diagrams, are explained by a cumulate and a non-cumulate model, respectively. Namely, the UMA association is explained as variable crystal cumulates from a primary magma and the gabbronorite of the main facies is explained as due to the fractionation of the residual melt. Chemical variations of major, trace and rare earth elements for the gabbronorite of the main facies in the Chilas Complex are explained by fractional crystallization and accumulation of plagioclase, orthopyroxene and clinopyroxene from the residual melt of the primary magma.  相似文献   

12.
The Bellevue drillcore intersects ~3 km of Main and Upper Zone cumulates in the Northern Limb of the Bushveld Complex. Main Zone cumulates are predominately gabbronorites, with localized layers of pyroxenite and anorthosite. Some previous workers, using bulk rock major, trace and isotopic compositions, have suggested that the Main Zone crystallized predominantly from a single pulse of magma. However, density measurements throughout the Bellevue drillcore reveal intervals that show up-section increases in bulk rock density, which are difficult to explain by crystallization from a single batch of magma. Wavelet analysis of the density data suggests that these intervals occur on length-scales of ~40 to ~170 m, thus defining a scale of layering not previously described in the Bushveld Complex. Upward increases in density in the Main Zone correspond to upward increases in modal pyroxene, producing intervals that grade from a basal anorthosite (with 5% pyroxene) to gabbronorite (with 30–40% pyroxene). We examined the textures and mineral compositions of a ~40 m thick interval showing upwardly increasing density to establish how this type of layering formed. Plagioclase generally forms euhedral laths, while orthopyroxene is interstitial in texture and commonly envelops finer-grained and embayed plagioclase grains. Minor interstitial clinopyroxene was the final phase to crystallize from the magma. Plagioclase compositions show negligible change up-section (average An62), with local reverse zoning at the rims of cumulus laths (average increase of 2 mol%). In contrast, interstitial orthopyroxene compositions become more primitive up-section, from Mg# 57 to Mg# 63. Clinopyroxene similarly shows an up-section increase in Mg#. Pyroxene compositions record the primary magmatic signature of the melt at the time of crystallization and are not an artefact of the trapped liquid shift effect. Combined, the textures and decoupled mineral compositions indicate that the upward density increase is produced by the downward infiltration of noritic magma into a previously emplaced plagioclase-rich crystal mush. Fresh noritic magma soaked down into the crystallizing anorthositic mush, partially dissolving plagioclase laths and assimilating Fe-enriched pore melt. The presence of multiple cycles showing upward increases in density in the Bellevue drillcore suggests that downward magma infiltration occurred episodically during crystallization of the Main Zone.  相似文献   

13.
The Grader layered intrusion is part of the Havre-Saint-Pierre anorthosite in the Grenville Province (Quebec, Canada). This intrusion has a basin-like morphology and contains significant resources of Fe–Ti–P in ilmenite and apatite. Outcropping lithologies are massive oxide alternating with anorthosite layers, banded ilmenite–apatite–plagioclase rocks and layered oxide apatite (gabbro-)norites. Drill cores provide evidence for stratigraphic variations of mineral and whole rock compositions controlled by fractional crystallization with the successive appearance of liquidus phases: plagioclase and ilmenite followed by apatite, then orthopyroxene together with magnetite, and finally clinopyroxene. This atypical sequence of crystallization resulted in the formation of plagioclase–ilmenite–apatite cumulates or “nelsonites” in plagioclase-free layers. Fine-grained ferrodiorites that cross-cut the cumulates are shown to be in equilibrium with the noritic rocks. The high TiO2 and P2O5 contents of these assumed liquids explains the early saturation of ilmenite and apatite before Fe–Mg silicates, thus the nelsonites represent cumulates rather than crystallized Fe–Ti–P-rich immiscible melts. The location of the most evolved mineral and whole rock compositions several tens of meters below the top of the intrusion, forming a sandwich horizon, is consistent with crystallization both from the base and top of the intrusion. The concentrations of V and Cr in ilmenite display a single fractionation path for the different cumulus assemblages and define the cotectic proportion of ilmenite to 21 wt.%. This corresponds to bulk cotectic cumulates with ca. 8 wt.% TiO2, which is significantly lower than what is commonly observed in the explored portion of the Grader intrusion. The proposed mechanism of ilmenite-enrichment is the lateral removal of plagioclase due to its relative buoyancy in the dense ferrodiorite melt. This plagioclase has probably accumulated in other portions of the intrusion or has not been distinguished from the host anorthosite.  相似文献   

14.
Nelsonite and Fe–Ti oxides ore are common in Proterozoic massif-type anorthosites and layered intrusions. Their geneses have long been controversial, with existing hypotheses including liquid immiscibility between Si-rich and Fe–Ti–P-rich melts and gravitational fractionation among apatite, magnetite, ilmenite and silicates. In this paper, we report detailed field geology and mineral geochemical studies of the nelsonite and Fe–Ti oxides ore from the Damiao anorthosite complex, NE China. Geological observations indicate that the nelsonite and Fe–Ti oxides ore occur as irregularly inclined stratiform-like or lensoid or veins, and are in sharp contact with the anorthosite and gabbronorite. The widespread veins and lenses structure of the Damiao nelsonite and Fe–Ti oxides ore in the anorthosite indicates their immiscibility-derived origin. The apatite in the nelsonite and gabbronorite shows evolution trends different from that in the gabbronorite in the diagrams of Sr versus REEs and Eu/Eu*, suggesting that petrogenesis of the nelsonite and gabbronorite is different from the gabbronorite. Compared with the gabbronorite, the nelsonite and Fe–Ti oxides ore have magnetite high in Cr, plagioclase high in Sr and low in An, and apatite high in Sr, low in REEs with negative Eu anomaly. The evidence permits us to propose that the Damiao Fe–Ti oxides ore/nelsonite and gabbronorite were derived from different parental magmas. The gabbronorite was formed by solidification of the interstitial ferrodioritic magma in the anorthosite, which was the residual magma after extensive plagioclase and pyroxene crystallization and was carried upward by the plagioclase crystal mesh. In contrast, the Fe–Ti oxides ore and nelsonites and mangerite were produced by crystallization of the Fe–Ti–P-rich and SiO2-rich magmas, respectively, due to the liquid immiscibility that occurred when the highly evolved ferrodioritic magma mixed with newly replenished magmas. The variation from Fe–Ti oxides ore to nelsonite and gabbro-nelsonite upwards (as apatite content increases with height) in the steeply inclined Fe–Ti oxides orebodies suggest that gravity fractionation may have played important roles during the crystallization of the Fe–Ti–P-rich magma.  相似文献   

15.
 Plagioclase recrystallization microstructures and petrofabrics in the unmetamorphosed, 1.43 Ga Poe Mountain anorthosite, Wyoming, are indicative of very high-temperature deformation and recrystallization during the emplacement of the anorthosite body. The Poe Mountain anorthosite consists of a core of recrystallized, massive anorthosite transitional with a series of layered anorthositic cumulates at the margin of the intrusion. Irregular grain boundaries and dissected grain microstructures in the massive core and transitional anorthosites suggest that the anorthositic rocks recrystallized by “fast” grain boundary migration and possibly subgrain rotation recrystallization, at very high temperatures (≈1050°C) during emplacement of the intrusion in the mid-crust (3 kbar). The deformation and recrystallization of the Poe Mountain anorthosite was continuous from subliquidus to subsolidus temperature conditions during the emplacement of the intrusion. Anorthosites with the lowest modal percentages of ferromagnesian minerals and Fe-Ti oxides are always the most recrystallized. This suggests that melt interstitial to the plagioclase-crystal framework was removed during deformation and recrystallization of the intrusion. Bulging of plagioclase grain boundaries around Fe-Ti oxides together with deformed oikocrystic ferromagnesian minerals and plagioclase chadacrysts indicate that the deformation and recrystallization of the intrusion continued after the crystallization of the interstitial melt minerals. Received: 28 February 1995/Accepted: 20 July 1995  相似文献   

16.
元古宙岩体型斜长岩的特征及研究现状   总被引:1,自引:0,他引:1  
斜长岩是指斜长石含量>90%的岩浆岩,可分为6类。其中,岩体型斜长岩仅赋存于前寒武纪变质地体中,形成时代主要为元古宙(2.1~ 0.9 Ga),代表地球演化史上很重要的构造-热事件。岩体呈穹隆状或层状产出,具典型堆晶结构,有含钾长石和斜长石出溶片晶的巨晶斜长石和富铝辉石。巨晶的出溶指示了岩浆由高压至低压的变压结晶过程,体现了斜长岩体深成、浅侵位的特点。关于斜长岩的源区,之前普遍认为源于幔源玄武质岩浆,而近10年来更趋向于源区为下地壳,母岩浆的成分为纹长苏长岩和铁闪长岩等新认识;其成因模式以底侵模式和地壳舌状物熔融模式最具代表性。岩体型斜长岩时空上常与奥长环斑花岗岩共生,构成AMCG(Anorthosite Mangerite Charnockite Granite)岩石组合,被认为属非造山岩浆作用的产物,可能代表大陆裂谷环境。然而,新近一些年龄结果显示,它们形成于造山作用的后期阶段,暗示岩体产出于碰撞后环境。斜长岩体中常赋存有Fe Ti V氧化物矿床,有的富含P及Cu,Ni硫化物等,属典型的岩浆矿床。对此,目前主要有结晶分异过程、早期堆晶过程及不混熔分离3种成因机制解释。由此对今后研究中值得关注的问题提出了一些看法。  相似文献   

17.
We studied the chemical composition of rock-forming minerals in gabbroids from the Chirii outcrop and the evolutionary features of parental basic melt during the crystallization of these rocks. Results were compared with data for basanites from pipes of the North Minusa depression. The mineralogical composition and thermobarogeochemical data of the gabbroids were examined in detail, and chemical analyses of rock-forming minerals (clinopyroxene, plagioclase, amphibole, biotite, titanomagnetite, and apatite) were carried out. Based on the homogenization temperatures of primary melt inclusions, we established the minimum temperatures and sequence of mineral crystallization in the gabbroids: clinopyroxene (>1160 °C), plagioclase, magnetite → amphibole (>950 °C) → biotite. The rock crystallization proceeded at shallow depths. Thermometric data are confirmed by results of modeling of equilibrium gabbroid crystallization. The crystallization of parental basic melt was accompanied by the accumulation of SiO2, Al2O3, alkalies, and Cl and depletion in femic components. The melt evolved to granodiorite and alkali-syenite compositions. Compared with basanites from pipes, the parental melt had a longer evolution. The geochemical features of the gabbroids indicate that they, like basanites, crystallized from intraplate alkali-basaltoid magmas. But in petrochemistry and mineralogy the Chirii gabbroids differ considerably from the pipe basanites.  相似文献   

18.
Cliff S.J. Shaw   《Lithos》1997,40(2-4):243-259
The Coldwell alkaline complex is a large (> 350 km2) gabbro and syenite intrusion on the north shore of Lake Superior. It was emplaced at 1108 Ma during early magmatic activity associated with the formation of the Mid-Continent Rift of North America. The eastern gabbro forms a partial ring dyke on the outer margin of the complex and consists of at least three discrete intrusions. The largest of these is the layered gabbro that comprises a 300 m thick fine- to medium-grained basal unit overlain by up to 1100 m of variably massive to layered gabbroic cumulates which vary from olivine gabbro to anorthosite. Several xenoliths of Archaean metamorphic rocks that range in size from 10's to 100's of meters are present in the central part of the intrusion. Within discrete horizons in the layered gabbro are many centimeter- to meter-scale, gabbroic xenoliths. The main cumulus minerals, in order of crystallization, are plagioclase, olivine and clinopyroxene ± Fe-Ti oxides. Biotite and Fe-Ti-oxide are the dominant intercumulus phases. Orthopyroxene occurs not as a cumulus phase but as peritectic overgrowths on cumulus olivine. A detailed petrographic and mineral chemical study of samples from two stratigraphically controlled traverses through the layered gabbro indicates that the stratigraphy cannot be correlated along the 33 km strike of the ring dyke. Mineral compositions show both normal and reversed fractionation trends. These patterns are interpreted to record at least three separate intrusions of magma into restricted dilatant zones within the ring dyke possibly associated with ongoing caldera collapse. Calculations of parental melt composition using mineral — melt equilibria show that even the most primitive gabbros crystallized from an evolved magma with mg# of 0.42-0.49. The presence of orthopyroxene overgrowths on cumulus olivine suggests rising silica activity in the melt during crystallization and implies a subalkaline parentage for the layered gabbro.  相似文献   

19.
The Freetown layered complex, located on the western coast of Sierra Leone, is a rift-related tholeiitic intrusion associated with the Jurassic (~193 Ma) opening of the Atlantic Ocean at midlatitude. The complex is ~ 60 km long, 14 km wide, and 7 km thick along a major E-W traverse extending from Waterloo to York. Gravity data and dips of laminations in the layered rocks suggest that the intrusive complex is lopolithic in shape, with some parts presently being submarine.

The exposed rocks consist of a rhythmically layered sequence of troctolite, olivine gabbro, gabbronorite, gabbro, and anorthosite. The complex has been divided into four zones delineated by (1) topographic expression, whereby the base of each zone forms a scarp, and the top forms dip slopes and strike valleys; and (2) cyclical repetition of rock types (Wells, 1962). A new detailed stratigraphic section along the Waterloo-York traverse is presented, in which Zone 3 is subdivided into an upper 2000-m-thick anorthosite-gabbro interval and a lower 1700-m-thick rhythmically layered subzone.

Inverted pigeonite first became a cumulus phase at the bottom of Zone 2, before disappearing near the middle of Zone 3 at the anorthosite-gabbro interval, only to reappear at the top of Zone 4 with cumulus titanomagnetite. Mineral compositions in the complex range from An72 to An72 plagioclase, Fo56 to Fo75 olivine, En38.5 to En44.8 augite, and En54.9 to En74.6 orthopyroxene. The compositions of plagioclase and olivine in Zone 2 vary irregularly, although the overall trend is toward reverse differentiation. By contrast, Zone 4 is characterized by a rapid decrease in Fo and An from the base of the zone upward, followed by an increase. Cryptic variation also is shown by the Ni content of olivine and Cr content of clinopyroxene.

The overall pattern of cryptic variation in the complex suggests continual leakage of fresh magma into the chamber, followed by oscillatory spikes in the rhythmically layered subzone of Zone 3, where major influxes of new magma occurred. The changes in mineral compositions and modal abundances as a function of stratigraphic height are the result of magma recharge, followed by mixing of new and evolved resident magmas in the Freetown magma chamber. This probably resulted in the expansion of the chamber and crystallization in situ without any discharge. The inferred crystallization sequence for each zone is different, reflecting different magma compositions and changes that occur in the magmas during crystallization. The alternative hypotheses that the Freetown Complex formed from a single parental magma, or that mineral layering was the result of the crystallization sequence Fe-Ti oxides→olivine→pyroxene→plagioclase, are not supported by the evidence.  相似文献   

20.
The paper presents data on the geochemical and geochronological characteristics of zircons from mafic rocks of part of the Monchegorsk layered complex represented by the Vurechuaivench massif. Ages of zircons (SHRIMP-II) from samples V-l-09 (anorthosite) and V-2-09 (gabbronorite) are dated back to 2508 ± 7 and 2504 ± 8 Ma, respectively. The chondrite-normalized REE patterns confirm the magmatic nature of zircons. The data unequivocally indicate that the U–Pb age of zircon from both gabbronorite and anorthosite corresponds to the age of melt crystallization in a magmatic chamber. The mantle origin of gabbroic rocks of the Vurechuaivench massif is confirmed by the REE patterns of three zircon generations with different crystallization sequences. The wide range of the Ce/Ce* ratio (9.96–105.24) established for zircons from gabbroic rocks of the Vurechuaivench massif indicates sharply oxidative conditions of zircon crystallization. For deepseated mantle rocks, these data can only be explained by significant contamination of the melt with country rock material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号