首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 760 毫秒
1.
文中研究在粒状铁化学还原三氯乙烯渗透反应格栅和生物降解苯和甲苯渗透反应格栅的联合格栅技术中,下游生物降解格栅中铁还原环境下微生物对苯和甲苯的生物降解。通过模拟粒状铁渗透反应格栅下游铁还原环境,主要研究微生物以苯、甲苯作为碳源时,对碳源的专一性。通过批实验发现,对于分别用苯和甲苯培养驯化的微生物,互换碳源后,微生物对2 000.00μg/L苯和甲苯的生物降解半衰期分别由之前的1.0和1.5 d减少到0.7和1.0 d,互换碳源后苯和甲苯的去除率分别增加38%和32%。在粒状铁渗透反应格栅下游生物降解渗透反应格栅中,微生物在铁还原环境下以苯、甲苯作为碳源时对碳源没有专一性,苯和甲苯可以同时被生物降解去除。  相似文献   

2.
为去除农村家庭饮用地下水中的硝酸盐,以农村自酿米酒为碳源,利用简易的沙桶装置开展了反硝化去除硝酸盐的实验,对比了不同乙醇浓度下的反硝化效果。实验结果表明,以沙桶为实验装置,自酿米酒为碳源,在家庭中异位反硝化去除抽取地下水中的硝酸盐方法是有效果,易操作的。硝酸盐的去除率和C/N质量比有直接关系,当C/N质量比大于1.99时,硝酸盐去除率达99%,亚硝酸盐零积累,但易积累乙酸盐;当C/N质量比为0.89时,硝酸盐去除率达99%,生成物亚硝酸盐浓度远高于国家饮用水限值(1 mg/L);当C/N质量比为0.43时,反硝化过程不彻底,硝酸盐去除率不高,且易生成溶度较高的亚硝酸盐。溶解氧的存在不会对反硝化产生显著影响。米酒和硝酸盐之间的C/N最佳比例,宜大于本次实验的0.89,小于1.99,利用农村自酿米酒作为碳源去除地下水中硝酸盐是可行的。  相似文献   

3.
阿特拉津低温降解菌的筛选及降解机理研究   总被引:1,自引:1,他引:0  
以阿特拉津为唯一氮源, 在低温条件下(10℃),从吉林市污水处理厂的活性污泥中分离、筛选出1株能够高效降解地下水中阿特拉津的菌株W4.通过16S rDNA碱基测序和比对,初步确定该菌为假单胞菌属;通过室内降解条件优化,确定W4的最佳降解条件:初始pH范围为7~9,最佳碳源为蔗糖和乳糖,最佳碳源加入量为0.4 g/L.在最佳降解条件下,W4对初始质量浓度为34 mg/L、22 mg/L和10 mg/L的阿特拉津的生物降解反应符合零级反应动力学方程,对初始质量浓度为5 mg/L的阿特拉津的生物降解反应符合一级反应动力学方程.GC/MS分析结果显示,菌株W4降解阿特拉津遵循氯水解途径,代谢产物为2-羟基-4-乙胺基-6-异丙胺基-1,3,5-三嗪.  相似文献   

4.
汽油污染含水层中芳香烃的自然去除与生物降解特征   总被引:7,自引:0,他引:7  
石油烃污染地下水是一个普遍而严重的环境问题.用砂卵石、中粗砂、细砂、粉砂和粘土等在实验室内按照自然界沉积物层序制作了一个含水层物理模型,具有给水、排水、监测、抽提、淋滤与注入等功能.利用该模型开展石油烃污染地下水的特征研究结果表明,苯、甲苯、乙苯和二甲苯(benzene,toluene,ethylbenzene,xylene;BTEX)各溶解组分能够被自然去除,其中甲苯自然衰减的速率系数为0.057 5~0.150 4 d-1,二甲苯为0.068 3~0.104 6 d,乙苯大约为0.047 8 d,苯为O.017 8~0.040 6 d.甲苯与二甲苯容易被去除,然而苯的去除则需要较长的时间.作为BTEX去除反应的电子受体,溶解氧、硝酸盐在需氧或厌氧条件下具有优先利用的机会,而硫酸盐则缺乏优先利用的机会.BTEX溶解组分浓度的降低,加上电子受体浓度的降低,可以表明含水层存在需氧条件与硝酸盐还原条件下的内在生物降解作用.其意义在于通过增加含水层中电子受体的浓度,将有助于内在生物降解能力的增强,从而能够提高含水层中污染物去除的效果.  相似文献   

5.
焦珣  苏小四  吕航 《地质科学》2012,47(2):499-506
生物降解地下水石油烃会改变地下水环境的水化学组成,因此可以通过分析污染晕中电子受体、生物降解代谢产物以及重要的地球化学参数量值变化获得生物降解的地球化学证据。本次在对某石油污染场地地质、水文地质条件、污染源污染方式调查基础上,根据地下水样测试结果,详细分析了地下水石油烃污染分布特征、污染晕中指示生物降解作用的电子受体、代谢产物以及重要地球化学参数的空间变化规律,研究结果表明:污染场地内存在氧还原、硝酸盐还原、硫酸盐还原等生物降解作用,其中硫酸盐还原是污染场地地下水石油烃生物降解的优势反应; 在沿地下水流向上,TPH浓度、HCO3-浓度和碱度逐渐降低,Eh、电子受体(DO、NO3-、SO42-)浓度逐渐升高; 在垂直于地下水流向上,从中心向两侧各组分也呈相似的变化规律。  相似文献   

6.
对铜陵相思谷尾矿砂中的重金属在生物和非生物条件下的淋滤行为进行了研究。设置两个动态反应柱进行实验(实验柱填充尾矿砂+污泥+秸秆,对照柱仅填充尾矿砂,进水SO42-1000 mg/L,pH 7.5)。结果表明,实验初期(0~20 d)实验柱出水重金属浓度明显高于对照柱,归因于柱内微生物加速了矿物分解和重金属的淋滤;此后实验柱出水SO42-浓度逐渐降低,同时Cu2+、Cd2+、Zn2+、总Fe浓度分别降至0.1 mg/L、0.1 mg/L0、.4 mg/L和1 mg/L以下。据此推测,实验柱中出现了微生物作用下的硫酸盐还原作用,生成了可以吸持重金属的硫化物沉淀。研究结果表明,以稻草为碳源、污泥为微生物接种源构建尾矿砂-微生物体系,能够有效还原硫酸盐并去除重金属,该方法可以用于矿山尾矿的原位修复。  相似文献   

7.
利用实验室含水层物质微环境实验,对地下水中常见有机污染物苯和甲苯在厌氧反硝化条件下的微生物降解进行了研究。通过10种方案实验结果的分析对比,所得重要结论如下:在加强了的反硝化条件下,微生物利用NO-3作为电子受体降解苯和甲苯;降解苯和甲苯的反硝化细菌来自于含水层物质;微生物所需的宏量营养由苯、甲苯和硝酸盐提供,痕量元素来自于含水层物质;环境的酸碱条件对微生物降解具有重要影响,pH值过高或过低均抑制微生物降解作用的产生。  相似文献   

8.
硫酸盐还原菌(Sulfate reduction bacteria)是一类在土壤或水体重金属污染生物修复中能够发挥重要作用的微生物类群。本实验采用摇瓶培养和还原率的测定方法,研究了一株采自海岸潮间带土壤的SRB芽孢杆菌还原Cr6+的效率及培养条件对其还原Cr6+效率的影响。结果显示该菌株可在Cr6+浓度600 mg/L条件下正常生长,300 mg/L浓度下的生长最佳,Cr6+还原率高达75%。培养液中的碳源、氮源和pH对该菌株的Cr6+还原率有显著影响,其中以乙酸钠或柠檬酸钠为碳源,硝酸钠为氮源的还原效率最高;初步结果显示,菌株Cr23是一株环境适应性和Cr6+还原能力较强的SRB,具可应用于土壤或水体铬污染修复的潜力。  相似文献   

9.
百花湖水体氮的空间分布研究   总被引:2,自引:1,他引:1  
初步探讨了百花湖水体中氮的空间分布特征,并分析了氮及溶解氧(DO)的相关性。对8个站位的表层、4m、8m及12m水体中总氮、氨氮、硝酸盐氮、亚硝酸盐氮及溶解氧进行了测定。结果表明,百花湖水体中总氮的平均含量为1.18mg/L,氨氮的平均含量为0.144mg/L,硝酸盐氮的平均含量为0.20mg/L,亚硝酸盐氮的平均含量为0.018mg/L。百花湖入湖口附近的1号采样点总氮、氨氮和硝酸盐氮的平均浓度都较其它采样点高。分析表明百花湖中DO浓度与硝酸盐氮和亚硝酸盐氮呈负相关,相关系数分别为-0.629、-0.724。   相似文献   

10.
环境介质中高氯酸盐污染及微生物修复技术研究进展   总被引:5,自引:0,他引:5  
王蕊  刘菲  张苑  陈鸿汉  秦莉红 《岩矿测试》2012,31(4):689-698
高氯酸盐(ClO4-)是一种有毒的无机阴离子,其环境污染问题引起了广泛关注,控制与修复高氯酸盐污染环境成为新的研究热点,其中微生物修复技术最具应用前景。国外已开展环境中高氯酸盐污染现状的调查工作,利用微生物修复技术去除高氯酸盐取得了一定的成果,但我国的相关研究较少。文章综述了近年来国内外高氯酸盐的污染现状及微生物修复高氯酸盐的最新研究进展。由于高氯酸盐的高水溶性和低吸附性,当前研究最多的是高氯酸盐水体污染,这些水体通过饮用水(源水)或食物链直接或间接地对人类健康造成影响。在微生物修复方面,从有机电子供体,无机电子供体(H2、Fe0等),电子受体(O2、NO3-、SO24-)及微生物的生长环境因素(pH值、温度、氧化还原电位、盐度)等方面总结了各因素对微生物修复技术去除高氯酸盐效果的影响,以期为我国开展微生物处理技术在高氯酸盐污染修复领域的实践应用提供参考。  相似文献   

11.
In this work, a new process called advanced reduction process (ARP) was used for nitrate removal from water. This ARP process combines sodium dithionite as reducing agent with ultraviolet irradiation using medium pressure lamps (UV-M) as an activating method. Experimental results showed that UV-M/S2O4 2? process achieved almost complete removal of nitrate from aqueous solutions containing 25 mg NO3 ?/L using stoichiometric dose of dithionite of 68.8 mg/L at neutral pH conditions. Analysis of final products and material balance confirmed that NO3 ? ions were reduced to ammonium with formation of nitrite as intermediates in addition to the formation of small amounts of volatile species, mainly ammonia and nitrogen gas. Effects of certain experimental parameters including dithionite dose, initial pH, initial nitrate concentration, and UV light source on the kinetics and efficiency of nitrate reduction were evaluated. Increasing dithionite dose augmented the rate of nitrate reduction and enhanced the efficiency of ARP process. Dithionite doses higher than stoichiometric ratios led to complete removal of nitrate in shorter reaction time. UV-M/S2O4 2? process was found to be effective only under neutral pH or alkaline conditions, and its removal efficiency is negligible in acidic medium (pH < 4). Irradiation with UV-M was more effective than low pressure or narrow band lamps. These results can be attributed to the contribution of several mechanisms for nitrate reduction to ammonium. These include the following: direct photolysis, chemical reduction of nitrate dithionite, and mediated reduction of nitrate by free reducing radicals.  相似文献   

12.
Hydrochemical and water-quality (except biological) data obtained through a two-year sampling and analysis program indicate that the highest concentrations of groundwater pollution occur in the central and eastern parts of Eski?ehir city. Groundwater quality degradation outside the urban area results from agricultural activities. The most serious pollution of groundwater in the Eski?ehir plain is from nitrogen compounds (ammonia, nitrite, and nitrate). The concentrations of ammonia, nitrite, and nitrate of the 51 surveyed water wells range from 0.01–1.65 mg/L, 0.01–1.80 mg/L, and 1.1–257.0 mg/L, respectively. Orthophosphate concentrations in groundwater range from 0.01–1.25 mg/L. Considerable seasonal fluctuation in the groundwater quality was observed. In general, the groundwater quality in wet seasons was better than the quality in dry seasons.  相似文献   

13.
包气带作为防止地下水硝酸盐污染的天然屏障,其反硝化效果通常受到碳源的限制。针对地下水硝酸盐污染防治技术现状,本文采用Ca(OH)2处理的玉米芯作为反硝化的碳源材料,构建包气带强化反应层,用响应曲面法研究硝酸盐浓度、含水量和温度的交互作用对脱氮性能影响,并用硝态氮去除率、亚硝态氮累积、pH值变化以及溶解性有机碳(dissolved organic carbon, DOC)淋失通量综合评价脱氮性能,最后采用高通量测序揭示脱氮层中微生物变化。研究结果表明:温度、含水量以及温度和含水量交互作用对硝态氮去除率影响显著,其中温度是反硝化过程中最关键的因素;系统运行74天后,硝态氮去除率达到50%,亚硝态氮累积量(以N计)大多低于3 mg/L,pH值维持在7.0左右,DOC淋失通量(以C计)介于0.10.2 mg/(cm2·d);高通量测序发现,脱氮层中微生物的丰富度降低,而与反硝化和碳分解有关的微生物相对丰度提高,在碳源的刺激下微生物向有利于脱氮的方向演变。  相似文献   

14.
During the recent decades, the increasing trends in nitrate ion concentration in ground water sources have meant more research to find effective procedures for the prevention of even more water contamination by nitrogen sources. In this study a pilot was designed to examine the application of biological method for eliminating nitrate from the water of well No.903 of Mehrabad Airport, Tehran, Iran. Design, installation and running processes were done from April to November 2003. A fixed biological bed containing five-centimeter trunk pipes 16 mm in diameter were installed in the reactor and the system was operated with upflow current. Instead of Methanol, Acetic acid was used as the carbon source because of its easier acceptance by the public, lower price and availability as well as easier storage. The pilot was run in different hydraulic retention times from 48 h up to one hour. Considering economical, operational and maintenance factors, retention time of 2 h was determined to be optimum, in which 77% nitrate removal was achieved. Considering a ratio of 2 for COD/N, inlet COD of about 140 mg/L and the optimum retention time, COD removal of about 80% is also accomplished in this process. The amount of nitrite concentration, pH values, COD and turbidity is also evaluated versus different hydraulic retention times.  相似文献   

15.
Hydroxylamine, a very important intermediate in nitrification, has a direct relationship with the production of nitrous oxide in biological wastewater treatment processes. The spectrophotometric method taking ferric ammonium sulfate and 1, 10-phenanthroline as the oxidant and the chromogenic agent, respectively, was used to determine the concentration of hydroxylamine in biological wastewater treatment processes. The impacts of nitrite, nitrate, orthophosphate, calcium ion and trace elements on the method were examined. The results indicated that the spectrophotometric method can be used for the determination of hydroxylamine in biological wastewater treatment processes. The correlation was significant in the range of 0.02–1.00 mg N/L (y = 1.5078x ? 0.0132, R 2 = 0.9991), and the range varied to 0.05–1.00 mg N/L when nitrite and orthophosphate presented. Nitrate, calcium ion and trace elements did not interfere with the determination of hydroxylamine nitrogen. When the concentrations of nitrite nitrogen in the samples were lower than 15.00 mg/L, nitrite had a minor interference on the method. The impacts of orthophosphate on the method were complex. When the concentrations of hydroxylamine nitrogen were higher than 0.10 mg/L, the interference of orthophosphate on the method can be ignored. However, when the concentrations of hydroxylamine nitrogen in the samples were lower than 0.10 mg/L, orthophosphate had significant impacts on the determination, and a numerical method proposed can eliminate the interference of orthophosphate. The spectrophotometric method can determine the concentration of hydroxylamine in biological wastewater treatment processes quickly and conveniently and was helpful to understand the function of NH2OH in N2O production in biological wastewater treatment processes.  相似文献   

16.
A considerable increase in nitrate concentration in groundwater has been observed in many countries. This research focuses on nitrate removal using biodegradable snack ware (BSW) as both carbon source and biofilm support for denitrifiers. The denitrification efficiency of a laboratory-scale denitrification reactor packed with BSW was examined in a low-temperature condition. The nitrate removal efficiency supported by BSW decreased to approximately 40% at 12°C from nearly 100% at 25°C with 50?mg/L of nitrate-nitrogen in the influent and 2?h of hydraulic retention time (HRT). The complete nitrate removal was obtained when nitrate-nitrogen concentration was no more than 15?mg/L at 2?h of HRT and at 12°C. If the initial concentration of nitrate-nitrogen was 50?mg/L, 5?h of HRT was needed for the complete nitrate removal. Nitrite concentration in the treated water decreased evidently as HRT was increased from 2 to 5?h, or as nitrate-nitrogen concentration in the influent decreased to 15?mg/L from 50?mg/L. It was observed that varying HRT and nitrate concentration in the influent had no noticeable effect on dissolved organic carbon content in the effluent under the experimental conditions. This study indicated that the complete nitrate removal could be achieved readily even at 12°C using BSW as carbon source by changing HRT or the initial concentration of nitrate in the influent, which has some useful implications in environmental engineering practice.  相似文献   

17.
The qualities of the treated final effluents of a wastewater treatment plant located in a rural community of the Eastern Cape Province of South Africa were assessed over the duration of 12 months. Parameters measured include pH, temperature, electrical conductivity, salinity, turbidity, total dissolved solid, dissolved oxygen, chemical oxygen demand, nitrate, nitrite and orthophosphate levels and these were simultaneously monitored in the treated final effluents and the receiving watersheds using standard methods. Unacceptably, high levels of the assayed parameters were observed in many cases for chemical oxygen demand (7.5–248.5 mg/L), nitrate (1.82–13.14 mg/L), nitrite (0.09–1.3 mg/L), orthophosphate (0.07–4.81 mg/L), dissolved oxygen (4.15–11.22 mg/L) and turbidity (3.68–159.06 NTU) during the study period and are severally outside the compliance levels of the South African Guidelines and World Health Organization tolerance limits for effluents intended for discharge through public sewers into receiving watersheds. The study has revealed that there was an adverse impact on the physico-chemical characteristics of the receiving watershed as a result of the discharge of inadequately treated effluents from the wastewater treatment facility. This poses a health risk to several rural communities which rely on the receiving water bodies primarily as their sources of domestic water. There is need for the intervention of appropriate regulatory agencies to ensure production of high quality treated final effluents by wastewater treatment facilities in rural communities of South Africa.  相似文献   

18.
选择长江中下游49个湖泊进行不同季节的水体溶解无机氮(DIN)、总氮(TN)、总磷(TP),溶解性无机磷(DIP)以及叶绿素a(Chla)等环境参数分析,开展不同营养水平湖泊水体环境变化特征及生物响应机制研究。结果表明:DIN、TN/TP随TP的变化规律反映了不同营养水平和季节下地球化学作用的影响;氨氮(NH4-N)、TP、DIP、Chla尤其是NH4-N的季节性变化规律与营养水平关系密切;TP<0.05 mg/L时,NH4-N随总磷升高的趋势夏季大于其他季节,TN/TP与硝态氮(NO3-N)、TN相关性好,营养源组成和氨化作用是主要影响因素;0.05 mg/L4-N随总磷升高的趋势基本相同,TN/TP与亚硝态氮(NO2-N)、NO3-N、TN相关好,水生植物利用、氨化和反硝化作用是主要影响因素。TP>0.1 mg/L,冬季NH4-N随总磷升高的趋势明显大于其他季节,TN/TP在冬季和春季与TN、NO3-N相关性好,夏季和秋季与TP相关性好,其主要原因在于夏季和秋季水生植物对DIN的利用量、反硝化作用和湖泊内源释放的显著增强。  相似文献   

19.
This study investigated the influence of dissolved oxygen concentration and aeration time on nitrification and nitrite accumulation in an attempt to optimize the recently developed biological-partial-nitritation process for the treatment of strong nitrogen wastewaters. Investigation of dissolved oxygen concentration on ammonium and nitrite oxidation was carried out in a batch reactor. The dissolved oxygen concentration of 0.5 mg O2/L inhibited both ammonium as well as nitrite oxidation, while increase of dissolved oxygen concentration to ~1 mg O2/L increased the ammonium oxidation rate and was comparable to that at higher dissolved oxygen concentrations. Experiments were carried out in a sequencing batch reactor for more than 100 days to investigate the influence of aeration time on nitrite accumulation. The dissolved oxygen concentration was controlled at ~1.0 mg O2/L (in the range of 0.8–1.5 mg/L) during the aeration stage, and volatile suspended solid was maintained at 2.0 g/L while temperature and pH were 30±1°C and 8.3±0.1, respectively. In a typical cycle, complete nitrification occurred at aeration time longer than 6 h. When the aeration time was reduced to 4 h., ~80 % of partial nitritation was achieved. With a further reduction in aeration time to 3 h., nearly 1:1 nitrite/ammonium ratio was yielded. This result revealed that for the reactor design, aeration time determined by feasibility experiments must be considered based on the nitrogen strength in wastewater and biomass concentration in the reactor with dissolved oxygen concentration of ~1.0 mg O2/L for satisfactory partial nitrification with subsequent processes such as anaerobic ammonium oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号