首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
克兰河岩体中含白云母的强过铝花岗岩锆石的LA-ICP-MS U-Pb年龄为(387.4±1.3)Ma(MSWD=0.72),属中泥盆世岩浆活动产物。岩石具高硅(73.55%~74.14%)、高碱(7.99%~8.31%)、富Al_2O_3(14.48%~14.56%)、富P_2O_5(0.32%~0.39%)和低(FeO+MgO)(0.45%~0.59%)、低CaO/Na_2O值(均值小于0.3),高A/NCK值(1.18~1.21),高Al_2O_3/Ti2O(120.6~181),属高压强过铝质S型花岗岩;岩体不同程度富集Rb,Th,U,P,K,贫Ba,Sr,Zr,Ti,高场强元素Nb,Ta无明显异常。岩石富集轻稀土元素,并具Eu(δEu=0.42~0.49)的显著负异常。结合阿尔泰区域地质背景综合分析,推测该岩体可能形成于陆-陆碰撞造山过程中局部陆壳加厚的高压环境,是陆壳泥质岩石部分熔融的产物,可能揭示了由俯冲增生到碰撞的过程。  相似文献   

2.
腾冲地块梁河早始新世花岗岩成因机制及其地质意义   总被引:1,自引:0,他引:1  
腾冲地块梁河地区芒东和青木寨花岗岩是新特提斯洋演化过程中重要的壳源岩浆活动产物。岩石形成年龄为48~51Ma,属于早始新世,与腾冲地块西缘盈江地区大量的酸性和基性侵入岩的形成年龄相近。梁河地区的早始新世花岗岩具有高硅、钾的特征,属于准铝质-强过铝质高钾钙碱性S型花岗岩。这些花岗岩具有高的初始~(87)Sr/~(86)Sr比值和富集的Nd同位素组成,Nd模式年龄显示源岩应为中元古代的地壳岩石。同时,芒东花岗岩具有高的CaO/Na_2O和相对低的Al_2O_3/TiO_2、Rb/Sr和Rb/Ba比值,说明源区为变质杂砂岩。而青木寨花岗岩具有低的CaO/Na_2O和Al_2O_3/TiO_2、相对高的Rb/Sr和Rb/Ba比值,指示其源岩以变泥质岩为主。结合区域内中-新生代岩浆活动特征,我们认为芒东和青木寨花岗岩是印度-亚洲大陆东向初始碰撞或同碰撞时期挤压背景下,腾冲地块中下地壳成熟度较低的杂砂岩以及成熟度较高的泥岩在高温条件下部分熔融的产物。  相似文献   

3.
铁木尔特黑云母花岗岩出露于阿尔泰造山带南缘克朗盆地北西侧,岩体主要为黑云母花岗岩。锆石的SHRIMPU-Pb定年结果表明该岩体结晶年龄为459±4.9Ma。岩石具有高的SiO_2(71.92%~76.58%)和Al_2O_3(12.92%~14.55%)含量,富碱(K_2O+Na_2O=7.09%~8.11%)、高钾(K_2O/Na_2O=1.1~1.62)、低P_2O_5(0.14%)和MgO+FeO(5%)含量,强过铝质(ACNK=1.13~1.34);富集LREE和Th、U、Pb,贫Ba、P、Sr、Ti、Nb,呈现明显的Eu负异常(δEu=0.33~0.53);并具有低的Al_2O_3/TiO_2(100)比值和高的CaO/Na_2O(0.3)比值。以上特征表明该岩体属高钾钙碱性高温型强过铝花岗岩。同时岩石具有低的Sr初始值(~(87)Sr/~(86)Sr=0.701727~0.709951)和相对高的ε_(Nd)(459Ma)(-1.43~-0.98)值,两阶段Nd模式年龄较为均一(t_(2DM)=1.2~1.3Ga)。岩体的原始岩浆可能是富含白云母和黑云母的变泥质岩在大于875℃的条件下脱水熔融的产物,在部分熔融过程中有磷灰石、斜长石、钛铁矿等矿物的残留,并混入少量的幔源物质。结合阿尔泰南缘的区域地质背景综合分析,推测岩体形成于俯冲作用的初期,可能是在挤压背景下由于局部伸展减压以及异常地幔和深部热流不均匀上升提供的热影响发生的部分熔融产生。  相似文献   

4.
对川西甲基卡地区二云母花岗岩及伟晶岩脉的岩石学特征、地球化学特征进行了分析,探讨了二云母花岗岩物质来源、构造背景及其与伟晶岩脉的成因联系。分析结果表明,甲基卡二云母花岗岩的SiO_2含量在73.93%~75.06%之间;全碱含量7.90%~8.36%,钾质含量较高,属高钾钙碱性系列岩石;Al_2O_3含量为14.24%~14.77%,A/CNK=1.14~1.24,具强过铝质S型花岗岩特征;ΣREE=31.18×10~(-6)~41.67×10~(-6),LREE/HREE=4.15~6.41,δEu=0.46~0.70;CaO/Na_2O=0.07~0.12(0.3),指示其物源可能是含砂屑物质极少的泥质岩;Al_2O_3/TiO_2=133.1~279.8,比值较高,表明甲基卡二云母花岗岩属高压低温型后碰撞强过铝质岩石。花岗伟晶岩脉SiO_2含量在72.59%~80.91%之间,全碱含量5.26%~10.60%,Al_2O_3含量11.79%~17.64%,σ=0.74~3.80,A/CNK=0.98~2.38,ΣREE=4.03×10~(-6)~8.29×10~(-6),LREE/HREE=2.61~10.40,δEu=0.18~0.68,与岩体差异明显,主、微量元素含量变化也较大。甲基卡二云母花岗岩与伟晶岩脉有密切的成因联系。岩浆不混溶作用可能是形成甲基卡含矿伟晶岩脉的关键因素,花岗质岩浆在上升过程中通过不混溶作用分离出富含挥发分的伟晶岩熔体,在运移或侵位过程中可能交代围岩矿物而使稀有金属元素进一步富集。二云母花岗岩浆和伟晶岩熔体性质的不同导致稀土元素和Th、Sr、Ti、Y、Rb、N等微量元素在两者中含量有明显差异。伟晶岩熔体在运移或就位过程中所经的路径不同和周围环境的差异导致不同位置产出的伟晶岩的元素含量有较大的变化。与二云母花岗岩相比,花岗伟晶岩的形成演化具有一定的跳跃性。  相似文献   

5.
青海南山地区位于南祁连构造带和西秦岭造山带的交接部位,在该地区元古宇变质地层中新厘定出一套含石榴子石白云母二长花岗岩,并对其进行了详细的岩石学、岩石地球化学和LA-ICP-MS锆石U-Pb定年研究。结果表明,浪日娘含石榴子石白云母二长花岗岩结晶年龄为438.7±4.2Ma,形成于早志留世早期。岩石含石榴子石、白云母、电气石等高铝矿物,同时具高SiO_2、富Al_2O_3特征,高铝饱和指数A/CNK=1.09~1.28,属高钾钙碱性强过铝质S型花岗岩;微量元素富集大离子亲石元素Cs、Rb、U、K和Pb,亏损高场强元素Nb、Ti、Zr、P和Ba、Sr;稀土元素总量低,配分曲线为轻稀土元素富集的右倾模式,具有弱-中等负Eu异常。高Rb/Sr值(1.83~3.95)、低CaO/Na_2O值(0.11~0.19),伴随有Pb正异常和Ba负异常,暗示源区物质成分为泥质岩并经历了缺水熔融条件下的白云母脱水熔融。结合岩体年龄及区域地质资料,推断其可能形成于原特提斯洋闭合碰撞造山过程。  相似文献   

6.
西藏拉屋矿床位于冈底斯铜铅锌多金属成矿带东段。通过对拉屋矿区出露的二长花岗岩地球化学研究表明,岩石中SiO_2、Al_2O_3和CaO等的含量均高、贫Fe和低Na_2O;w(SiO_2)含量为65.40%~74.43%,A/CNK值在1.41~2.20之间,为强过铝质花岗岩。岩石稀土总量ΣREE(不含Y)较低,为(5.08~80.38)×10~(-6),LaN/YbN值为2.43~5.65,ΣLREE/ΣHREE为1.63~3.64,稀土元素配分型式为右倾型,具负铕异常。Nb、Ti、Zr、Ce等高场强元素和Ba明显的亏损,K、Rb、Sr等大离子亲石元素明显的富集。综合研究认为,本区花岗岩的物质来源于上部陆壳,岩浆源区岩石成分为泥质岩;该岩体为形成于同碰撞构造环境、地壳加厚阶段的过铝质花岗岩。  相似文献   

7.
藏南吉隆淡色花岗岩体位于大喜马拉雅淡色花岗岩带的中部,是吉隆地区藏南拆离系剪切带上部的重要组成部分。地球化学特征显示,岩石具有高SiO_2(72.09%~74.02%)、Al_2O_3(14.54%~15.59%)和K_2O(4.55%~5.59%)含量,高K_2O/Na_2O比值(1.12~1.55)和A/CNK值(1.14~1.18),属于高钾钙碱性过铝质S型花岗岩。富集大离子亲石元素Rb和放射性生热元素U,亏损Ba、Nb、Sr和Zr等元素,具有明显的轻重稀土元素分异和Eu负异常(δEu=0.37~0.54)。具有高的Rb/Sr比值(3.6~9.7)和低的CaO/Na_2O比值(0.15~0.25),指示源区为泥质岩区;(~(87)Sr/~(86)Sr)_i和ε_(Nd)(t)变化范围分别为0.7548~0.7586和-14.0~-13.1,与大喜马拉雅变泥质岩的Sr-Nd同位素组成一致;锆石边部的ε_(Hf)(t)介于-16.0~-8.5之间,位于大喜马拉雅变泥质岩中碎屑锆石的演化线上,表明淡色花岗岩的源岩为大喜马拉雅变泥质岩。岩石(~(87)Sr/~(86)Sr)_i较高而Sr浓度较低,且随着Ba浓度的增加,Rb/Sr比值降低,表明淡色花岗岩是无水条件下白云母脱水熔融形成的,部分熔融可能与藏南拆离系(STDS)伸展拆离导致的深部构造减压密切相关。吉隆淡色花岗岩的形成反映了地壳伸展减薄背景下,构造减压导致的深部地壳物质中含水矿物(白云母)脱水熔融并沿向北伸展的STDS侵位的构造动力学过程。  相似文献   

8.
马拉山花岗岩位于特提斯喜马拉雅的西部,其主要矿物组成为石英、钾长石、白云母和黑云母。锆石LA-MC-ICP-MS U-Pb定年表明,花岗岩的发育记录了(28.0±0.5)Ma和(18.4±0.3)Ma两期深熔作用,(18.4±0.3)Ma代表了最终的结晶时间。全岩地球化学分析结果显示,样品具有高的SiO_2(72.36%~72.51%)、Al_2O_3(15.22%~15.37%)和CaO(1.64%~1.66%)含量,高的K_2O/Na_2O值(0.97-1.05)和A/CNK值(1.15-1.20),显示高钾钙碱性过铝质的特征;岩石富集Rb、Th、U和K,亏损Ba、Nb、Sr和Zr、Eu负异常不明显(δEu=0.80~0.89),轻重稀土分馏较强[(La/Yb)_N=7.09~19.68]。马拉山花岗岩具有较低的Rb/Sr值(0.90-1.10)和较高的CaO/Na_2O值(0.44~0.46),指示岩浆源区物质成分可能以页岩为主;样品(~(87)Sr/~(86)Sr)_i和ε_(Nd)(t)分别为0.742 522~0.744 097和-14.5~-13.7,与大喜马拉雅结晶杂岩中变质沉积岩成分一致,表明其来自变质沉积岩的部分熔融。岩石具有较低的(~(87)Sr/~(86)Sr);和较高的Sr含量,且随着Ba含量的增加,Rb/Sr值基本不变,表明马拉山花岗岩是水致白云母部分熔融的产物,部分熔融可能与南北向裂谷的东西向伸展关系密切。  相似文献   

9.
茶庵岩体位于秦岭造山带东段,岩体的主要岩性为二云母花岗岩。岩石地球化学分析结果显示,茶庵岩体w(SiO2)为73.22%~75.29%,w(K_2O)为4.11%~4.74%,w(Na_2O)为3.68%~4.34%,w(Al_2 O_3)为13.90%~15.31%,具有高钾钙碱性和过铝质(ACNK=1.03~1.17)特征。岩石稀土总量较低(22.02×10-6~84.18×10-6),轻稀土元素相对富集,重稀土元素相对亏损,具有Eu的负异常,岩体富集Rb、U、Hf和Y,亏损Ba、Nb、Ta和Ti,显示出I型花岗岩的特点,形成于碰撞造山后的伸展构造环境。  相似文献   

10.
朱毓  赖绍聪  秦江锋 《地质论评》2017,63(6):1465-1478
松潘造山带内发育大量印支期花岗岩,这些花岗岩类对于该地区岩浆活动、基底性质和构造演化的研究有着重要的意义。金川地区观音桥二云母花岗岩位于松潘造山带东部,属于晚三叠世花岗岩。岩石具有高硅(SiO_2=72.08%~73.95%)、富碱(K_2O=4.44%~5.84%、Na_2O=3.29%~3.93%)的特征,其A/CNK值为1.08~1.22,属于过铝质高钾钙碱性S型花岗岩类。岩石富集大离子亲石元素,亏损部分高场强元素,具有明显的Eu负异常(δEu=0.26~0.38)。观音桥二云母花岗岩的ε_(Nd)(t)=-7.9~-10.1(平均为-8.9)不高,Nd同位素二阶段模式年龄T_(2DM)值为1.42~1.57 Ga,显示源岩应该为中元古代地壳岩石。岩石高的Rb/Sr值和低的CaO/Na_2O值、较低的Al_2O_3/TiO_2值和低的Rb/Ba值,表明其起源于泥质源岩的部分熔融。综合地球化学、同位素特征和区域地质资料,笔者等认为金川地区观音桥二云母花岗岩是在松潘造山带挤压背景下,由中—上地壳泥质源岩发生部分熔融而形成。  相似文献   

11.
Lithostratigraphy, physicochemical stratigraphy, biostratigraphy, and geochronology of the 77–70 Ma old series bracketing the Campanian–Maastrichtian boundary have been investigated by 70 experts. For the first time, direct relationships between macro- and microfossils have been established, as well as direct and indirect relationships between chemo-physical and biostratigraphical tools. A combination of criteria for selecting the boundary level, duration estimates, uncertainties on durations and on the location of biohorizons have been considered; new chronostratigraphic units are proposed. The geological site at Tercis is accepted by the Commission on Stratigraphy as the international reference for the stratigraphy of the studied interval. To cite this article: G.S. Odin, C. R. Geoscience 334 (2002) 409–414.  相似文献   

12.
Well investigated platforms have been selected in each continent, and the history of Cretaceous transgressions and regressions there is concisely reviewed from the available evidence. The factual records have been summarized into a diagram and the timing of the events correlated between distant as well as adjoining areas.On a global scale, major transgressions were stepwise enlarged in space and time from the Neocomian, via Aptian-Albian, to the Late Cretaceous, and the post-Cretaceous regression was very remarkable. Minor cycles of transgression-regression were not always synchronous between different areas. Some of them were, however, nearly synchronous between the areas facing the same ocean.Tectono-eustasy may have been the main cause of the phenomena of transgression-regression, but certain kinds of other tectonic movements which affected even the so-called stable platforms were also responsible for the phenomena. The combined effects of various causes may have been unusual in the Cretaceous, since it was a period of global tectonic activity. The slowing down of this activity followed by readjustments may have been the cause of the global regression at the end of the Cretaceous.  相似文献   

13.
The Afyon stratovolcano exhibits lamprophyric rocks, emplaced as hydrovolcanic products, aphanitic lava flows and dyke intrusions, during the final stages of volcanic activity. Most of the Afyon volcanics belong to the silica-saturated alkaline suite, as potassic trachyandesites and trachytes, while the products of the latest activity are lamproitic lamprophyres (jumillite, orendite, verite, fitztroyite) and alkaline lamprophyres (campto-sannaite, sannaite, hyalo-monchiquite, analcime–monchiquite). Afyon lamprophyres exhibit LILE and Zr enrichments, related to mantle metasomatism.  相似文献   

14.
正20140751 Guo Xincheng(Geological Party,BGMRED of Xinjiang,Changji 831100,China);Zheng Yuzhuang Determination and Geological Significance of the Mesoarchean Craton in Western Kunlun Mountains,Xinjiang,China(Geological Review,ISSN0371-5736,CN11-1952/P,59(3),2013,p.401-412,8  相似文献   

15.
正20141058 Chen Ling(Key Laboratory of Mathematical Geology of Sichuan Province,Chengdu University of Technology,Chengdu610059,China);Guo Ke Study of Geochemical Ore-Forming Anomaly Identification Based on the Theory of Blind Source Separation(Geosci-  相似文献   

16.
SEISMIC GEOLOGY     
正20141334 Chen Kun(Institute of Geophysics,China Earthquake Administration,Beijing100081,China);Yu Yanxiang Shakemap of Peak Ground Acceleration with Bias Correction for the Lushan,Sichuan Earthquake on April20,2013(Seismology and Geology,ISSN0253-4967,CN11-2192/P,35(3),2013,p.627-633,2 illus.,1 table,9 refs.)Key words:great earthquakes,Sichuan Province  相似文献   

17.
正20141624 Cai Xiongfei(Key Laboratory of Geobiology and Environmental Geology,Ministry of Education,China University of Geosciences,Wuhan 430074,China);Yang Jie A Restudy of the Upper Sinian Zhengmuguan and Tuerkeng Formations in the Helan Mountains(Journal of Stratigraphy,ISSN0253-4959CN32-1187/P,37(3),2013,p.377-386,5 illus.,2 tables,10 refs.)  相似文献   

18.
PALEONTOLOGY     
正20142263Lü Shaojun(Geological Survey of Jiangxi Province,Nanchang 330030,China)Early-Middle Permian Biostratigraphical Characteristics in Qiangduo Area,Tibet(Resources SurveyEnvironment,ISSN1671-4814,CN32-1640/N,34(4),2013,p.221-227,2illus.,2tables,22refs.)Key words:biostratigraphy,Lower Permian,Middle Permian,Tibet  相似文献   

19.
正20142560Hu Hongxia(Regional Geological and Mineral Resources Survey of Jilin Province,Changchun 130022,China);Dai Lixia Application of GIS Map Projection Transformation in Geological Work(Jilin Geology,ISSN1001-2427,CN22-1099/P,32(4),2013,p.160-163,4illus.,2refs.)  相似文献   

20.
GEOCHEMISTRY     
正20140692 Duo Tianhui(No.402 Geological Team,Exploration of Geology and Mineral Resources of Sichuan Authority,Chengdu611730,China);Wang Yongli Computer Simulation of Neptunium Existing Forms in the Groundwater(Computing Techniques for Geophysical and Geochemical Exploration,ISSN1001-1749,CN51-1242/P,35(3),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号