首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
张泽明  董昕  贺振宇  向华 《岩石学报》2013,29(5):1713-1726
喜马拉雅造山带是印度与亚洲大陆碰撞作用的产物,正在进行造山作用,是研究板块构造的天然实验室.高压和超高压变质岩分布在喜马拉雅造山带的核部.这些变质岩具有不同的形成条件、形成时间和形成过程,为印度与亚洲碰撞带的几何学、运动学和动力学提供了重要的限定.含柯石英的超高压变质岩产出在喜马拉雅造山带的西段,它们形成在古新世与始新世之间(53~46Ma),为印度大陆西北边缘高角度超深俯冲作用的产物,并经历了快速俯冲与快速折返过程.在约5 Myr内,超高压变质岩从>100km的地幔深度折返到了中地壳深度,且仅仅叠加角闪岩相退变质作用.高压榴辉岩产出在喜马拉雅造山带中段,形成时间约为45Ma,为印度大陆低角度深俯冲作用的产物,经历了至少20Myr的长期折返过程,叠加麻粒岩相退变质作用和部分熔融.高压麻粒岩产出在喜马拉雅造山带的东端,是印度大陆东北缘近平俯冲作用的产物,峰期变质作用时间约为35Ma,经历了约20Myr的长期折返过程,叠加了麻粒岩相和角闪岩相退变质作用,并伴随有多期部分熔融.因此,喜马拉雅造山带的变质作用具有明显的时间与空间变化,显示出大陆深俯冲与折返过程的差异性,以及大陆碰撞造山带形成机制的多样性.  相似文献   

2.
董杰  魏春景  张建新 《地球科学》2019,44(12):4004-4008
南阿尔金造山带是目前报道的具有最深俯冲记录的大陆超高压变质带,其内出露有高压-超高温麻粒岩,它们对深入理解大陆地壳岩石超深俯冲与折返过程具有重要意义.介绍了对南阿尔金巴什瓦克地区长英质麻粒岩和基性麻粒岩的岩相学、矿物化学、相平衡模拟及锆石U-Pb年代学研究成果.其中基性麻粒岩主要记录了深俯冲大陆地壳折返过程的变质演化:包括高压榴辉岩相、高压-超高温麻粒岩相、低压-超高温麻粒岩相及随后的近等压降温演化阶段;长英质麻粒岩除了记录与基性麻粒岩相似的折返过程外,还记录了从角闪岩相到超高压榴辉岩相的进变质演化过程.结合已有研究资料,确定超高压榴辉岩阶段峰期条件> 7~9 GPa和>1 000℃,可达到斯石英稳定域.锆石年代学显示两种岩石类型的原岩和变质年龄均分别在900 Ma和500 Ma左右.变质作用与年代学研究表明,南阿尔金大陆地壳岩石在早古生代发生超深俯冲至200~300 km后,折返至加厚地壳底部发生高压-超高温变质作用,随后被快速抬升至地壳浅部发生低压-超高温变质作用并经历迅速冷却.   相似文献   

3.
北大别超高压榴辉岩的快速折返与缓慢冷却过程   总被引:2,自引:2,他引:0  
刘贻灿  古晓锋  李曙光 《岩石学报》2009,25(9):2149-2156
岩石学研究表明,北大别超高压榴辉岩经过了超高压和高压榴辉岩相变质作用以及麻粒岩相叠加和角闪岩相退变质作用.其中,高压麻粒岩相和角闪岩相变质阶段形成的后成合晶以及石榴子石和单斜辉石等矿物中成分分带的存在,证明该区榴辉岩经历了一个快速折返过程;而不同变质阶段的温度、压力和形成时代,却反映该区榴辉岩在峰期超高压变质作用之后又经历了一个缓慢冷却过程.超高压岩石折返期间的缓慢冷却过程也许正是北大别长期难以发现柯石英和有关超高压证据的重要原因.因此,本文为大别山不同超高压岩片的差异折返模型的建立提供了新的证据.  相似文献   

4.
张泽明  丁慧霞  董昕  田作林 《地球科学》2019,44(5):1602-1619
印度与亚洲大陆新生代碰撞-俯冲形成的喜马拉雅造山带核部由高压和超高压变质岩组成.超高压榴辉岩分布在喜马拉雅造山带西段,由石榴石、绿辉石、柯石英、多硅白云母、帘石、蓝晶石和金红石组成.超高压榴辉岩的峰期变质条件为2.6~2.8GPa和600~620℃,其经历了角闪岩相退变质作用和低程度熔融.超高压榴辉岩的进变质、峰期和退变质年龄分别为~50Ma、45~47Ma和35~40Ma,指示一个快速俯冲与快速折返过程.高压榴辉岩产出在喜马拉雅造山带中-东段,由石榴石、绿辉石、多硅白云母、石英和金红石组成.高压榴辉岩的峰期变质条件为>2.1GPa和>750℃,叠加了高温麻粒岩相退变质作用与强烈部分熔融.高压榴辉岩的峰期和退变质年龄可能分别是~38 Ma和14~17 Ma,很可能经历了一个缓慢俯冲与缓慢折返过程.喜马拉雅造山带两种不同类型榴辉岩的存在表明,印度与亚洲大陆约在51~53Ma碰撞后,印度大陆地壳的西北缘陡俯冲到了地幔深度,导致表壳岩石经历了超高压变质作用,而印度大陆地壳的东北缘平缓俯冲到亚洲大陆之下,导致表壳岩石经历了高压变质作用.  相似文献   

5.
都兰榴辉岩地体位于柴北缘—南阿尔金超高压变质带的东端,是唯一确定含柯石英的超高压变质地体,约700 km,其特点是含有两个特征不同的变质亚带,并经历了不同的折返过程。柯石英假像和温压计算表明两带榴辉岩峰期变质的压力都在柯石英的稳定域(2.8~3.3 GPa),但它们退化变质的p–T 轨迹具有明显不同的特征。北带榴辉岩经历了两个阶段的折返:早期从地幔深度快速折返到中部地壳层次,伴随岩石的等温降压,并发生角闪岩相退化变质;晚期抬升到地壳浅部。都兰南带榴辉岩折返过程中经历了高压麻粒岩相变质的改造,高压麻粒岩阶段的p–T条件为p=1.9~2.0 GPa,T=873~948℃, 并进一步经历了角闪岩相退化变质,说明都兰南带榴辉岩折返速率较慢,发生了壳幔过渡带(或加厚的深部地壳)层次的强烈热松弛。这种热松弛发生在许多大陆俯冲带的超高压岩石的折返过程中,并且是榴辉岩发生深熔作用的主要机制。都兰两个变质带不同的变质演化轨迹反映了俯冲的大陆地壳具有差异折返的特征。  相似文献   

6.
胶北莱西古元古代的高压基性麻粒岩和钙硅酸盐岩的基本矿物组合分别为以铁铝榴石为主的石榴石-普通辉石-铁紫苏辉石和钙铝榴石-黝帘石-葡萄石-钠长石.矿物岩石学研究表明钙硅酸盐岩是由含石榴石高压基性麻粒岩经退变质和钙质交代作用形成.南山口高压基性麻粒岩记录了麻粒岩相变质作用前、麻粒岩相变质作用、退变质和钙硅酸盐岩化共同作用以及完全钙硅酸盐岩化的四个阶段的地质作用,其矿物组合分别为Cpx+ Pl+ Qtz(M1),Grt+ Cpx+ Rt+ Qtz(M2),Cpx+Pl+ Opx+ Ilm+ Mgt+ Ep(M3)和Grs+ Zo+ Prh+ Ab+ Cal(M4).微量元素研究表明,高压基性麻粒岩中大离子亲石元素Ba、Rb、K、Rb、Th富集,而高场强元素Nb、Zr、Ti、Y亏损,具有轻稀土富集的右倾型稀土配分曲线.稀土元素和微量元素配分图解显示了岛孤拉斑玄武岩的特征.主元素、微量元素的构造判别图解进一步分析表明高压基性麻粒岩及其钙硅酸盐岩的原岩形成于大陆边缘的岛弧环境.综合高压基性麻粒岩岩石学、元素地球化学特征认为,莱西高压基性麻粒岩的原岩是拉斑玄武岩质岩石,可能是形成于孤后扩张背景下基性的侵入岩或喷出岩.岩石形成以后,在胶-辽-吉带碰撞闭合过程中,经历了麻粒岩相变质作用,又在后来的抬升过程中经历退变质和钙硅酸盐岩化作用.  相似文献   

7.
南秦岭勉略构造带在研究中国大陆构造演化历史中具有重要的大地构造意义。年代学及岩石地球化学研究显示勉略蛇绿构造混杂岩的形成时代、形成原因都是非常复杂的;大量三叠纪花岗岩的分布特征及形成时代显示其成因与勉略洋盆闭合及之后发生的陆壳基底的俯冲有关,同时关于这些花岗岩形成的动力学背景,也存在多种不同的观点;区内高压基性麻粒岩的研究反映了秦岭造山带在印支期沿勉略构造带发生俯冲-碰撞-折返的造山过程。如果对勉略构造带更多高压变质岩石进行细致研究,可为恢复秦岭造山带造山过程提供更多岩石学证据。  相似文献   

8.
桃行榴辉岩是苏鲁超高压变质带中段主要榴辉岩体密集分布区之一。流体包裹体研究表明,榴辉岩矿物及高压脉体石英中捕获有五种类型的流体包裹体:在超高压-高压榴辉岩相条件下捕获的N2±CH4包裹体;在榴辉岩发生麻粒岩相叠加变质作用期间被捕获的B型纯CO2液相包裹体;在高压榴辉岩重结晶阶段被捕获的C型CO2-H2O包裹体和D型高盐度水溶液包裹体;超高压岩石折返过程中的最晚阶段(角闪岩相退变质甚至更晚)捕获的E型低盐度水溶液包裹体。利用榴辉岩矿物及高压脉体石英中捕获的流体包裹体类型及期次可以重建超高压变质作用板片折返过程中的流体性状与演化,而石榴石中捕获的纯CO2包裹体为本区榴辉岩相岩石遭受了麻粒岩相叠加提供了佐证。  相似文献   

9.
"罗田穹隆"中的下地壳俯冲成因榴辉岩及其地质意义   总被引:12,自引:0,他引:12  
在“罗田穹隆”中发现了下地壳俯冲成因榴辉岩.榴辉岩呈透镜状或板状产于含石榴子石条带状片麻岩中.新鲜的榴辉岩主要由石榴子石、绿辉石、金红石等组成.含少量退变质的角闪石、斜长石、紫苏辉石、透辉石、(钛)磁铁矿和石英等.研究区榴辉岩以保留早期麻粒岩相变质矿物残留体以及经受晚期麻粒岩相和角闪岩相退变为特征.指示它们由扬子镁铁质下地壳麻粒岩相岩石俯冲到深部发生变质并形成榴辉岩.然后折返至下地壳发生麻粒岩相退变,由于麻粒岩相退变质阶段仅以后成合晶形式出现.因而它们可能在下地壳停留时间不长.就又进一步被构造抬升至中上地壳而发生角闪岩相退变.大别山造山带乃至扬子板块北缘现今缺乏厚层镁铁质下地壳.它们也很少出露地表.推测这些俯冲的镁铁质下地壳可能已拆离再循环进人地幔.从而为“罗田穹隆”的形成和演化以及大别山高压-超高压岩石的形成与折返机制等研究提供了关键性的岩石学证据。  相似文献   

10.
麻粒岩作为一种高压,高温岩石,传统上认为其形成源于在大陆碰撞带和岩浆弧深处的变质作用。而近年,许多注意力都集中在大陆裂谷期间形成麻粒岩的可能性,特别是目前麻粒岩是否正在北美贝森和兰奇省之下形成。  相似文献   

11.
ABSTRACT The nature of the Indian crust underthrusting the Himalaya may be studied in xenoliths within Ordovician granites in the external part of the Himalaya. These peraluminous S-type granites have travelled for c . 200 km in the Main Central (or related) thrust. The granites and xenoliths sample Indian basement now buried beneath the High Himalayan thrust pile. In low-strain granites the xenoliths reveal polyphase tectonite fabrics older than the fabrics in the country rocks. Most xenoliths show greenschist/lower amphibolite facies assemblages; none is typical granulite facies of the Indian Shield. Therefore, the portion of the Indian crust underthrusting the Himalaya may be early/middle Proterozoic reworked Indian Shield, as in peninsular India. Alternatively reworking may be assigned to the Pan-African (late Proterozoic) orogeny. This prospect is raised by recent work in East Antarctica but evidence in the Himalaya is rather ambiguous. If confirmed, a Pan-African event calls for reassessment of the geological history of the Himalayan region, particularly with respect to the placing of India in Gondwanaland.  相似文献   

12.
陆陆碰撞过程是板块构造缺失的链条。印度板块与亚洲板块的碰撞造就了喜马拉雅造山带和青藏高原的主体。然而,人们对印度板块在大陆碰撞过程中的行为尚不了解。如大陆碰撞及其碰撞后的大陆俯冲是如何进行的、印度板块是俯冲在青藏高原之下还是回转至板块上部(喜马拉雅造山带内)以及两者比例如何,这些仍是亟待解决的问题。印度板块低角度沿喜马拉雅主逆冲断裂(MHT)俯冲在低喜马拉雅和高喜马拉雅之下已经被反射地震图像很好地揭示。然而,关于MHT如何向北延伸,前人的研究仅获得了分辨率较低的接收函数图像。因而,MHT和雅鲁藏布江缝合带之间印度板块的俯冲行为仍是一个谜。喜马拉雅造山楔增生机制,也就是印度地壳前缘的变形机制,反映出物质被临界锥形逆冲断层作用转移到板块上部,或是以韧性管道流的样式向南溢出。在本次研究中,我们给出在喜马拉雅造山带西部地区横过雅鲁藏布江缝合带的沿东经81.5°展布的高分辨率深地震反射剖面,精细揭示了地壳尺度结构构造。剖面显示,MHT以大约20°的倾斜角度延伸至大约60 km深度,接近埋深为70~75 km的Moho面。越过雅鲁藏布江缝合带运移到北面的印度地壳厚度已经不足15 km。深地震反射剖面还显示中地壳逆冲构造反射发育。我们认为,伴随着印度板块俯冲,地壳尺度的多重构造叠置作用使物质自MHT下部的板块向其上部板块转移,这一过程使印度地壳厚度减薄了,同时加厚了喜马拉雅地壳。  相似文献   

13.
Magnesium isotopic compositions, along with new Sr–Nd–Pb isotopic data and elemental analyses, are reported for 12 Miocene tourmaline-bearing leucogranites, 15 Eocene two-mica granites and 40 metamorphic rocks to investigate magnesium isotopic behaviors during metamorphic processes and associated magmatism and constrain the tectonic-magmatic-metamorphic evolution of the Himalayan orogeny. The gneisses, granulites and amphibolites represent samples of the Indian lower crust and display large range in δ26Mg from −0.44‰ to −0.09‰ in mafic granulites, −0.44‰ to −0.10‰ in amphibolites, and −0.70‰ to −0.03‰ in granitic gneisses. The average Mg isotopic compositions of the granitic gneisses (−0.19 ± 0.34‰), mafic granulites (−0.22 ± 0.17‰) and amphibolites (−0.25 ± 0.24‰) are similar, indicating the limited Mg isotope fractionation during prograde metamorphism from granitic gneisses to mafic granulites and retrograde metamorphism from mafic granulites to amphibolites. The Eocene two-mica granites and Miocene leucogranites are characterized by large variations in elemental and Sr–Nd–Pb isotopic compositions. The leucogranites and two-mica granites have their corresponding (87Sr/86Sr)i varying from 0.7282 to 0.7860 and 0.7163 to 0.7191, (143Nd/144Nd)i from 0.511888 to 0.512040 and 0.511953 to 0.512076, 207Pb/204Pb from 15.7215 to 15.7891 and 15.7031 to 15.7317, 208Pb/204Pb from 38.8521 to 39.5286 and 39.2710 to 39.4035, and 206Pb/204Pb from 18.4748 to 19.0139 and 18.7834 to 18.9339. However, they have similar Mg isotopic compositions (−0.21‰ to +0.06‰ versus −0.24‰ to +0.09‰), which did not originate from fractional crystallization nor source heterogeneity. Based on hornblende/biotite/muscovite dehydration melting reaction and Mg isotopic variations in two-mica granites and leucogranites with the proceeding metamorphism, along with elemental discrimination diagrams, Eocene two-mica granites and Miocene leucogranites could be related to hornblende dehydration melting and muscovite dehydration melting, respectively. Mg isotopic compositions of Eocene two-mica granites become heavier compared to the source because of residues of isotopically light garnet in the source; while those of Miocene leucogranites become lighter because of entrainment of isotopically light garnet from the source region. Thus, a new model for crustal anatexis and Himalayan orogenesis was proposed based on the Mg isotope fractionation in the leucogranites and metamorphic rocks. This model emphasizes a successive process from Indian continental subduction to rapid exhumation of the Higher Himalayan Crystalline Series (HHCS). The former underwent high-temperature (HT) and high-pressure (HP) granulite-facies prograde metamorphism, which resulted in the hornblende dehydration melting and the formation of Eocene two-mica granites; while the latter experienced amphibolite-facies retrogression and decompression, which resulted in the muscovite dehydration melting and the formation of Miocene leucogranites.  相似文献   

14.
A.G. Dessai  A. Markwick  H. Downes 《Lithos》2004,78(3):263-290
Granulite and pyroxenite xenoliths in lamprophyre dykes intruded during the waning stage of Deccan Trap volcanism are derived from the lower crust beneath the Dharwar craton of Western India. The xenolith suite consists of plagioclase-poor mafic granulites (55% of the total volume of xenoliths), plagioclase-rich felsic granulites (25%), and ultramafic pyroxenites and websterites (20%) with subordinate wehrlites. Rare spinel peridotite xenoliths are also present, representing mantle lithosphere. The high Mg #, low SiO2/Al2O3 and low Nb/La (<1) ratios suggest that the protoliths of the mafic granulites broadly represent cumulates of sub-alkaline magmas. All of the granulites are peraluminous and light rare-earth element-enriched. The felsic granulites may have resulted from anatexis of the mafic lower crustal rocks; thus, the mafic granulites are enriched in Sr whereas the felsic ones are depleted. Composite xenoliths consisting of mafic granulites traversed by veins of pyroxenite indicate intrusion of the granulitic lower crust by younger pyroxenites. Petrography and geochemistry of the latter (e.g. presence of phlogopite) indicate the metasomatised nature of the deep crust in this region.Thermobarometric estimates from phase equilibria indicate equilibration conditions between 650 and 1200 °C, 0.7-1.2 GPa suggestive of lower crustal environments. These estimates provide a spatial context for the sampled lithologies thereby placing constraints on the interpretation of geophysical data. Integration of xenolith-derived P-T results with Deep Seismic Soundings (DSS) data suggests that the pyroxenites and websterites are transitional between the lower crust and the upper mantle. A three-layer model for the crust in western India, derived from the xenoliths, is consistent with DSS data. The mafic nature of this hybrid lower crust contrasts with the felsic lower crustal composition of the south Indian granulite terrain.  相似文献   

15.
At least seven different groups of felsic magmatic rocks have been observed in the Lesser and Higher Himalayan units of Nepal. Six of them are pre-Himalayan. The Ulleri Lower Proterozoic augen gneiss extends along most of the length of the Lesser Himalaya of Nepal and represents a Precambrian felsic volcanism or plutono-volcanism, mainly recycling continental crustal material; this volcanism has contributed sediment to the lower group of formations of the Lesser Himalaya. The Ampipal alkaline gneiss is a small elongated body appearing as a window at the base of the Lesser Himalayan formations of central Nepal; it originated as a Precambrian nepheline syenite pluton, contaminated by lower continental crust. The “Lesser Himalayan” granitic belt is well represented in Nepal by nine large granitic plutons; these Cambro-Ordovician peraluminous, generally porphyritic, granites, only occur in the crystaline nappes; they were probably produced by large-scale melting of the continental crust at the northern tip of the Indian craton, during a general episode of thinning of Gondwana continent with heating and mantle injection of the crust. The Formation III augen gneisses of the Higher Himalaya, such as the augen gneiss of the Higher Himalayan crystalline nappes (Gosainkund) are coeval to the “Lesser Himalayan” granites, and their more metamorphic (lower amphibolite grade) equivalents. Limited outcrops of Cretaceous trachytic volcanism lie along the southern limb of the Lesser Himalaya and are coeval with spilitic volcanism in the Higher Himalayan sedimentary series. This volcanism foreshadows the general uplift of the Indian margin before the Himalayan collision. The predominance of felsic over basic magmatism in the 2.5 Ga-long evolution of the Himalayan domain constitutes an unique example of recycling of continental material with very limited addition of juvenile mantle products.  相似文献   

16.
The Palghat Gap region is located near the centre of the large southern Indian granulite terrane. at the northern edge of the Kodaikanal charnockite massif. The dominant rock types in the region are hornblende-biotite ± orthopyroxene gneisses and charnockites along with minor amounts of intercalated mafic granulite, metapelite and calc-silicate. The P-T estimates from garnetiferous mafic granulites and metapelite samples are generally in the range 9-10 kbar and 800-900 C using both conventional thermobarometric methods and the TWEEQU thermobarometry program. These P-T estimates, which should be taken as minimum values, are among the highest yet reported for South Indian and Sri Lankan granulites. The occurrence of orthopyroxene + plagioclase symplectites around embayed garnet grains in the mafic granulites and cordierite rims around garnet grains in metapelite suggest an isothermal decompression-type path. Similarly, a core-rim P-T trajectory indicates c. 3 and 7 kbar decompression at high temperature in the mafic granulites and metapelite, respectively. In both rock types, the key to the determination of the retrograde P-T path was the recognition of small amounts of second generation plagioclase with a more anorthitic composition than the matrix plagioclase. The preservation of high garnet-pyroxene temperatures in the mafic granulites (despite small garnet grain size) suggests rapid cooling of the terrane. Calculated minimum cooling rates range from 8 to 80 C Ma-1. Such cooling rates are more rapid than those associated with normal isostatic processes and suggest that the terrane was tectonically exhumed at high temperature.  相似文献   

17.
沈其韩  耿元生  宋会侠 《岩石学报》2014,30(10):2777-2807
本文重点介绍我国显生宙造山带中麻粒岩的地质特征、岩石类型、P-T轨迹、变质时代及其形成的大地构造背景。我国显生宙造山带主要包括阿尔泰造山带、南天山-西南天山造山带、西昆仑造山带、东昆仑造山带、阿尔金-柴北缘造山带、北秦岭造山带、南秦岭勉略造山带、东秦岭-桐柏-大别造山带、班公湖-怒江造山带和喜马拉雅中东段造山带。这些造山带中麻粒岩的围岩有许多为蛇绿岩套或蛇绿混杂岩带,部分为副片麻岩和花岗质片麻岩,并一起经历了麻粒岩相变质改造,造山带中大多出现一种高压麻粒岩,有的与榴辉岩并存,但少数造山带中(例如阿尔泰造山带)多种压力类型麻粒岩并存,既有低-高压泥质麻粒岩、中低压基性麻粒岩、高压基性和长英质麻粒岩,又有高温-超高温泥质麻粒岩。变质时代除个别为新元古代晚期外,变质时间多为加里东、海西、印支、燕山、喜山期。麻粒岩的P-T轨迹除西天山木札尔特河低压麻粒岩具逆时针轨迹,反映大陆弧构造环境外,其它都是具有等温降压(ITC)特点的顺时针轨迹,形成的大地构造环境大部分为洋陆俯冲碰撞环境,少部分为陆-陆碰撞环境。目前显生宙造山带中麻粒岩的研究大多数尚在起步阶段,少数研究较详细,不少造山带中麻粒岩的类型和变质时代以及形成的构造背景还不清楚,有待深入研究,新的麻粒岩产地有待发现。  相似文献   

18.
喜马拉雅造山带由印度与欧亚大陆板块的陆陆碰撞而形成。为何在挤压造山的碰撞前缘形成代表垮塌的藏南裂谷系存在巨大的争议。回答这个问题需要对裂谷的地壳结构有一个全面的认识。各裂谷带的起始活动年代自西向东逐渐年轻。本研究选取喜马拉雅东部较为年轻的错那裂谷,利用密集台阵接收的远震数据,通过P波接收函数方法,揭示错那裂谷的精细地壳结构,进而通过地壳结构分析裂谷的形成。结果显示错那裂谷为全地壳尺度结构,裂谷下方莫霍面发生明显错断,且壳内结构侧向不连续发育显著。本研究表明裂谷的形成可能关联更大尺度的区域构造运动,单一的重力垮塌是否能形成地壳尺度的裂谷需要进一步研究。综合前人对藏南裂谷系区域的超钾岩和埃达克岩研究以及深部地球物理观测结果,推断因俯冲的印度板片撕裂导致软流圈物质上涌弱化了错那裂谷区域下地壳,并且结合研究区内喜马拉雅淡色花岗岩研究显示中上地壳也存在弱化现象。因此,结合本研究结果推测全地壳尺度裂谷的形成需要不同深度的地壳弱化。  相似文献   

19.
Seismicity along the Himalayan front is mostly attributed to the processes of collision between the Indian and the Eurasian plates resulting in the under-thrusting of the Indian Peninsula underneath the Himalaya. The dynamics of the region bears very complex components which require in-depth understanding. Here the overall rate of crustal shortening since ∼ 11 Ma is ∼ 21mm/yr, which is comparable to modern rate of under-thrusting of the northern Indian plate beneath the Himalaya. The region experienced a large number of great earthquakes for the last 100–120 years causing massive destruction. Here an attempt has been made to understand the seismicity pattern of the region using fractal correlation dimension and hence used for the detection of active seismicity. Some clusters of seismicity were found to be indicative of seismically very active zones. Such clusters may enlighten the understanding of recent complex dynamics of Himalayan zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号