首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 791 毫秒
1.
基于微生物或脲酶诱导碳酸钙沉淀(MICP/EICP)的土体固化技术是近年来岩土和地质工程领域的研究热点之一。在系统回顾基于生物诱导碳酸钙沉淀的土体固化技术发展历程的基础上,重点阐述了MICP/EICP固化机制、土体孔隙结构、菌液和脲酶性质、胶凝液性质和固化方式等方面对碳酸钙特性影响的研究进展。研究结果表明:土体孔隙越小,越不利于微生物或脲酶入渗,固化均匀性越差;土颗粒接触点越多,可为碳酸钙提供的沉积点位越多,碳酸钙与土颗粒间的黏结和桥接作用越强,固化效果越好;一定菌液或脲酶浓度或脲酶活性范围内,碳酸钙的生成速率和生成总量随浓度及活性的增大而增大,但过高的浓度或活性易导致碳酸钙生成速率过快,从而在土体注入端发生堵塞;低浓度胶凝液得到的碳酸钙晶体更小,在土体中的分布更均匀;采用合适的注浆饱和度可提高具有黏结作用的碳酸钙的占比;采用多层交替注入或单相低pH值注入可提高碳酸钙在试样中分布的均匀性。基于碳酸钙沉淀特性的影响因素,提高固化土体的均匀性,验证其耐久性,室内试验结果在现场尺度的适应性和改进方案应该成为以后研究的重点。  相似文献   

2.
微生物矿化是近年来在土体改良工程发展起来的一个新分支,主要研究微生物活性在改善土体颗粒特性方面的应用。微生物诱导碳酸盐沉积(MICP)是实现土体生物胶结最常用的方法之一,该技术借助脲酶菌的代谢行为诱导碳酸钙,将松散的砂颗粒胶结成整体,从而提高了土体的力学性能。文章系统性地介绍了MICP研究中的脲酶菌矿化机理、相关处理方法、影响因素、衍生新工艺脲酶诱导碳酸盐沉积EICP及MICP技术在岩土领域的相关现场试验,并对MICP的实用性进行了总结,最后简要讨论了现研究阶段MICP工程应用所面临的挑战和潜在解决方案。  相似文献   

3.
从南方湿热区自然环境中分离得到一株产脲酶矿化菌,并将其高产突变株应用到海砂室内MICP灌浆试验,结合扫描电子显微镜(SEM)、能谱仪(EDS)、拉曼(Raman)对固化后的产物进行细观形貌观测。通过分析碳酸钙的形貌、尺寸、空间分布、结晶状态等基本特征现象,初步探究南方湿热区产脲酶菌在碳酸钙结晶生长方面的调控作用及其固化土体的作用效果。结果表明:南方湿热区产脲酶菌固化土体具有可行性,但碳酸钙晶体形貌并不均一,晶体晶化过程、生物调控作用及土体结构均会对碳酸钙的生成情况造成影响;碳酸钙从无序到有序、分散到聚集、不稳定到稳定,最终生长聚集为完整的结构,在生长空间充足的环境下,碳酸钙更倾向于形成聚集体。研究结论可为进一步研究不同产脲酶菌诱导碳酸钙沉淀的作用过程与调控机制提供借鉴与参考。  相似文献   

4.
通过酶诱导生成碳酸钙沉淀来改良土壤的技术被称为EICP,由于其应用广泛,在过去十多年来引起了越来越多的关注。文章从EICP的机理出发,总结植物脲酶和细菌脲酶的提取方法,探究脲酶、钙源、尿素、脱脂奶粉、温度和pH等因素对EICP胶结效果的影响,归纳检测EICP加固试样的强度、碳酸钙含量、微观结构和成分的方法,并对EICP在岩土工程的应用进行总结与评述。目的是展示目前国内外关于EICP的研究现状,展望未来的研究方向及需要克服的问题。  相似文献   

5.
崔猛  符晓  郑俊杰  吕苏颖  熊辉辉  曾晨  韩尚宇 《岩土力学》2022,43(11):3027-3035
植物源脲酶诱导碳酸钙沉淀(enzyme induced carbonate precipitation,简称EICP)可以显著改善砂土的工程力学特性,但在具体操作时,参数取值无对应规范,固化效果有待提升。基于黄豆脲酶,研究了温度、脲酶浓度、尿素浓度、钙浓度、pH值、钙源种类等变量对脲酶活性与碳酸钙沉淀的影响,并进行了沉淀物(碳酸钙晶体)的扫描式电子显微镜(scanning electron microscope,简称SEM)与X射线衍射(X-ray diffraction,简称XRD)测试,在此基础上开展了黄豆脲酶固化砂的无侧限抗压强度与固化效果试验研究。结果表明:脲酶活性随脲酶浓度的增加而线性增长,但存在温度阈值,温度超过阈值后,脲酶将完全失活,且阈值随脲酶浓度的增大而降低;尿素浓度与pH值共同影响脲酶活性,二者存在一个最优组合,当尿素浓度在0.1~1.0 mol/L时最优pH值为7,当尿素浓度在1.0~1.5 mol/L时最优pH值为8。脲酶是沉淀反应的催化剂,脲酶浓度越高,反应越完全,碳酸钙沉淀率越高;尿素与钙溶液则主要通过掺入量影响碳酸钙沉淀量,掺量比例宜为1:1,且二者浓度与pH值可通过影响脲酶活性来影响碳酸钙的沉淀情况;不同钙源对碳酸钙沉淀量的影响幅度不大。不同钙源沉淀碳酸钙晶体的成分与密度基本相同,但晶体结构差异较大,氯化钙沉淀碳酸钙晶体以块状为主,表面分布球状、类球状晶体,胶结面大,可作为EICP技术中较为理想的钙源。基于黄豆脲酶和氯化钙钙源固化砂的无侧限抗压强度约为掺粉煤灰砂样的6倍,通过SEM图像可发现,沉淀碳酸钙晶体包裹并黏结砂粒成为整体,固化效果非常理想。  相似文献   

6.
MICP技术可以通过生成的碳酸钙将松散土颗粒胶结为具有一定强度的结石体,而碳酸钙的形貌、尺寸、晶型等均会直接影响到碳酸钙的自身性能及其在土体中的填充、胶结作用效果,继而影响固化土体的力学性能。在MICP加固不良土体相关研究的基础上,将从南方湿热地区土壤中分离得到的产脲酶细菌的突变株YB7应用至4种土的MICP室内灌浆试验,并结合扫描电子显微镜、能谱仪对比分析了各试样中碳酸钙的结晶现象,最后对突变菌YB7的灌浆试样开展直剪及单轴压缩试验,结合宏观力学特性与碳酸钙的细观生长特征分析,系统研究了该细菌加固土体的作用效应。结果表明:南方湿热区新型产脲酶菌加固不良土体具有可行性,但土体结构会对碳酸钙的生成情况造成影响,颗粒级配、矿物形貌适宜的土体中碳酸钙的生成效果更好,相应灌浆试样的胶结效果也更好。试样的力学性能受土的结构、碳酸钙的生长情况以及碳酸钙与土颗粒间的胶结效果共同影响。研究成果可为该技术的进一步推广应用提供研究基础。  相似文献   

7.
文章对近年来基于生物固土技术的防风固沙研究进行了回顾和分析。常用于防风固沙的生物过程包括基于微生物或酶诱导碳酸钙沉积(MICP或EICP)的矿化固土技术,加入黄原胶等生物高聚物作为辅助剂,可获得更好的固土效果。土壤风蚀过程中,除了风力本身,风携带的跃移颗粒对土的撞击,也是侵蚀破坏的重要因素,这在生物固化土风蚀试验中体现明显。生物固化防风固沙的处理过程简单易行,以尿素和钙盐作为处理材料,用细菌或脲酶作为催化诱导媒介,对土体进行单遍喷洒处理即可获得很好的抗风效果。室内抗风试验中,将风蚀速率与临界起动风速两个指标结合是较为合理的评估方法。在室内和现场条件下,表面贯入强度测试可用来快速测定处理效果和抗风性能。目前的现场试验研究表明,生物固化土中植物可以生长,但是极端条件下生长受限。为了将该方法推向实用,需要从多重侵蚀因子作用下的抗风力侵蚀能力、生态恢复能力和现场施工技术等方面进一步研究探索。  相似文献   

8.
微生物诱导碳酸钙沉积(MICP)作用是一种新型的土体改良技术。钙源作为MICP反应中重要的反应物,对微生物诱导碳酸钙沉积的效果有重要的影响。目前应用最广泛的钙源——氯化钙(CaCl2),具有成本高,环境污染性大的缺点。为此,文章提出利用石灰石粉提取钙源,通过在石灰石粉中加入乙酸溶液,释放钙离子用于微生物固化土体。通过开展无侧限抗压强度试验以及微观结构的扫描电镜观测、碳酸钙含量测定等分析,验证利用石灰石粉提取的钙源用于微生物诱导碳酸钙沉积作用固化土体的可行性,同时与醋酸钙和氯化钙固化砂柱进行了对比分析。研究结果表明:(1)石灰石粉用于微生物固化土体具有可行性,固化后砂柱的强度和碳酸钙含量较高,结构完整性高;(2)不同钙源固化砂柱的力学特性不同但均呈典型的脆性破坏模式,其中醋酸钙固化砂柱的无侧限抗压强度略高于石灰石钙源固化砂柱,氯化钙固化砂柱的无侧限抗压强度则远低于前两者且表面更加粗糙,孔隙更多,破坏后的完整性更低;(3)不同钙源固化砂柱的碳酸钙含量不同。醋酸钙和石灰石钙源固化砂柱的碳酸钙含量相近,而氯化钙固化砂柱中碳酸钙含量较低。不同钙源固化砂柱的碳酸钙含量和无侧限抗压强度基本呈正相关关系;(4)醋酸钙和石灰石钙源固化砂柱中砂土颗粒的表面和接触点间均沉积大量碳酸钙,碳酸钙晶体主要为薄片状堆叠的方解石。氯化钙固化砂柱中碳酸钙沉积量低于前两者,碳酸钙晶体主要为六面体状的方解石;(5)不同钙源主要通过影响微生物成矿过程的晶型、晶貌、晶体含量、晶体分布及胶结特征来改变固化效果。  相似文献   

9.
活性炭固定微生物固化贵阳红黏土力学特性   总被引:2,自引:0,他引:2  
杨恒  陈筠  白文胜  高彬  施鹏超 《中国岩溶》2019,38(4):619-626
微生物能够固化土体,但是在固化强度上还有待提高。为了增强微生物固化土体的力学特性,文章提出固定化微生物技术与微生物诱导碳酸钙沉淀技术(MICP)相结合的方法,即将掺量为0、4%、7%、10%、15%的活性炭与重塑红黏土均匀混合后,再通过MICP固化土体后进行常规三轴压缩试验,同时进行相同条件下在菌液瓶中有无胶结液与活性炭的生成碳酸钙的对比试验、有无活性炭重塑红黏土的常规三轴压缩对比试验。通过扫描电镜分析,得到试样的力学特性、活性炭在MICP过程中的作用、微观结构等试验结果。试验结果表明:在微生物固化土体过程中,活性炭作为固定微生物的载体,在MICP过程中对微生物起到“增效”的作用,在微生物诱导碳酸钙沉淀过程中提高了碳酸钙产量;同时,活性炭的有无及含量多少对微生物固化土体有重要影响,结合水膜厚度改变、碳酸钙填充孔隙及胶结作用使得红黏土抗剪强度有效C值大幅增加,有效φ值减小,剪应力峰值增加;加入活性炭使生物矿化环境得到优化,并在碳酸钙结晶时对晶体结构、形态产生了一定的控制作用,生成了以活性炭为“核心”具有一定结构的块体,而使土体的力学特性增强。该研究成果对微生物岩土技术以及工程应用具有重要价值。   相似文献   

10.
微生物固化(microbial-induced calcite precipitation, 简称为MICP)技术是岩土工程领域新兴起的一种地基处理技术,利用微生物诱导产生的碳酸钙晶体胶结松散土颗粒,改善土体的力学特性。选用巴氏芽孢杆菌作为固化细菌,采用单一浓度(0.5、1.0 mol)和多浓度相结合(前期采用0.5 mol,后期采用1.0 mol)的化学处理方式注射胶结液(尿素/氯化钙混合液),研究化学处理方式对微生物固化砂土强度的影响。基于试验测试分析了固化砂土试样的强度、破坏模式以及碳酸钙含量。试验结果表明,化学处理方式对固化砂土试样的强度有显著影响,对破坏模式和碳酸钙含量无明显影响;多浓度相结合的化学处理方式能够以较少的灌浆次数获取较高强度的试样。最后,对化学处理方式对强度影响的机制进行深入分析。  相似文献   

11.
Cui  Ming-Juan  Lai  Han-Jiang  Hoang  Tung  Chu  Jian 《Acta Geotechnica》2021,16(2):481-489

Enzyme induced carbonate precipitation (EICP) is an emerging soil improvement method using free urease enzyme for urea hydrolysis. This method has advantages over the commonly used microbially induced carbonate precipitation (MICP) process as it does not involve issues related to bio-safety. However, in terms of efficiency of calcium carbonate production, EICP is considered lower than that of MICP. In this paper, a high efficiency EICP method is proposed. The key of this new method is to adopt a one-phase injection of low pH solution strategy. In this so-called one-phase-low-pH method, EICP solution consisting of a mixture of urease solution of pH?=?6.5, urea and calcium chloride is injected into soil. The test results have shown that the one-phase-low-pH method can improve significantly the calcium conversion efficiency and the uniformity of calcium carbonate distribution in the sand samples as compared with the conventional two-phase EICP method. Furthermore, the unconfined compressive strength of sand treated using the one-phase-low-pH method is much higher than that using the two-phase method and the one-phase-low-pH method is also simpler and more efficient as it involves less number of injections.

  相似文献   

12.
我国黄土地区的水土流失和地质灾害问题异常严重,这主要与黄土较差的工程地质性质有关。提出采用微生物诱导碳酸钙沉积(MICP)技术对黄土进行改性处理,以改善其力学性质。采用喷洒法的方式将制备好的微生物菌液和胶结液依次喷洒在土样表面进行MICP处理,基于贯入试验和碳酸钙含量测定试验,分析不同MICP胶结轮次(3次、5次、7次)和胶结液浓度(0.5 M、1 M、1.5 M)对MICP胶结土样结构强度和碳酸钙含量的影响。结果表明:(1)MICP技术能显著提高黄土的结构强度,并在黄土表面形成一层高强度的硬化壳;(2)随着胶结轮次增加,土体的硬化壳强度和厚度、内部强度逐渐增大,碳酸钙含量也随之增高;(3)胶结液浓度对MICP改性效果影响显著,1.0 M胶结液浓度的处理效果最好,其表层结构强度最高可达600 kPa,内部完整性好,1.5 M的次之,仅在表面形成较薄的硬化壳,内部强度低,0.5 M胶结液浓度处理的土体力学性质改良不明显;(4)MICP改善黄土结构强度的作用机理主要是微生物诱导生成的碳酸钙胶结土颗粒,极大提升土颗粒之间的联接强度,从而显著改善土体的力学特性。  相似文献   

13.
微生物诱导碳酸钙沉积(MICP)是一种绿色低碳的新型土体改性技术.该技术当前主要适用于渗透性较好的砂土,普遍使用两相处理方法,即菌液和胶结液分开施用.然而,对于渗透性相对较差的黏性土,传统的两相处理方法难以适用.为此,引入新的单相胶结方法,即菌液和胶结液混合施用,通过调节溶液的初始pH值为细菌水解作用提供窗口期,避免微生物絮凝阻塞孔隙,使混合液均匀分布于土体一定深度范围内,从而达到显著提升胶结效果的目的.利用喷洒法将混合液喷洒至土体表层进行MICP处理,处理完成后使用超微型贯入仪SMP-1测试土体表层不同深度处的结构强度,分析土体力学特性的空间差异,对土体的胶结效果进行定量评价.此外,探究了胶结液浓度(0.2M、0.5M和1.0M)及胶结方法(调节pH与否)对于土体结构强度及MICP改性效果的影响.结果表明:采用单相MICP技术对黏性土进行改性,能够显著提高其结构强度,具有较好的适用性;在不高于1.0 M的胶结液浓度范围内,黏性土的胶结效果随着胶结液浓度增加而提升;相比较而言,调节pH的单相胶结方法对于提升土体胶结的深度和均匀性有明显积极作用.新型单相MICP技术简单易行,能够节约成本,在黏性土表层加固方面具有潜在推广应用价值.  相似文献   

14.
崔明娟  郑俊杰  赖汉江 《岩土力学》2016,37(Z2):397-402
微生物固化技术(MICP)是岩土工程领域新兴起的一种不良地基处理技术,不同地基土体之间的颗粒粒径并不相同,其固化效果也可能存在一定差别。选用3种不同颗粒粒径范围的砂土进行微生物固化处理,并基于无侧限抗压强度试验、孔隙体积测量和洗酸处理,从宏观角度分析颗粒粒径对微生物固化效果的影响。结合扫描电镜测试,从细观角度对微生物固化机制进行了初探。研究结果表明,微生物固化砂土中碳酸钙晶体以颗粒簇形式堆积在砂土颗粒表面及颗粒间接触处,其尺寸随碳酸钙晶体堆叠程度的增加而增大;对于颗粒粒径较小的砂土,颗粒间孔隙较易被碳酸钙晶体填充密实,固化试样内有效碳酸钙晶体比例较大,“结构性”较强,无侧限抗压强度较高。  相似文献   

15.
原鹏博  朱磊  钟秀梅  董兰凤  谌文武 《岩土力学》2022,43(12):3385-3392
中国西北地区地震频发,土遗址长期受到地震活动的不利影响。为了研究酶诱导碳酸钙沉淀技术(EICP)加固遗址土的动力特性,对1.55、1.65、1.75 g/cm3这3种初始干密度的遗址土进行EICP处理,并设置未经EICP处理的对照组。开展了不同围压、振动频率下的动三轴试验。结果表明:在相同动应力作用下,相比对照组,试验组的动应变更小,耗散的能量更少,阻尼比更小;在EICP加固后,随着干密度、围压、振动频率增大,可以降低动应变的产生,但这种效果依次减弱。动本构关系符合Hardin模型,干密度、围压、振动频率对模型参数a(动弹性模量)的影响程度逐渐减小;微观分析发现,EICP加固后,碳酸钙沉淀在土颗粒表面附着,填充孔隙,并与土颗粒相互胶结成致密结构,土体结构强度增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号