首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The 182Hf-182W systematics of meteoritic and planetary samples provide firm constraints on the chronology of the accretion and earliest evolution of asteroids and terrestrial planets and lead to the following succession and duration of events in the earliest solar system. Formation of Ca,Al-rich inclusions (CAIs) at 4568.3 ± 0.7 Ma was followed by the accretion and differentiation of the parent bodies of some magmatic iron meteorites within less than ∼1 Myr. Chondrules from H chondrites formed 1.7 ± 0.7 Myr after CAIs, about contemporaneously with chondrules from L and LL chondrites as shown by their 26Al-26Mg ages. Some magmatism on the parent bodies of angrites, eucrites, and mesosiderites started as soon as ∼3 Myr after CAI formation and may have continued until ∼10 Myr. A similar timescale is obtained for the high-temperature metamorphic evolution of the H chondrite parent body. Thermal modeling combined with these age constraints reveals that the different thermal histories of meteorite parent bodies primarily reflect their initial abundance of 26Al, which is determined by their accretion age. Impact-related processes were important in the subsequent evolution of asteroids but do not appear to have induced large-scale melting. For instance, Hf-W ages for eucrite metals postdate CAI formation by ∼20 Myr and may reflect impact-triggered thermal metamorphism in the crust of the eucrite parent body. Likewise, the Hf-W systematics of some non-magmatic iron meteorites were modified by impact-related processes but the timing of this event(s) remains poorly constrained.The strong fractionation of lithophile Hf from siderophile W during core formation makes the Hf-W system an ideal chronometer for this major differentiation event. However, for larger planets such as the terrestrial planets the calculated Hf-W ages are particularly sensitive to the occurrence of large impacts, the degree to which impactor cores re-equilibrated with the target mantle during large collisions, and changes in the metal-silicate partition coefficients of W due to changing fO2 in differentiating planetary bodies. Calculated core formation ages for Mars range from 0 to 20 Myr after CAI formation and currently cannot distinguish between scenarios where Mars formed by runaway growth and where its formation was more protracted. Tungsten model ages for core formation in Earth range from ∼30 Myr to >100 Myr after CAIs and hence do not provide a unique age for the formation of Earth. However, the identical 182W/184W ratios of the lunar and terrestrial mantles provide powerful evidence that the Moon-forming giant impact and the final stage of Earth’s core formation occurred after extinction of 182Hf (i.e., more than ∼50 Myr after CAIs), unless the Hf/W ratios of the bulk silicate Moon and Earth are identical to within less than ∼10%. Furthermore, the identical 182W/184W of the lunar and terrestrial mantles is difficult to explain unless either the Moon consists predominantly of terrestrial material or the W in the proto-lunar magma disk isotopically equilibrated with the Earth’s mantle.Hafnium-tungsten chronometry also provides constraints on the duration of magma ocean solidification in terrestrial planets. Variations in the 182W/184W ratios of martian meteorites reflect an early differentiation of the martian mantle during the effective lifetime of 182Hf. In contrast, no 182W variations exist in the lunar mantle, demonstrating magma ocean solidification later than ∼60 Myr, in agreement with 147Sm-143Nd ages for ferroan anorthosites. The Moon-forming giant impact most likely erased any evidence of a prior differentiation of Earth’s mantle, consistent with a 146Sm-142Nd age of 50-200 Myr for the earliest differentiation of Earth’s mantle. However, the Hf-W chronology of the formation of Earth’s core and the Moon-forming impact is difficult to reconcile with the preservation of 146Sm-142Nd evidence for an early (<30 Myr after CAIs) differentiation of a chondritic Earth’s mantle. Instead, the combined 182W-142Nd evidence suggests that bulk Earth may have superchondritic Sm/Nd and Hf/W ratios, in which case formation of its core must have terminated more than ∼42 Myr after formation of CAIs, consistent with the Hf-W age for the formation of the Moon.  相似文献   

2.
3.
Fragments of aluminous enstatite from lunar meteorites of highland origin were investigated. It was found that such fragments usually occur in impact breccias of troctolitic composition. The aluminous enstatite contains up to 12 wt % Al2O3 and shows low CaO (<1 wt %) and almost constant high Mg/(Mg + Fe) ratio (89.5 ± 1.4 at %) identical to that of the Earth’s mantle. With respect to these parameters, the aluminous enstatites are distinctly different from common orthopyroxene of lunar rocks. The aluminous enstatite associates with spinel (pleonaste), olivine, anorthite (clinopyroxene was never found), and accessory minerals: rutile, Ti-Zr oxides, troilite, and Fe-Ni metal. The same assemblage was described in rare fragments of spinel cataclasites from the samples of the Apollo missions. Thermobarometry and the analysis of phase equilibria showed that the rocks hosting aluminous enstatite are of deep origin and occurred at depths from 25 km to 130–200 km at T from 800 to 1300°C, i.e., at least in the lower crust and, possibly, in the upper mantle of the Moon. These rocks could form individual plutons or dominate the composition of the lower crust. The most probable source of aluminous enstatite is troctolitic magnesian rocks and, especially, spinel troctolites with low Ca/Al and Ca/Si ratios. The decompression of such rocks must produce cordierite-bearing assemblages. The almost complete absence of such assemblages in the surficial rocks of lunar highlands implies that vertical tectonic movements were practically absent in the lunar crust. The transport of deep-seated materials to the lunar surface was probably related to impact events during the intense meteorite bombardments >3.9 Ga ago.  相似文献   

4.
The history of the solar system is locked within the planets, asteroids and other objects that orbit the Sun. While remote observations of these celestial bodies are essential for understanding planetary processes, much of the geological and geochemical information regarding solar system heritage comes directly from the study of rocks and other materials originating from them. The diversity of materials available for study from planetary bodies largely comes from meteorites; fragments of rock that fall through Earth's atmosphere after impact‐extraction from their parent planet or asteroid. These extra‐terrestrial objects are fundamental scientific materials, providing information on past conditions within planets, and on their surfaces, and revealing the timing of key events that affected a planet's evolution. Meteorites can be sub‐divided into four main groups: (1) chondrites, which are unmelted and variably metamorphosed ‘cosmic sediments’ composed of particles that made up the early solar nebula; (2) achondrites, which represent predominantly silicate materials from asteroids and planets that have partially to fully melted, from a broadly chondritic initial composition; (3) iron meteorites, which represent Fe‐Ni samples from the cores of asteroids and planetesimals; and (4) stony‐iron meteorites such as pallasites and mesosiderites, which are mixtures of metal and dominantly basaltic materials. Meteorite studies are rapidly expanding our understanding of how the solar system formed and when and how key events such as planetary accretion and differentiation occurred. Together with a burgeoning collection of classified meteorites, these scientific advances herald an unprecedented period of further scientific challenges and discoveries, an exciting prospect for understanding our origins.  相似文献   

5.
In three brecciated meteorites, Bencubbin, Cumberland Falls and Plainview, the oxygen isotopic compositions of different rock types within each meteorite were determined to seek genetic relationships between them. In all cases the isotopic compositions are not consistent with derivation from a single parent body. There is no evidence that chondrites and achondrites could be derived from a common parent body. The chondritic inclusions in Bencubbin and Cumberland Falls cannot be identified with any of the ordinary chondritic meteorites. The carbonaceous chondritic fragments in Bencubbin are smilar to, but not identical with, C2 meteorites. The achondritic portion of Bencubbin has a very unusual isotopic composition, which, along with its close relative Weatherford, sets it in a class distinctly apart from other achondrites. Lithic fragments in brecciated meteorites provide a wider range of rock types than is represented by known macroscopic meteorites. Collisions between some meteorite parent bodies were of sufficiently low velocity that fragments of both are preserved in breccias.  相似文献   

6.
We evaluate the potential of a hand‐held energy dispersive XRF spectrometer for the preliminary classification of non‐chondritic differentiated meteorites. The studied achondrites include nine lunar meteorites, seventeen Martian meteorites, five angrites and eighteen meteorites from asteroid 4 Vesta. Analytical precision and accuracy was tested on thirty‐nine terrestrial igneous rock slabs with a wide range of composition. Replicate analyses, performed on the studied meteorites, show that Fe/Mn values together with Si and Ca/K ratio can be used in the discrimination of different achondrite groups. Fusion crust's Fe/Mn values of meteorites from Vesta and Mars are indistinguishable from those of the interior implying that even measurements on the fusion‐crusted external surface could be sufficient to pigeonhole non‐chondritic meteorites. Hand‐held energy dispersive XRF spectrometer is a non‐destructive but very effective technique for preliminary classification of achondrites in the field and in laboratory and for the identification of mislabelled meteorites in museum collections.  相似文献   

7.
Genetic types of diamond mineralization   总被引:1,自引:0,他引:1  
The paper describes the proposed models of diamond formation both in meteorites and in kimberlite and lamproite bodies, metamorphic complexes and explosive-ring structures (“astroblemes”). The diamond distribution in meteorites (chondrites, iron meteorites and ureilites) is restricted to taenite-kamasite phase. The diamond generation here is tied up with the first stage of evolution of the planets. This stage is characterized by high pressure of hydrogen, leading to the formation of the planet envelope. The second stage of planet evolution began with the progressive impoverishment of their atmospheres in hydrogen due to its predominant emission into the space and to progressive development of oxidative conditions. The model appears to have proved the relict nature of diamond mineralization in meteorites. Diamond and other high-pressure minerals (its “satellites”) were crystallized without any exception in the early intratelluric stages of peridotite and eclogite-pyroxenite magma evolution just before the magma intrusion into the higher levels of the mantle and crust where diamond is not thermodynamically stable. The ultramafic intrusive bodies (bearing rich relict diamonds) in the base of a platform appear to be the substrata for the formation of kimberlite-lamproite magma chambers as a result of magmatic replacement. The model explains the polyfacial nature of diamondiferous eclogites, pyroxenites and peridotites and discusses the process of inheritance of their diamond mineralization by kimberlites and lamproites. Diamond productivity of metamorphic complexes is originated by the inheritance of their diamonds from the above-mentioned primary diamondiferous rocks. Large diamondiferous explosive-ring structures were formed by high-energy endogenic explosions of fluid which came from the Earth’s core. This high energy differs endogenic impactogenesis from explosive volcanism. It proceeds at very high temperature to create diaplectic glasses (monomineral pseudomorphs) —the product of isochoric melting, at the pressure high enough for the stable formation of very high-density minerals (coesite, stishovite, diamond, lonsdaleit, and chaoite). The research project was financially supported by the Russian Foundation of Fundamental Sciences (93-05-8566, 96-05-64307, and 96-05-00026c0) and China National Natural Science Foundation (No.49794041, No.49611121831).  相似文献   

8.
The evolution of terrestrial planets (the Earth, Venus, Mars, Mercury, and Moon) was proved to have proceeded according to similar scenarios. The primordial crusts of the Earth, Moon, and, perhaps, other terrestrial planets started to develop during the solidification of their global magmatic “oceans”, a process that propagated from below upward due to the difference in the adiabatic gradient and the melting point gradient. Consequently, the lowest melting components were “forced” toward the surfaces of the planets in the process of crystallization differentiation. These primordial crusts are preserved within ancient continents and have largely predetermined their inner structure and composition. Early tectono-magmatic activity at terrestrial planets was related to the ascent of mantle plumes of the first generation, which consisted of mantle material depleted during the development of the primordial crusts. Intermediate evolutionary stages of the Earth, Moon, and other terrestrial planets were marked by an irreversible change related to the origin of the liquid essentially iron cores of these planets. This process induced the ascent of mantle superplumes of the second generation (thermochemical), whose material was enriched in Fe, Ti, incompatible elements, and fluid components. The heads of these superplumes spread laterally at shallower depths and triggered significant transformations of the upper shells of the planets and the gradual replacement of their primordial crusts of continental type by secondary basaltic crusts. The change in the character of the tectono-magmatic activity was associated with modifications in the environment at the surface of the Earth, Mars, and Venus. The origin of thermochemical mantle plumes testifies that the tectono-magmatic process involved then material of principally different type, which had been previously “conserved” at deep portions of the planets. This was possible only if (1) the planetary bodies initially had a heterogeneous inner structure (with an iron core and silicate mantle made up of chondritic material); and (2) the planetary bodies were heated from their peripheral toward central portions due to the passage of a “thermal wave”, with the simultaneous cooling of the outer shells. The examples of the Earth and Moon demonstrate that the passage of such a “wave” through the silicate mantles of the planets was associated with the generation of mantle plumes of the first generation. When the “wave” reached the cores, whose composition was close to the low-temperature Fe + FeS eutectic, these cores started to melt and gave rise to superplumes of the second generation. The “waves” are thought to have been induced by the acceleration of the rotation of these newly formed planets due to the decrease of their radii because of the compaction of their material. When this process was completed, the rotation of the planets stabilized, and the planets entered their second evolutionary stage. It is demonstrated that terrestrial planets are spontaneously evolving systems, whose evolution was accompanied by the irreversible changes in their tectono-magmatic processes. The evolution of most of these planets (except the Earth) is now completed, so that they “dead” planetary bodies.  相似文献   

9.
The highly siderophile elements (HSE) pose a challenge for planetary geochemistry. They are normally strongly partitioned into metal relative to silicate. Consequently, planetary core segregation might be expected to essentially quantitatively remove these elements from planetary mantles. Yet the abundances of these elements estimated for Earth's primitive upper mantle (PUM) and the martian mantle are broadly similar, and only about 200 times lower than those of chondritic meteorites. In contrast, although problematic to estimate, abundances in the lunar mantle may be more than twenty times lower than in the terrestrial PUM. The generally chondritic Os isotopic compositions estimated for the terrestrial, lunar and martian mantles require that their long-term Re/Os ratios were within the range of chondritic meteorites. Further, most HSE in the terrestrial PUM also appear to be present in chondritic relative abundances, although Ru/Ir and Pd/Ir ratios are slightly suprachondritic. Similarly suprachondritic Ru/Ir and Pd/Ir ratios have also been reported for some lunar impact melt breccias that were created via large basin forming events.Numerous hypotheses have been proposed to account for the HSE present in Earth's mantle. These hypotheses include inefficient core formation, lowered metal-silicate D values resulting from metal segregation at elevated temperatures and pressures (as may occur at the base of a deep magma ocean), and late accretion of materials with chondritic bulk compositions after the cessation of core segregation. Synthesis of the large database now available for HSE in the terrestrial mantle, lunar samples, and martian meteorites reveals that each of the main hypotheses has flaws. Most difficult to explain is the similarity between HSE in the Earth's PUM and estimates for the martian mantle, coupled with the striking differences between the PUM and estimates for the lunar mantle. More complex, hybrid models that may include aspects of inefficient core formation, HSE partitioning at elevated temperatures and pressures, and late accretion may ultimately be necessary to account for all of the observed HSE characteristics. Participation of aspects of each process may not be surprising as it is difficult to envision the growth of a planet, like Earth, without the involvement of each.  相似文献   

10.
Extension of remote sensing of planetary bodies to the ultraviolet is now feasiable up to 2000 Å from earth-orbiting telescopes and spacecraft. The benefits of this extension is analysed on the basis of laboratory spectra taken on a large variety of terrestrial, lunar and meteoritic samples. Knowledge of the albedo for two wavelengths at 2300 and 6500 Å permits classification of a surface into one of the following types: lunar, carbonaceous chondrites, ordinary chondrites, achondrites or acidic rocks, basaltic rocks, irons. For lunar-type surfaces, a simple albedo measurement at 6500 Å can be converted into quantitative abundance determinations of silicate, aluminium oxide and iron; a large amount of telescopic lunar photometry data is available for mapping these abundances. Extension of the photometry to 2300 Å permits quantitative measurement of TiO2 abundances. For asteroids and non-icy satellites, rock-type classification and constraints in chemical abundances of Si, Al, Fe and Ti can be derived from photometry at 2300 and 6500 Å. The IUE telescope already orbiting the earth, the Space Telescope to come, the lunar polar orbiter and other spacecraft under prospect are potentially available to provide the photometric observations at 6500 and 2300 Å required.  相似文献   

11.
Re-Os同位素体系是理解月球强亲铁元素的分布规律和示踪月球的后期增生历史的重要手段。目前人们对月球物质Re-Os同位素成分的了解还是十分有限的,已有的Re-Os同位素数据显示一些能代表月幔成分特征的月海玄武岩具有很低的Re和Os的浓度,以及类似于球粒陨石的187Os/188Os成分特征,而月球火山玻璃和月壤等表现出相对高的Re-Os丰度和相对富放射成因Re-Os同位素成分。一般认为月球月幔的Re、0s和其他强亲铁元素相对球粒陨石是非常亏损的,而地球地幔则具有相对较高的强亲铁元素丰度(0.008倍CI球粒陨石的丰度)。新的Re-Os同位素结果证明月幔确实是亏损的,但是月球和地球在太阳系演化的较晚时期都有外来的球粒陨石物质的大量加入,即后期增生(late accretion)过程,导致了月球和地球上部物质(如月球火山玻璃、月壤等)相对地富集Os同位素和强亲铁元素,这些外来物质的后期增生可能是长期和持续的,增生过程主要发生在3.9~4.4Ga。但目前仍不清楚后期增生的陨石物质是被逐渐加入的,还是在一个相对较短的时期大量加入的,因此尚需对更多的月球物质做进一步的Re-Os同位素和强亲铁元素成分的研究。  相似文献   

12.
Bernard Bonin  Jean Bbien 《Lithos》2005,80(1-4):131-145
Granite formed in the terrestrial planets very soon after their accretion. The oldest granite-forming minerals (4.4 Ga zircon) and granite (4.0 Ga granodiorite) indicate conditions resembling the present-day ones, with the presence of oceans and external processes related to liquid water. As a result, the current granite paradigm states that granite is not issued directly from the melting of the mantle. However, a granite-upper mantle connection is well established from several pieces of evidence. Tiny micrometre- to millimetre-sized enclaves of granite-like glassy and crystalline materials in Earth's mantle rocks are known in oceanic and continental areas. Earth's mantle-forming minerals, such as olivine, pyroxene, and chromite, can contain silicic materials, either as glass inclusions or as crystallised products (quartz or tridymite, sanidine, K-feldspar, and/or plagioclase close to albite end-member). Importantly, the same evidence is amply found in some types of meteorites, whether they are primitive, such as ordinary chondrites, or differentiated, such as IIE irons, howardite–eucrite–diogenite (HED), and Martian shergottite–nakhlite–chassignite (SNC) achondrites. Although constituting apparently an anomaly, the granite-upper mantle connection can be reconciled with the current granite paradigm by recognising that the conditions prevailing in the formation of granite are not only necessarily crustal but can occur also at depths in mantle rocks. Unresolved problems to be explored further include whether tiny amounts of granitic material within terrestrial mantles may be hints of greater abundances and more direct mantle involvement, and what role can be played by granite trapped within the upper mantle in lithosphere buoyancy.  相似文献   

13.
Polarization and radiation measurements and microwave studies show that the planets and the great majority of asteroids in the solar system are covered by soils similar to regolith on the moon surface.The soils repesent the composition of the asteroids and the geological elements of the planets. The spectral reflectance shows a tendency of decreasing from near ultraviolet,visible to near-infrared in order of LL→L→H→H with increasing Fe^0/Fet rato and toward to absorption for Jilin,Xinyang and Zanoyang ordinary chondrites and Qinzhen enstatite chondrite recently fallen in China,The same chemical group of meteorites feature deeper absorption valleys with increasing metamorphic grade.The spectal reflectance of igneous rocks varies from strong to what is like that of H-group chondrites in order of acid→basic→ultrabasic rocks.  相似文献   

14.
Analysis of the Eu and Sr “anomalies” of eucrites and lunar rocks allows constraints to be placed on the bulk compositions of the eucrite parent body (EPB) and the Moon. The elements Al, REE, and Sr, all are essentially incompatible with the major minerals of these small, low-?(O2) bodies, except for plagioclase, into which Al, Sr, and Eu tend to concentrate. Therefore, the hypothesis that Al, REE, and Sr in the EPB and the Moon are all in proportions close to those in the bulk solar system (i.e., chondrites) leads to certain predictions about the concentrations of these elements in samples affected by plagioclase fractionation. The predictions are almost ideally fulfilled by eucrites and lunar samples. For the EPB, the ratios REEAl, SrAl, and SrREE are constrained to be probably within 10%, almost certainly within 20%, of the chondritic ratios. For the more complicated Moon, the constraints are less precise: REEAl is very probably within 25% of chondritic; SrAl and SrREE are probably within 35% of chondritic. These findings are proof that there is a strong similarity between the bulk compositions of the planets and the compositions of chondritic meteorites.The eucrites' Sm-Eu-Sr systematics are also valuable sources of constraints on the distribution coefficients for Eu and Sr into plagioclase, at low ?(O2). From the slope of data for noncumulate eucrites on a Eu-Sm plot, D(Eu,pl/liq) can be inferred to be 1.1?0.10.2. From the slope on a Sr-Sm plot, D(Sr,pl/liq)) can be inferred to be 1.5 ± 0.3. In the case of D(Eu), this is in excellent agreement with experimental data. In the case of D(Sr), the empirical result is probably more appropriate for eucritic systems than most experimental data, which, due to compositional effects, scatter widely.  相似文献   

15.
The Moon likely accreted from melt and vapor ejected during a cataclysmic collision between Proto-Earth and a Mars-sized impactor very early in solar system history. The identical W, O, K, and Cr isotope compositions between materials from the Earth and Moon require that the material from the two bodies were well-homogenized during the collision process. As such, the ancient isotopic signatures preserved in lunar samples provide constraints on the bulk composition of the Earth. Two recent studies to obtain high-precision 142Nd/144Nd ratios of lunar mare basalts yielded contrasting results. In one study, after correction of neutron fluence effects imparted to the Nd isotope compositions of the samples, the coupled 142Nd-143Nd systematics were interpreted to be consistent with a bulk Moon having a chondritic Sm/Nd ratio [Rankenburg K., Brandon A. D. and Neal C. R. (2006) Neodymium isotope evidence for a chondritic composition of the Moon. Science312, 1369-1372]. The other study found that their data on the same and similar lunar mare basalts were consistent with a bulk Moon having a superchondritic Sm/Nd ratio [Boyet M. and Carlson R. W. (2007) A highly depleted Moon or a non-magma origin for the lunar crust? Earth Planet. Sci. Lett.262, 505-516]. Delineating between these two potential scenarios has key ramifications for a comprehensive understanding of the formation and early evolution of the Moon and for constraining the types of materials available for accretion into large terrestrial planets such as Earth.To further examine this issue, the same six lunar mare basalt samples measured in Rankenburg et al. [Rankenburg K., Brandon A. D. and Neal C. R. (2006) Neodymium isotope evidence for a chondritic composition of the Moon. Science312, 1369-1372] were re-measured for high-precision Nd isotopes using a multidynamic routine with reproducible internal and external precisions to better than ±3 ppm (2σ) for 142Nd/144Nd ratios. The measurements were repeated in a distinct second analytical campaign to further test their reproducibility. Evaluation of accuracy and neutron fluence corrections indicates that the multidynamic Nd isotope measurements in this study and the 3 in Boyet and Carlson [Boyet M. and Carlson R. W. (2007) A highly depleted Moon or a non-magma origin for the lunar crust? Earth Planet. Sci. Lett.262, 505-516] are reproducible, while static measurements in the previous two studies show analytical artifacts and cannot be used at the resolution of 10 ppm to determine a bulk Moon with either chondritic or superchondritic Sm/Nd ratios. The multidynamic data are best explained by a bulk Moon with a superchondritic Sm/Nd ratio that is similar to the present-day average for depleted MORB. Hafnium isotope data were collected on the same aliquots measured for their 142Nd/144Nd isotope ratios in order to assess if the correlation line for 142Nd-143Nd systematics reflect mixing processes or times at which lunar mantle sources formed. Based on the combined 142Nd-143Nd-176Hf obtained we conclude that the 142Nd-143Nd correlation line measured in this study is best interpreted as an isochron with an age of 229+24−20Ma after the onset of nebular condensation. The uncertainties in the data permit the sources of these samples to have formed over a 44 Ma time interval. These new results for lunar mare basalts are thus consistent with a later Sm-Nd isotope closure time of their source regions than some recent studies have postulated, and a superchondritic bulk Sm/Nd ratio of the Moon and Earth. The superchondritic Sm/Nd signature was inherited from the materials that accreted to make up the Earth-Moon system. Although collisional erosion of crust from planetesimals is favored here to remove subchondritic Sm/Nd portions and drive the bulk of these bodies to superchondritic in composition, removal of explosive basalt material via gravitational escape from such bodies, or chondrule sorting in the inner solar system, may also explain the compositional features that deviate from average chondrites that make up the Earth-Moon system. This inferred superchondritic nature for the Earth similar to the modern convecting mantle means that there is no reason to invoke a missing, subchondritic reservoir to mass balance the Earth back to chondritic for Sm/Nd ratios. However, to account for the subchondritic Sm/Nd ratios of continental crust, a second superchondritic Sm/Nd mantle reservoir is required.  相似文献   

16.
The short-lived 182Hf-182W-isotope system is an ideal clock to trace core formation and accretion processes of planets. Planetary accretion and metal/silicate fractionation chronologies are calculated relative to the chondritic 182Hf-182W-isotope evolution. Here, we report new high-precision W-isotope data for the carbonaceous chondrite Allende that are much less radiogenic than previously reported and are in good agreement with published internal Hf-W chronometry of enstatite chondrites. If the W-isotope composition of terrestrial rocks, representing the bulk silicate Earth, is homogeneous and 2.24 ε182W units more radiogenic than that of the bulk Earth, metal/silicate differentiation of the Earth occurred very early. The new W-isotope data constrain the mean time of terrestrial core formation to 34 million years after the start of solar system accretion. Early terrestrial core formation implies rapid terrestrial accretion, thus permitting formation of the Moon by giant impact while 182Hf was still alive. This could explain why lunar W-isotopes are more radiogenic than the terrestrial value.  相似文献   

17.
We have compared RNAA analyses of 18 trace elements in 25 low-Ti lunar and 10 terrestrial oceanic basalts. According to Ringwood and Kesson, the abundance ratio in basalts for most of these elements approximates the ratio in the two planets.Volatiles (Ag, Bi, Br, Cd, In, Sb, Sn, Tl, Zn) are depleted in lunar basalts by a nearly constant factor of 0.026 ± 0.013, relative to terrestrial basalts. Given the differences in volatility among these elements, this constancy is not consistent with models that derive the Moon's volatiles from partial recondensation of the Earth's mantle or from partial degassing of a captured body. It is consistent with models that derive planetary volatiles from a thin veneer (or a residuum) of C-chondrite material; apparently the Moon received only 2.6% of the Earth's endowment of such material per unit mass.Chalcogens (Se and Te) have virtually constant and identical abundances in lunar and terrestrial basalts, probably reflecting saturation with Fe(S, Se, Te) in the source regions.Siderophiles show diverse trends. Ni is relatively abundant in lunar basalts (4 × 10?3 × Cl-chondrites), whereas Ir, Re, Ge, Au are depleted to 10?4?10?5× Cl. Except for Ir, these elements are consistently enriched in terrestrial basalts: Ni 3 × , Re 370 ×, Ge 330 × , Au 9 × . This difference apparently reflects the presence of nickel-iron phase in the lunar mantle, which sequesters these metals. On Earth, where such metal is absent, these elements partition into the crust to a greater degree. Though no lunar mantle rock is known, an analogue is provided by the siderophile-rich dunite 72417 (~0.1% metal) and the complementary, siderophile-poor troctolite 76535. The implied metal-siderophile distribution coefficients range from 104 to 106, and are consistent with available laboratory data.The evidence does not support the alternative explanation advanced by Ringwood—that Re was volatilized during the Moon's formation, and is an incompatible element (like La or W4+) in igneous processes. Re is much more depleted than elements of far greater volatility: (Re/U)Cl~- 4 × 10?6 vs (T1/U)Cl = 1.3 × 10?4, and Re does not correlate with La or other incompatibles.Heavy alkalis (K, Rb, Cs) show increasing depletion with atomic number. Cs/Rb ratios in lunar basalts, eucrites, and shergottites are 0.44, 0.36, and 0.65 × Cl, whereas the value for the bulk Earth is 0.15–0.26. These ratios fall within the range observed in LL and E6 chondrites. supporting the suggestion that the alkali depletion in planets, as in chondrites, was caused by localized remelting of nebular dust (= chondrule formation). Indeed, the small fractionation of K, Rb and Cs, despite their great differences in volatility, suggests that the planets, like the chondrites, formed from a mixture of depleted and undepleted material, not from a single, partially devolatilized material.  相似文献   

18.
The paper presents the first analyses of major and trace elements in 19 lunar meteorites newly found in Oman. These and literature data were used to assay the composition of highland, mare, and transitional (highland-mare interface) regions of the lunar surface. The databank used in the research comprises data on 44 meteorites weighing 11 kg in total, which likely represent 26 individual falls. Our data demonstrate that the lunar highland crust should be richer in Ca and Al but poorer in mafic and incompatible elements than it was thought based on studying lunar samples and the first orbital data. The Ir concentration in the highland crust and the analysis of lunar crater population suggest that most lunar impactites were formed by a single major impact event, which predetermined the geochemical characteristics of these rocks. Lunar mare regions should be dominated by low-Ti basalts, which are, however, enriched in LREEs compared to those sampled by lunar missions. The typical material of mare-highland interface zones can contain KREEP and magnesian VLT basalts. The composition of the lunar highland crust deduced from the chemistry of lunar meteorites does not contradict the model of the lunar magma ocean, but the average composition of lunar mare meteorites is inconsistent with this concept and suggests assimilation of KREEP material by basaltic magmas. The newly obtained evaluations of the composition of the highland crust confirm that the Moon can be enriched in refractory elements and depleted in volatile and siderophile elements.  相似文献   

19.
An Fe isotope study of ordinary chondrites   总被引:3,自引:0,他引:3  
The Fe isotope composition of ordinary chondrites and their constituent chondrules, metal and sulphide grains have been systematically investigated. Bulk chondrites fall within a restricted isotopic range of <0.2‰ δ56Fe, and chondrules define a larger range of >1‰ (−0.84‰ to 0.21‰ relative to the IRMM-14 Fe standard). Fe isotope compositions do not vary systematically with the very large differences in total Fe concentration, or oxidation state, of the H, L, and LL chondrite classes. Similarly, the Fe isotope compositions of chondrules do not appear to be determined by the H, L or LL classification of their host chondrite. This may support an origin of the three ordinary chondrite groups from variable accretion of identical Fe-bearing precursors.A close relationship between isotopic composition and redistribution of Fe during metamorphism on ordinary chondrite parent bodies was identified; the largest variations in chondrule compositions were found in chondrites of the lowest petrologic types. The clear link between element redistribution and isotopic composition has implications for many other non-traditional isotope systems (e.g. Mg, Si, Ca, Cr). Isotopic compositions of chondrules may also be determined by their melting history; porphyritic chondrules exhibit a wide range in isotope compositions whereas barred olivine and radial pyroxene chondrules are generally isotopically heavier than the ordinary chondrite mean. Very large chondrules preserve the greatest heterogeneity of Fe isotopes.The mean Fe isotope composition of bulk ordinary chondrites was found to be −0.06‰ (±0.12‰ 2 SD); this is isotopically lighter than the terrestrial mean composition and all other published non-chondritic meteorite suites e.g. lunar and Martian samples, eucrites, pallasites, and irons. Ordinary chondrites, though the most common meteorites found on Earth today, were not the sole building blocks of the terrestrial planets.  相似文献   

20.
The observed consistence of the composition of chondrules and the matrix in chondrites is explained by their origin as a result of chondrule-matrix splitting of the material of primitive (not layered) planets. According to the composition of chondrites, two main stages in the evolution of chondritic planets (silicate-metallic and olivine) are distinguished. Chondritic planets of the silicate-metallic stage were analogs of chondritic planets, whose layering resulted in the formation of the terrestrial planets. The iron-silicate evolution of chondritic matter is correlated with the evolution of carbon material in the following sequence: diamond ± moissanite → hydrocarbons → primitive organic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号