首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
长江安庆段河道演变及塌岸分析   总被引:5,自引:0,他引:5  
文章利用多时相航卫片遥感图像解译调查分析长江安庆段河道变迁及岸坡崩塌特征。根据解译调查长江安庆段从官洲往下游左岸崩岸不止,近年来,有加大之趋势;而安庆西郊一带则呈淤积态势;其下游马窝段则以崩岸为主,使左汊心滩淤长右移;鹅眉洲则不断崩退,变化趋势明显,应引起水利部门的重视。  相似文献   

2.
长江皖江段岸崩特征、形成机理及治理对策   总被引:2,自引:1,他引:1       下载免费PDF全文
文章根据遥感影像和野外调查,对长江皖江段的崩岸特征、崩岸形成条件和治理对策进行了研究。结果表明,崩岸基本特征是左岸(北岸)强于右岸(南岸)。右岸崩岸带总长为66.1km,占该江岸总长的16.30%,左岸崩岸总长130.0km,占该江岸总长的29.36%。左岸强崩岸段有15处,共长80.5km,占该岸崩岸长度的61.92%,右岸强崩岸段仅4处,共长32.9km,占该岸段崩岸长度的49.77%;强崩岸段主要发生在长江主河道强弯曲段的凹岸处,特别是顶冲部位,弱崩岸主要发生在河道微弯曲河道的凹岸;区内崩岸大多发生在分汊河段,尤其是弯曲型汊道。崩岸形成条件主要为岸坡岩性和水流因素。易发生崩岸的岩性是形成时代较新的砂层,随着干湿变化体积张缩性变化较大的粘土层和二元相结构的岩性组合(即上层是河漫滩相的细颗粒粘土和砂质粘土,下层为粗颗粒的细沙层)。导致崩岸发生的水流因素主要有主流的冲蚀作用、横向环流的掏蚀作用和水位的快速涨落波动变化。文章还提出了崩岸环境系统的概念,指在一定河段内影响崩岸发生的各种因素(如河型、洲滩分布、水文特性、河宽、水深、岸线形态、河岸地貌和岩性条件等)的空间配置,以及诸因素之间的相互联系、相互作用所构成的有机整体。根据崩岸环境系统认为,崩岸治理的对策是以崩岸环境系统为单元进行系统治理,以治崩与治淤相结合的整体治理,以固岸与河道治理相结合的综合治理。  相似文献   

3.
人类活动对我国海湾生态环境的影响日趋严重,作为海湾变化的重要表征—海湾岸线自然成为陆海相互作用研究的主要内容之一。本文以西部大开发的前沿—北部湾海湾岸线为对象,利用Landsat系列影像反演1991、2005及2010年北部湾1595km的大陆岸线;选择1991~2010年间北部湾北部变化强烈的40个岸段,分析岸线的冲淤变化。结果表明:北部湾海湾曲折岸线的固有属性已发生改变,岸线平直化趋势明显;海湾岸线冲淤交互存在,相对遮蔽的岸段岸线积极向海推进,年淤积速率为23m/a,无防护地带的岸线以侵蚀为主,年平均侵蚀速率为24m/a;在不同类型的海湾岸线中,生物海岸与砂质海岸表现为向陆蚀退,年平均侵蚀14m/a,淤泥质海岸为向海淤积,年平均淤积速率为9m/a,基岩海湾岸线变化不大。  相似文献   

4.
为研究近期荆江段崩岸过程及特点,利用实测水下地形图及固定断面资料,分析了三峡工程运用前后该河段平面及断面的形态变化过程。平面形态对比结果表明:2002-2013年荆江段多年平均崩退速率约为15.0 m/a,崩岸总长达42.3 km,左岸占59.2%;下荆江岸线崩长约为上荆江的2.2倍,且石首、调关及荆江门等河湾凸岸一侧受低含沙水流长期冲刷不断崩退,其岸线崩长约占下荆江崩岸总长的35.5%。断面形态对比结果显示:2002-2015年荆江段约有21%断面存在明显的崩岸现象,且近74%的崩岸断面位于下荆江。故近期荆江段崩岸分布规律主要表现为左岸多于右岸,下荆江多于上荆江,且下荆江部分河湾凸岸崩退显著。定量分析了河岸土体组成与分布、来水来沙条件等因素对崩岸过程的影响,发现来水来沙条件的影响占主导地位。建立了上、下荆江典型断面平滩河宽与前期水沙条件之间的经验关系,除工程守护良好的断面外,相关系数均高于0.85,提出的经验公式可较好反映水沙条件变化对平滩河宽调整的影响。  相似文献   

5.
鄱阳湖湖口河段近期演变规律及趋势分析   总被引:2,自引:0,他引:2  
胡久伟  吴敦银  李荣昉 《水文》2011,31(2):46-49
湖口河段是鄱阳湖流域水量汇入长江的唯一出口,也是江西与外界航运交通的咽喉,其演变情势直接影响流域防洪和航运安全。利用历次实测的水下地形图及湖口水文站实测断面资料,对河道冲淤、纵向及平面变化进行了分析。结果表明:湖口河段左岸滩地以淤积为主,主河槽及深泓线近期冲刷较严重,右岸受地形约束基本保持稳定。在未来一定时期内,河段岸线仍将保持相对稳定,并将维持左岸滩地淤积,主河槽和右岸冲刷的趋势。  相似文献   

6.
认识崇明东滩岸线的演变规律,对于崇明东滩湿地的保护和利用具有重要意义。利用面向对象的方法,选取1987年至2006年中的6景Landsat-5 TM卫星影像数据,解译出对应年份的东滩岸线。为了对较复杂的非平直岸线的变化进行建模,提出了基于地形梯度的正交断面方法,构建了基于图形学的分析预测模型,对岸线的演变进行分析,预测了2010年和2015年的岸线位置。结果显示:(1)崇明东滩以东南角节点为界,分为南侧的侵蚀岸段和其余的淤涨岸段,总体淤涨速率有减慢趋势,最大侵蚀速率为22.0 m/a,最大淤涨速率为247.2 m/a;(2)北侧自东旺沙水闸向东约4 km长的岸段存在明显的冲淤交替现象;(3)岸线演变受抑制区段都位于东滩两侧岛影缓流区的边界;(4)由于岸外东南侧发育有10 m深槽,除非有特殊的水动力条件出现,东滩未来的岸线将偏向东北方向演变。  相似文献   

7.
李永娴 《中国岩溶》1986,(Z1):42-47
<正> 我部在1∶20万邵阳幅水文地质普查中,应用卫、航片解译配合水文地质普查,取得了一些成果。解译重点是碳酸盐岩分布区,解译工作大部分进行了野外验证,对具有特殊影象特征的地带,进行了重点的解译分析和详细的野外描述,并建立了专门的记录卡片。所用的卫片系美国第二颗陆地卫星多光谱扫描仪于1975年12月拍摄的邵阳分幅粗制片。航片为我国1955年拍摄,比例尺1∶4~1∶6万。  相似文献   

8.
何金  傅成来  束立勇  等 《江苏地质》2021,45(2):189-196
海岸线是陆地与海洋的分界线,海岸侵蚀淤积变化对海岸带的保护与开发利用会产生重要的影响。基于实地调查资料,结合以往调查数据,从典型岸滩剖面、遥感解译等不同角度分析了近30年来盐城海岸侵蚀淤积变化特征,发现盐城海岸侵蚀范围不断南移,明显处于北蚀南淤的动态变化过程。初步探讨了盐城岸线侵蚀淤积变化原因。  相似文献   

9.
为研究下荆江河段古河道演变过程及特征,利用20世纪30年代和50年代的历史地形图、1954年航片、1968年美国KH-4B军事卫星影像及2016年国产GF-1卫星影像,结合古籍资料,全面分析了下荆江古河道的演变特征并反演了其明万历年以来400多年的历史变迁过程.下荆江河段的古河道横向摆动频繁,受河道坚硬岸坡和人工护岸工程约束,空间上为20~32 km的古河道平面摆动带,形态上分为沿主泓线侧向渐变式摆动和河道突变迁徙两种古河道类型,它们是反演下荆江河段古河道的定位依据.历史上,下荆江塑造经历了漫流、支汊分流、单一顺直河道形成和曲流演化发展等复杂过程.明弘治年间,曲流主要出现在监利-城陵矶段,石首至监利段仅微弯;明末清初,东港湖弯道和濠河弯道均自然裁弯取直,下荆江蜿蜒型河道已全面上溯到石首境内,并形成了一系列河曲弯;19世纪中叶,下荆江的河曲发展突出表现在横向移动、河曲颈变窄、凹岸环流侵蚀后退、凸岸堆积淤高推进等特点.此后,下荆江没有出现大的变迁.下荆江河段近代河弯的演变模式有凸岸淤积推进、凹岸崩坍后退型,凸岸撇弯切滩、弯顶消减型和心滩漂移并岸、凹岸串沟过流型.河流的本身作用是其演变的主要原因,但人工修建大堤与大规模围垸是重要外因.   相似文献   

10.
长江中游岸坡崩塌是制约沿岸工程建设的主要环境地质问题。本文以长江中游重点开发岸段簰洲湾-武穴为研究对象,分析影响岸坡稳定的主要因素,通过对场地工程地质条件、地质灾害易发程度、岸线冲淤程度、河道形态特征等指标的综合分析,运用层次分析法,对簰洲湾-武穴段岸坡的稳定性进行评价。结果表明工作区岸坡以土质岸坡为主,左岸稳定、较稳定和不稳定岸坡长度大致相当,右岸绝大部分为稳定岸线。岸坡稳定的区域场地工程地质条件良好,地势平坦、开阔,河道顺直,地质灾害不发育,不稳定的区段河道弯曲、岸线冲淤严重。  相似文献   

11.
安徽省地貌分区和分类   总被引:7,自引:0,他引:7  
安徽地貌单元可分为区、亚区、形态成因类型和微地貌4级。全省有:1)淮北平原、2)江淮波状平原、3)皖西山地、4)沿江丘陵平原和5)皖南山地5个地貌区,包括15个地貌亚区。根据4km2内的最大高差划分了地貌形态类型。安徽省内平原、丘陵、山地均有,以平原为主。平原占全省总面积的62%。考虑外营力种类h作用方向,以及地貌发育历史,在安徽境内划出:1)堆积、2)堆积-剥蚀、3)堆积-侵蚀剥蚀、4)剥蚀-堆积、5)剥蚀侵蚀、6)侵蚀溶蚀和7)侵蚀7种地貌成因类型。  相似文献   

12.
长江中游洪灾形成的地学分析   总被引:7,自引:0,他引:7       下载免费PDF全文
地质地貌条件是长江中游洪灾形成的背景条件,近代洪水位不断上升是人-地不和谐作用下流域环境系统演化的结果.人类作用导致的多流归槽改变了长江中游河流的地貌过程和水文特性,致使洪水过程显著;大堤修筑导致堤外河漫滩出现泥沙加积,自1650年荆江大堤合拢以来,边滩总体淤积厚度为2.8~11.0m,平均淤积速率12.54~25.64mm/a;围湖造田导致江汉-洞庭平原蓄洪空间减少和"小水大灾"局面的形成;漫滩筑堤围垸严重影响了长江行洪,仅荆江段就有围筑的民垸84个,总面积为4895.95km2,民垸面积是泄洪面积的近9倍.因此,在认识自然规律的基础上,正确协调人-地-水关系,重建良性循环的流域环境系统,是解决长江中游的水患的根本出路.  相似文献   

13.
In the Hazara arc region of northern Pakistan, some of the active basements structures buried below a thick, detached sedimentary layer are inferred from the distribution of lineaments and the drainage patterns, as viewed in Landsat satellite imagery and from river profiles.A prominent set of NW-trending lineaments seen on satellite imagery, coincides approximately with the southwest or updip side of the Indus—Kohistan seismic zone (IKSZ) —the most active basement structure of the region, even though this structure is buried beneath and decoupled from a 12 km thick sedimentary layer. The IKSZ has been interpreted as an extension of the Himalayan Basement Thrust, and is also associated with a prominent topographic “step”.Knickpoints on major rivers in the region lie on or north of the IKSZ. All Indus River tributaries, examined north of the IKSZ, show prominent knickpoints, while two tributaries draining south of the IKSZ have no knickpoints. These results suggest ongoing uplift above and north of the IKSZ, and are consistent with the tectonic model obtained from the seismic data.Another prominent lineament set is detected along the north—south section of the Indus River. This set is probably related to the Indus River horst—anticline and associated reentrant.One of the two highest lineament concentrations occurs at the intersection between the NW-trending IKSZ lineament and the N-trending Indus River lineament. The other is along the west bank of the Indus Valley, 25 km north of Tarbela Dam.A topographic ridge (Swabi—Nowshera ridge) appears to be forming along the west side of the Indus River, in the Peshawar Basin. The rising ridge is ponding the Kabul River upstream of Nowshera, where the drainage is braided.  相似文献   

14.
许炯心 《第四纪研究》2008,28(4):569-577
通过河流输沙分析研究了长江上游河道的悬移质泥沙存贮量及其变化。结果表明,1956~2000年屏山-宜昌河段历年的河道存贮量的变化可以划分为3个阶段,即两个泥沙存贮期和1个泥沙释放期。1956~1968年为第1个泥沙存贮期,河道泥沙存贮累积性增加,累计存贮量为4.0126×108t,与这一时期人类活动导致的流域侵蚀加剧有密切的关系;1969~1983年为泥沙释放期,累积释放量为2.6533×108t——支流水库大量修建,拦截了泥沙,下泄泥沙减少,进入长江干流的泥沙减少,含沙量降低,使得干流中前期存贮的泥沙发生侵蚀而释放;1984~2000年为第2个泥沙存贮期,累积存贮量为4.0733×108t。金沙江下游重点产沙区产沙量增加,进入长江干流的泥沙增多,葛洲坝水库建成后投入运行,三峡水库大坝的建设,也导致长江干流河道中泥沙存贮量的增大。输入沙量、输出沙量和与流域面平均年降水量之间均存在较明显的正相关关系,而存贮量与降水量不相关,说明河道泥沙存贮对于降水量的变化不敏感。屏山-宜昌河道泥沙输移比的时间变化大致可以分为两个阶段,即在1956~1982年河道泥沙输移比呈增加趋势,1983~2000年则呈减小趋势。这种变化可以用河道泥沙存贮的变化来解释。长江上游屏山-宜昌河段河道泥沙存贮的时间变化与中游宜昌-武汉河段泥沙冲淤量的时间变化相位在一定程度上是相反的,说明上游河道泥沙存贮增多会导致中游河道泥沙存贮减少,上游河道泥沙存贮减少会导致中游河道泥沙存贮增多。  相似文献   

15.
张忍顺  高超  汪亚平 《古地理学报》2020,22(6):1221-1232
海潮从长江口沿江上溯,可达内陆600km以上的潮区界,为世界大河所少见。中国古人就对这一现象有所感知,在一些文学著作与地方志中可找到长江潮区界及其变化的信息。在公元3世纪末、4世纪初,长江的潮波已越过柴桑(今江西九江);在公元9世纪早期,长江枯水期的潮区界已经退到九江的湓浦口;在13世纪最后的十几年,长江潮区界下移至皖赣交界的小孤山附近。从公元9世纪早期到13世纪晚期的470年间,潮区界下移了64 km,年均为0.136km/a。20世纪中叶以来的学者普遍认为,长江的潮区界又下移至安徽铜陵的大通镇。可见,长江干流在尚未被大型水利工程截断以前,长江潮区界持续向下游移动。在13世纪末至20世纪中叶的670年中,长江潮区界下移170km,年均为0.254km/a,速率几乎是前一时期的2倍。分析表明,潮区界下移速率和三角洲向海的淤长有关,还可能受气候变化的重要影响。对比发现,在长江干流大型水利工程开始蓄水的几年后、九江站流量约8440m3/s的特大枯水时期,潮汐引起的水位上涨影响可达九江附近、即1100多年前中唐时代的潮区界位置。  相似文献   

16.
The tide can now propagate upstream for more than 600 km from the Changjiang River estuary to hinterland,which is rare in the world. In China,information and records reflecting tidal limit and its movement in the Changjiang River can be found from some ancient books,literary works and local chronicles. At the end of the 3rd and the beginning of the 4th century AD, the tide limit of the Changjiang River reached the upstream of Chaisang(now named Jiujiang in Jiangxi Province). At the early 9th century,the tide limit in the dry season retreated to the Penpukou in Jiujiang. In the last ten years of the 13th century,the tidal limit moved back to the Xiaogushan Mountain near the border between Anhui Province and Jiangxi Province. By the middle of the 20th century,the modern researchers generally agreed that the tidal limit retreated to Datong in Anhui Province. Before the main stream of the Changjiang River was cut off by large-scale water conservancy projects,the tide limit had retreated seaward continuously. From the 3rd decade of the 9th century to the last decade of the 13th century,the tide limit moved downstream 64 km during the 470 years,with an average annual rate of 0.136km/a. During the 670 years from the end of the 13th century to the middle of the 20th century,the tide limit had moved downstream 170 km,with an average annual rate of 0.254 km/a,almost twice as much as that of the previous period. We suggest the climate change accounted for the different retreat rate of the tidal limit between the two periods discussed. In addition,a recent study found that during the extremely dry periods,when the discharge of Jiujiang station was about 8440 m3/s,the tidal limit reached near Jiujiang. In the years when the water conservancy project on the main stream of the Changjiang River began to store water,the tide limit actually returned to the previous position of the middle Tang Dynasty,i.e. 1100 years ago.  相似文献   

17.
巴东作揖沱崩滑体基本特征及成因机制分析   总被引:1,自引:0,他引:1  
:作揖沱崩滑体是三峡工程库区重点勘察研究的崩滑体之一 ,位于湖北省巴东县楠木园乡长江南岸 ,距三峡工程坝址 83km,作揖沱崩滑体东西宽为 5 40~ 72 0 m,南北长为 2 80~ 40 0 m,前缘高程为 2 0 m(水下 ) ,后缘高程为 2 80 m,体积为 413.32万m3。作揖沱崩滑体的组成物质为碎块石夹土 ,块石成分复杂 ,局部还保存有变位岩体。作揖沱崩滑体的形成经历了崩塌、滑移、加载和变形滑动等阶段 ,是一个典型的崩滑复合体。近代以来 ,作揖沱崩滑体曾发生多次变形复活 ,是一个不稳定的崩滑体  相似文献   

18.
晚更新世晚期以来的长江上游古洪水记录   总被引:4,自引:2,他引:4       下载免费PDF全文
长江上游三峡河段主要的古洪水记录有:1)三峡深槽的蚀积变化;2)长江阶地粗粒沉积;3)长江的泛滥沉积;4)长江的古洪水平流沉积。不同时间跨度不同类型古洪水记录的精度有较大的差别。古洪水记录显示,晚更新世晚期的40~30kaB.P.,长江上游大洪水比30kaB.P.以来的长江上游大洪水大得多;全新世以来,以3983aB.P.前后的大洪水为相对最大;公元1870年大洪水为3000aB.P.以来最大洪水;近百年来的实测洪水以公元1981年洪水为最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号