首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Zooplankton are an important trophic link and a key food source for many larval fish species in estuarine ecosystems. The present study documents temporal and spatial zooplankton dynamics in Suisun Bay and the Sacramento–San Joaquin Delta—the landward portion of the San Francisco Estuary (California, USA)—over a 37-year period (1972–2008). The zooplankton community experienced major changes in species composition, largely associated with direct and indirect effects of introductions of non-native bivalve and zooplankton species. A major clam invasion and many subsequent changes in zooplankton abundance and composition coincided with an extended drought and accompanying low-flow/high-salinity conditions during 1987–1994. In the downstream mesohaline region, the historically abundant calanoid copepods and rotifers have declined significantly, but their biomass has been compensated to some extent by the introduced cyclopoid Limnothoina tetraspina. The more upstream estuary has also experienced long-term declining biomass trends, particularly of cladocerans and rotifers, although calanoid copepods have increased since the early 1990s due to the introduced Pseudodiaptomus spp. In addition, mysid biomass has dropped significantly throughout the estuary. Shifts in zooplankton species composition have also been accompanied by an observed decrease in mean zooplankton size and an inferred decrease in zooplankton food quality. These changes in the biomass, size, and possibly chemical composition of the zooplankton community imply major alterations in pelagic food web processes, including a drop in prey quantity and quality for foraging fish and an increase in the importance of the microbial food web for higher trophic levels.  相似文献   

2.
Abiotic factors and species introductions can alter food web timing, disrupt life cycles, and change life history expressions and the temporal scale of population dynamics in zooplankton communities. We examined physical, trophic, and zooplankton community dynamics in the San Francisco Estuary, California, a highly altered Mediterranean climate waterway, across a 43-year dataset (1972–2014). Before invasion by the suspension-feeding overbite clam (Potamocorbula amurensis) in the mid-1980s, the estuary demonstrated monomictic thermal mixing in which winter turbidity and cool temperatures contributed to seasonally low productivity, followed by a late-spring-summer clearing phase with warm water and peak phytoplankton blooms that continued into early winter. Following the clam invasion, we observed a shift in peak phytoplankton bloom timing, with peak productivity now occurring in May compared to June prior to the invasion. Peak abundance of several zooplankton taxa (Eurytemora affinis, Pseudodiaptomus, other calanoids, and non-copepods) also shifted to earlier in the season. We present the first evidence of a shift in the timing of peak abundance for zooplankton species that are key prey items of delta smelt (Hypomesus transpacificus), a federally threatened pelagic fish species. These timing shifts may have exacerbated well-documented food limitations of delta smelt due to declines in primary productivity since the invasion of the overbite clam. Future conservation efforts in the estuary should consider measures designed to restore the timing and magnitude of pre-invasion phytoplankton blooms.  相似文献   

3.
The Mattaponi River is part of the York River estuary in Chesapeake Bay. Our objective was to identify the organic matter (OM) sources fueling the lower food web in the tidal freshwater and oligohaline portions of the Mattaponi using the stable isotopes of carbon (C) and nitrogen (N). Over 3 years (2002–2004), we measured zooplankton densities and C and N stable isotope ratios during the spring zooplankton bloom. The river was characterized by a May–June zooplankton bloom numerically dominated by the calanoid copepod Eurytemora affinis and cladocera Bosmina freyi. Cluster analysis of the stable isotope data identified four distinct signatures within the lower food web: freshwater riverine, brackish water, benthic, and terrestrial. The stable isotope signatures of pelagic zooplankton, including E. affinis and B. freyi, were consistent with reliance on a mix of autochthonous and allochthonous OM, including OM derived from vascular plants and humic-rich sediments, whereas macroinvertebrates consistently utilized allochthonous OM. Based on a dual-isotope mixing model, reliance on autochthonous OM by pelagic zooplankton ranged from 20% to 95% of production, declining exponentially with increasing river discharge. The results imply that discharge plays an important role in regulating the energy sources utilized by pelagic zooplankton in the upper estuary. We hypothesize that this is so because during high discharge, particulate organic C loading to the upper estuary increased and phytoplankton biomass decreased, thereby decreasing phytoplankton availability to the food web.  相似文献   

4.
Intertidal creeks are shallow, photic ecosystems that potentially serve as sources of prey for many predators within estuaries. In a previous study, the link between nekton community structure and hydrogeomorphological variables for eight intertidal creeks was assessed for North Inlet estuary, South Carolina. Herein, we advance their findings through ecological network analysis of foodweb structure within two creeks and infer nekton trophic relationships to geomorphology and potential influences of hydrological condition and change. A summer network of a shallow, wide creek demonstrated greater carbon recycling, trophic efficiency and flow through consumers than that of a deep, narrow creek representing the same period. We infer greater export of nekton carbon from the former creek. These results were supported by analyses of nekton effective trophic levels and guilds across the eight creeks. Shallow, wide intertidal creeks appear to provide both physical and foodweb attributes that promote good nekton habitat relative to deeper and narrower creeks. Human alterations to flow regimes and sea-level rise have the ability to affect geomorphology of individual creeks and the landscape as a whole. These changes in turn have the potential to alter food webs of intertidal creeks and their ability to serve as sources of food for the larger estuary.  相似文献   

5.
Our objective was to quantify the contribution of autochthonous, locally-produced phytoplankton, and allochthonous, terrestrial-derived organic matter (OM) to the production of young-of-year (YOY) American shad(Alosa sapidissima) using stable isotopes. We measured the carbon and nitrogen stable isotope composition of YOY American shad in the tidal fresh water of the Mattaponi River, a tributary in the York River estuary, during three consecutive years. The isotopic ratios of larval American shad varied among years, indicating a switch from reliance on a primarily autochthonous food web pathway during low and moderate discharge years (50–90%; 2002, 2004) to a primarily allochthonous pathway during a high discharge year (< 35% phytoplankton; 2003). Reliance on phytoplankton by larval fish declined exponentially with increasing Mattaponi River discharge. In 2003, juvenile production was also supported by allochthonous OM, though autochthonous phytoplankton accounted for an increasingly large fraction during June through August, up to 40–55%. We also found a long-term, positive relationship between the duration of above average flow during April through June in the Mattaponi River and a corresponding index of juvenile American shad abundance. The largest American shad cohort recorded since 1967 was observed in 2003, a high discharge year. The production of this cohort was largely supported by allochthonous OM. The results suggest an important link between river discharge, energy flow, and recruitment, wherein high discharge favors reliance on terrestrial carbon by YOY American shad, owing to changes in zooplankton diet, macroinvertebrate abundance, or both, and also favors high American shad abundance.  相似文献   

6.
7.
The goal of this study was to determine the food web pathways supporting juvenile Chinook (Oncorhynchus tshawytscha) salmon in the Columbia River estuary through multiple stable isotope analysis (δ13C, δ15N, δ34S). Using this method, we distinguished the role of various organic matter sources in Chinook food webs and interpreted the dynamics of their use both spatially and temporally within the estuary. Our results indicate that subyearling Chinook are associated with fluvial, anthropogenic, estuarine, and marine organic matter sources, with hatchery food and vascular plant detritus being the most dominant sources in juvenile Chinook food webs. Although freshwater phytoplankton is involved in many food web pathways to subyearling Chinook, increased phytoplankton production from the impounded river has not replaced the loss of autochthonous marsh production to fish. Our results indicate that large-scale ecosystem alteration may have decreased the availability and quality of food webs in the estuary and potentially diminished the ability of the Columbia to support Chinook salmon.  相似文献   

8.
River flow variability is known to influence estuarine production, yet knowledge on its effect upon estuarine food webs dynamics is still scarce. Stable carbon and nitrogen isotopes were used to assess the effect of river flow in the connectivity and food web interactions between the two main fish nursery areas of the Tagus estuary. The aims of the present work were to investigate the seasonal variation in food web structure and the exchange rate of individuals of marine juvenile fish among estuarine nurseries, to compare the spring of a rainy year (2001) with that of an average year (2000), and to investigate the impact of the winter floods of 2001. A low level of connectivity was observed for the fish species that use these areas as nurseries. In low river flow conditions, two isotopically distinct food webs were established in each nursery area. These food webs were very sensitive to small variations in the freshwater input. Winter floods seem to disrupt the localized food webs that are established in low river flow periods, leading to the re-establishment of a wider food web. While in rainy years this wide food web is maintained until spring, in average years the food web undergoes fragmentation into two localized and isotopically distinctive food webs. The increase in frequency of droughts due to climate change should lower the connectivity of the estuarine fish nurseries food webs, causing habitat fragmentation and consequent loss in complexity and resilience.  相似文献   

9.
We characterized stable isotope mixing along a river-Great Lake transition zone in the St. Louis River, an important fish nursery in western Lake Superior, and used it to identify food web linkages supporting young fish production. We observed a broad, spatial pattern in the carbon stable isotope ratio (δ13C); downriver enrichment in particulate organic carbon and aquatic vegetation δ13C, as well as pelagic, benthic and littoral invertebrate δ13C, reflected isotope mixing along the river-lake transition zone. Fishes with similarly enriched δ13C were used to identify benthopelagic and littoral trophic pathways. River and Lake Superior organic matter (OM) sources contributed to both pathways. Differences between the δ13C in fishes and invertebrate prey revealed that fish production was supported at multiple spatial scales. The result was that the food web specific to any location along the transition zone incorporated multiple OM sources from across the watershed.  相似文献   

10.
Estuaries are productive and ecologically important ecosystems, incorporating environmental drivers from watersheds, rivers, and the coastal ocean. Climate change has potential to modify the physical properties of estuaries, with impacts on resident organisms. However, projections from general circulation models (GCMs) are generally too coarse to resolve important estuarine processes. Here, we statistically downscaled near-surface air temperature and precipitation projections to the scale of the Chesapeake Bay watershed and estuary. These variables were linked to Susquehanna River streamflow using a water balance model and finally to spatially resolved Chesapeake Bay surface temperature and salinity using statistical model trees. The low computational cost of this approach allowed rapid assessment of projected changes from four GCMs spanning a range of potential futures under a high CO2 emission scenario, for four different downscaling methods. Choice of GCM contributed strongly to the spread in projections, but choice of downscaling method was also influential in the warmest models. Models projected a ~2–5.5 °C increase in surface water temperatures in the Chesapeake Bay by the end of the century. Projections of salinity were more uncertain and spatially complex. Models showing increases in winter-spring streamflow generated freshening in the Upper Bay and tributaries, while models with decreased streamflow produced salinity increases. Changes to the Chesapeake Bay environment have implications for fish and invertebrate habitats, as well as migration, spawning phenology, recruitment, and occurrence of pathogens. Our results underline a potentially expanded role of statistical downscaling to complement dynamical approaches in assessing climate change impacts in dynamically challenging estuaries.  相似文献   

11.
Differences in phytoplankton community composition along a riverine to, freshwater tidal continuum was an important factor affecting the primary productivity and quantity of phytoplankton biomass available to the San Francisco Estuary food web downstream. The relative contribution of riverine and freshwater tidal phytoplankton was determined using measurements of primary productivity, respiration, and phytoplankton species composition along a riverine to freshwater tidal gradient in the San Joaquin River, one of two major rivers that flow into, the San Francisco Estuary. Chla-specific net primary productivity was greater in the freshwater tidal habitat and was correlated with both a higher growth efficiency and maximum growth potential compared with the river upstream. Cluster analysis indicated these differences in growth parameters were associated with differences in species composition, with greater percent diatom and green algal species biomass upstream and flagellate biomass downstream. Correlation between the chla specific net productivity and phytoplankton species composition suggested the downstream shift from riverine diatom and green algal species to flagellate species contributed to the seaward increase in net primary productivity. Environmental conditions, such as specific conductance and water transparency, may have influenced primary productivity along the riverine to freshwater tidal continuum through their effect on both species composition and growth rate. Data suggest light was not the sole controlling factor for primary productivity in this highly turbid estuary; phytoplankton growth rate did not increase when riverine plankton communities from low light conditions upstream were exposed to higher light conditions downstream. This study suggests that the availability of phytoplankton biomass to the estuarine food web may be influenced by management of both phytoplankton growth and community composition along the riverine to freshwater tidal continuum.  相似文献   

12.
We measured primary production during spring?Csummer 2006?C2007 to determine the carbon supply to the low-salinity pelagic food web of the San Francisco Estuary (SFE). Weekly or biweekly samples were taken at three stations of fixed salinity for size-fractionated primary production and biomass, both as chlorophyll and from biovolume based on counts. Error variance in productivity estimates arose mainly from the depth integration of 14C uptake, showing the importance of productivity measurements at high light levels for estimates of depth-integrated production. Temporal and spatial variability in production were surprisingly small. Combining data from this study with long-term monitoring data, productivity and biomass were variable in time and salinity but without persistent patterns and with infrequent blooms. Production within the low-salinity zone was unresponsive to variation in freshwater flow, in contrast to findings in other estuaries where nutrient loading drives variability in production and other regions of the SFE where production responds to residence time or to stratification. Estimated annual primary production was only 25 and 31?g?C?m?2?year?1 during 2006 and 2007, only half of it in cells >5???m. These results imply that phytoplankton provided poor food web support for higher trophic levels, probably contributing to the long-term decline in fish abundance in the brackish to freshwater region of the estuary.  相似文献   

13.
海洋浮游动物粪便通量   总被引:4,自引:1,他引:4  
海洋浮游动物粪便颗粒的沉降被认为是碳从海洋表层向海底输送的主要途径之一,对研究碳通量和水层-底栖耦合具有重要意义。综述了有关浮游动物粪便的形态、产生率、分解速度和沉降速度的研究,以及近年来沉积物捕捉器样品的研究。虽然通过粪便产生率和沉降速度估计出的粪便通量很大,但是沉积物中粪便颗粒造成的碳通量所占比例不大。因此,对其它沉积途径的研究不容忽视。  相似文献   

14.
We compared the extent to which ancient and restoring wetlands in three estuary regions of San Francisco Bay support estuarine ecosystems through food web contributions. In comparison to mature marshes, we hypothesized that food webs of increasingly younger restoration sites would display increased dependency upon allochthonous subsidies due to nominal internal production. Using multiple stable isotopes (δ13C, δ15N, δ34S) in a mixing model, we traced links among primary producers and estuarine consumers. Results indicate that food webs of estuarine marshes are heavily dependent upon autochthonous marsh materials (76 ± 17%), even within the youngest restoration marshes (11 years). Nearly all sampled organisms relied upon autochthonous marsh materials, with the exception of Neomysis kadiakensis, a mysid shrimp, which derived the majority of its support from freshwater-produced phytoplankton. Marsh-derived organic matter (OM) support was consistent both temporally throughout the year and spatially along the three estuary regions, but evidence suggests that the specific type of OM supporting estuarine consumers depends on position along the estuarine gradient and on seasonal shifts in freshwater flow. These results indicate that wetland restoration rapidly provides important contributions to marsh consumers and potentially bolsters food web linkages in shallow-water ecosystems.  相似文献   

15.
Estuarine turbidity maxima (ETM) play an important role in zooplankton and larval fish productivity in many estuaries. Yet in many of these systems, little is known about the food web that supports this secondary production. To see if phytoplankton have the potential to be a component of the ETM food web in the Chesapeake Bay estuary a series of cruises were carried out to determine the biomass distribution and floral composition of phytoplankton in and around the ETM during the winter and spring using fluorometry, high-performance liquid chromatography (HPLC), and microscopy. Two distinct phytoplankton communities were observed along the salinity gradient. In lower salinity waters, biomass was low and the community was composed mostly of diatoms, while in more saline waters biomass was high and the community was composed mostly of mixotrophic dinoflagellates, which were often concentrated in a thin layer below the pycnocline. Phytoplankton biomass was always low in the ETM, but high concentrations of phytoplankton pigment degradation products and cellular remains were often observed suggesting that this was an area of high phytoplankton mortality and/or an area where phytoplankton derived particulate organic matter was being trapped. These results, along with a box model analysis, suggest that under certain hydrodynamic conditions phytoplankton derived organic matter can be trapped in ETM and potentially play a role in fueling secondary production.  相似文献   

16.
In this study, we explored the extent to which secondary production in a well-mixed estuary reflects local differences in biotic and physical characteristics of habitats, or larger-scale, estuary-wide characteristics governed by a freshwater-marine gradient. We addressed the following questions: To what extent do organic components of seston within habitats in an estuary reflect distributions of local autotrophs and to what extent do estuarine consumers such as sessile filter-feeders, respond to small-scale, local differences in habitat characteristics in a wellmixed estuary? We contrasted habitat quality and consumer growth at four sites within Padilla Bay estuary, Washington, representing the major autotrophic sources of organic carbon in Pacific Northwest estuaries (i.e., phytoplankton, eelgrass (Zostera marina), epibenthic and macro-algal species, and marsh macrophytes.) The natural abundances of stable carbon isotopes {ie898-1} were used to resolve origins of organic carbon in diets of blue mussels (Mytilus edulis), a representative suspension feeder. To assess consumer responses to habitat, quality, we combined measures of sestonic food quantity and quality and physical parameters with in situ determination of mussel growth. We used measures of food quality {ie898-2} and consumer response (growth of transplanted mussels) to integrate the effects of high variability in estuarine physical and biological characteristics on primary and secondary production. Using ANOVA, we detected significant differences in the concentrations of sestonic food, seston composition as indicated by {ie898-3}, and mussel {ie898-4} values and growth rates among the four representative habitats. That significant differences in {ie898-5} values of mussel tissue corresponded to the significant differences in {ie898-6} values of local autotrophs and seston among habitats suggests that mussels in Padilla Bay rely primarily on local sources of carbon for food. Mussel growth throughout, the estuary was significantly correlated with both sestonic {ie898-7} and salinity. We conclude that differences in local seston composition and mussel growth rates reflect in part the heterogeneous, distribution of benthic primary producer habitats in Padilla Bay, despite its well-mixed nature. In addition, local differences in salinity levels, as opposed to the bay-wide freshwater-marine, gradient, explained a significant proportion of the variance in mussel growth within the bay. Our results counter the prediction that seston quality and consumer production are comparable throughout well-mixed estuaries, and suggest that the paradigm of physically and chemically determined gradients in estuarine secondary production needs to be broadened to include local biotic factors as well.  相似文献   

17.
Using a large-scale enclosed sea area in northern Hangzhou Bay as a case study, the trophic interactions, energy flows, and ecosystem properties of a coastal artificial ecosystem were analyzed by ecotrophic modeling using Ecopath with Ecosim software (EwE, 5.1 version). The model consists of 13 functional groups: piscivorous fish, benthic-feeding fish, zooplanktivorous fish, herbivorous fish, crabs, shrimp, mollusca, infauna, carnivorous zooplankton, herbivorous zooplankton, macrophytes, phytoplankton, and detritus. Input information for the model was gathered from published and unpublished reports and from our own estimates during the period 2006–2007. Results show that the food web in the enclosed sea area was dominated by a detritus pathway. The trophic levels of the groups varied from 1.00 for primary producers and detritus to 3.90 for piscivorous fish in the coastal artificial system. Using network analysis, the system network was mapped into a linear food chain, and five discrete trophic levels were found with a mean transfer efficiency of 9.8% from detritus and 9.4% from primary producer within the ecosystem. The geometric mean of the trophic transfer efficiencies was 9.6%. Detritus contributed 57% of the total energy flux, and the other 43% came from primary producers. The ecosystem maturity indices—total primary production/total respiration, Finn’s cycling index, and ascendancy—were 2.56, 25.0%, and 31.0%, respectively, showing that the coastal artificial system is at developmental stage according to Odum’s theory of ecosystem development. Generally, this is the first trophic model of a large-scale artificial sea enclosure in China and provides some useful insights into the structure and functioning of the system.  相似文献   

18.
The mid Hudson River is a heterotrophic system where allochthonous inputs apparently fuel the largest proportion of secondary production and ecosystem metabolism. We have analyzed a 6-yr dataset collected quarterly at six stations spanning a 150-km reach to assess variability at inter- and intra-annual time scales and regional spatial scales. The major components of the lower food web: bacterial biomass, detrital particulate organic carbon (POC), and dissolved organic carbon (DOC), show surprisingly discordant patterns in temporal and spatial variability. Bacterial abundance shows significant variability at all three scales, but the interannual variability is by far the greatest. DOC concentrations showed greatest variability among years, with intra-annual and spatial variability roughly equal. Freshwater flow is commonly considered a major driving force in river-estuarine variability but simple discharge was not a strong predictor of any component of suspended matter or DOC. For organisms in the Hudson River food web, these multiple scales of variability indicate highly unpredictable food resources in time and space, and these fluctuations may contribute to the variability in higher trophic levels.  相似文献   

19.
气候变化对江河流量变化趋势影响研究进展   总被引:9,自引:0,他引:9  
气候变化对基于自然稳定气候假定的流量变化趋势的检测和水资源评价方法提出了挑战。在流量变化趋势的检测中分离出气候变化的影响,不仅对水资源管理和水利工程设计有重要的应用价值,而且有助于了解气候变化以何种方式、在何时、何地、已经或尚未对水文循环产生影响,对改进气候模型的模拟与预测有重要的科学价值。 统计方法是检验流量变化趋势显著性的有效工具。直接用气候模型模拟和预测未来径流变化的可靠性取决于模型对当代降水模拟的可信度。多个气候模型集合分析有可能在一定程度上减少模型对降水、径流模拟的不确定性。近年发展起来的多个气候模型集合分析与统计显著性检验技术结合的方法,有可能模拟并预测出气候强迫导致大尺度径流空间分布的变化。随着气候模型尤其是陆—气耦合的区域气候模型对降水模拟的改进,可以预见径流变化的检测、归因和预测的趋同化模拟已为期不远。将温室气体外强迫导致的水文气候变化作为一个因子引入到水资源评价中,对于水资源管理经济与生态评估,以及未来的发展规划将是一件十分重要的变革。   相似文献   

20.
Characterizing trophic flows is central to our understanding of energy transfer in marine ecosystems. The food webs of coastal systems are difficult to study because the proportion of autochthonous to allochthonous sources often varies seasonally and is often overlaid on a seasonal cycle of zooplankton composition. Here, we use a combination of fatty acids and stable isotopes to disentangle the trophic pathways in a productive coastal system (the Strait of Georgia (SoG), Canada). Over the span of a year, Metridia pacifica, a ubiquitous omnivorous copepod, can utilize a wide range of dietary items including diatoms, flagellates, bacteria, detritus, and microzooplankton. M. pacifica can switch from herbivory to carnivory in response to declining chlorophyll concentrations after the spring bloom and can occasionally utilize detrital sources. These findings are discussed in the context of previous knowledge of the SoG ecosystem, the current state of ecosystem modeling in the region, and the use of stable isotopes and fatty acids to assess trophic dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号