首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pedestrian evacuation modeling for tsunami hazards typically focuses on current land-cover conditions and population distributions. To examine how post-disaster redevelopment may influence the evacuation potential of at-risk populations to future threats, we modeled pedestrian travel times to safety in Seward, Alaska, based on conditions before the 1964 Good Friday earthquake and tsunami disaster and on modern conditions. Anisotropic, path distance modeling is conducted to estimate travel times to safety during the 1964 event and in modern Seward, and results are merged with various population data, including the location and number of residents, employees, public venues, and dependent care facilities. Results suggest that modeled travel time estimates conform well to the fatality patterns of the 1964 event and that evacuation travel times have increased in modern Seward due to the relocation and expansion of port and harbor facilities after the disaster. The majority of individuals threatened by tsunamis today in Seward are employee, customer, and tourist populations, rather than residents in their homes. Modern evacuation travel times to safety for the majority of the region are less than wave arrival times for future tectonic tsunamis but greater than arrival times for landslide-related tsunamis. Evacuation travel times will likely be higher in the winter time, when the presence of snow may constrain evacuations to roads.  相似文献   

2.
The unique geography of the Florida Keys presents both high risk of hurricane landfall and exceptional vulnerability to the effects of a hurricane strike. Inadequate hurricane shelters in the Keys make evacuation the only option for most residents, but the sole access road can become impassable well in advance of a major storm. These extraordinary conditions create challenges for emergency managers who must ensure that appropriate emergency plans are in place and to ensure that an orderly exodus can occur without stranding large numbers of people along an evacuation route with inadequate shelter capacity. This study attempts to answer two questions: (1) What is the minimum clearance time needed to evacuate all residents participating in an evacuation of the Florida Keys in advance of a major hurricane for 92,596 people – a population size calculated based on the 2000 US Census population data, census undercounts, and the number of tourists estimated to be in the area? (2) If a hurricane makes landfall in the Keys while the evacuation is in progress, how many residents will need to be accommodated if the evacuation route becomes impassable? The authors conducted agent-based microsimulations to answer the questions. Simulation results suggest that it takes 20 h and 11 min to 20 h and 14 min to evacuate the 92,596 people. This clearance time is less than the Florida state mandated 24-h clearance time limit. If one assumes that people evacuate in a 48-h period and the traffic flow from the Keys would follow that observed in the evacuation from Hurricane Georges, then a total of 460 people may be stranded if the evacuation route becomes impassable 48 h after an evacuation order is issued. If the evacuation route becomes impassable 40 h after an evacuation order is issued, then 14,000 people may be stranded.  相似文献   

3.

This paper presents results of a study which examined how a mandatory wildfire evacuation affected members of Whitefish Lake First Nation 459, in Alberta, Canada. A qualitative case study approach was used, and semi-structured interviews were completed with 45 band members to learn about their evacuation experiences during the wildfire evacuation in May 2011 and explore the factors that complicated the evacuation process and put further strain on the evacuees and First Nation. This evacuation caused considerable distress for evacuees and had negative effects for the First Nation. Factors that affected evacuation experiences included: (1) transportation issues compounded by cultural land-use activities, (2) fear of home loss compounded by existing housing shortages, (3) information and lack of media interest, (4) language, (5) poverty, (6) large multi-generational families, (7) health concerns, and (8) reimbursement of evacuation-related expenses to the community. An overarching factor that affected the entire evacuation was jurisdiction. Based on these findings, recommendations are provided for emergency managers on improving wildfire evacuation experiences for Indigenous peoples.

  相似文献   

4.
The logistics of household hurricane evacuation   总被引:1,自引:1,他引:0  
Although there is a substantial amount of research on households’ hurricane evacuation decision making, there is much less research on the logistical issues involved in implementing those evacuations. The limited research on household evacuation logistics has consistently shown that most evacuees stay in the homes of friends and relatives or in commercial facilities rather than in public shelters. However, evacuation logistics—which can be defined as the activities and associated resources needed to reach a safe location and remain there until it is safe to return—encompasses a much broader range of behaviors than this. The present study extends previous research by reporting data on other aspects of evacuation logistics such as departure timing, vehicle use, evacuation routes, travel distance, shelter type, evacuation duration, and evacuation cost. Hurricane Lili evacuation data at the county level are generally consistent with the data from previous hurricanes, but there is notable variation across counties studied here. There were only modest correlations of demographic and geographic variables with the evacuation logistics variables, a result that indicates further research is needed to better understand what happens between the time an evacuation decision is made and the time re-entry is begun. Moreover, research is needed to understand the logistics of evacuation by special populations such as transients and households with disabled members.  相似文献   

5.
Tsunamis are among the most destructive and lethal of coastal hazards. These are time-specific events, and despite directly affecting a narrow strip of coastline, a single occurrence can have devastating effects and cause massive loss of life, especially in urbanized coastal areas. In this work, in order to consider the time dependence of population exposure to tsunami threat, the variation of spatio-temporal population distribution in the daily cycle is mapped and analyzed in the Lisbon Metropolitan Area. High-resolution daytime and nighttime population distribution maps are developed using ‘intelligent dasymetric mapping,’ that is, applying areal interpolation to combine best-available census data and statistics with land use and land cover data. Workplace information and mobility statistics are considered for mapping daytime distribution. In combination with a tsunami hazard map, information on infrastructure, land use and terrain slope, the modeled population distribution is used to assess people’s evacuation speed, applying a geospatial evacuation modeling approach to the city of Lisbon. The detailed dynamic population exposure assessment allows producing both daytime and nighttime evacuation time maps, which provide valuable input for evacuation planning and management. Results show that a significant amount of population is at risk, and its numbers increase dramatically from nighttime to daytime, especially in the zones of high tsunami flooding susceptibility. Also, full evacuation can be problematic in the daytime period, even if initiated immediately after a major tsunami-triggering earthquake. The presented approach greatly improves tsunami risk assessment and can benefit all phases of the disaster management process.  相似文献   

6.
Analysis of 20-year time series of water levels in the northeastern Gulf of Mexico has revealed that meteotsunamis are ubiquitous in this region. On average, 1–3 meteotsunamis with wave heights >0.5 m occur each year in this area. The probability of meteotsunami occurrence is highest during March–April and June–August. Meteotsunamis in the northeastern Gulf of Mexico can be triggered by winter and summer extra-tropical storms and by tropical cyclones. In northwestern Florida most of the events are triggered by winter storms, while in west and southwest Florida they appear both in winter and summer. Atmospheric pressure and wind anomalies (periods <6 h) associated with the passage of squalls originated the majority of the observed meteotsunami events. The most intense meteotsunamigenic periods took place during El Niño periods (1997–1998, 2009–2010 and 2015–2016). Meteotsunamis were also active in 2005, a year characterized by exceptionally intense tropical cyclone activity. Meteotsunami incidence varied yearly and at periods between 2 and 5 years. Results from cross-wavelet analysis suggested that El Niño and meteotsunami activity are correlated at annual and longer-period bands.  相似文献   

7.

Large near-field tsunamis pose a significant threat to the Canadian West Coast due to its proximity to the circum-Pacific belt where a significant tsunami-inducing earthquake event from the Cascadia subduction zone is expected. This study investigated the risks associated with such an event in terms of pedestrian evacuation needs and plans for the Town of Tofino, a small community located on the West Coast of Vancouver Island. The population-at-risk within the hazard zone and its ability to evacuate to safety is evaluated using anisotropic path-distance modelling. Mitigation measures, such as vertical evacuation buildings, are quantitatively evaluated. Site-specific inundation modelling was not performed as part of this study; tsunami hazard and safe zones were computed using a range of run-ups varying between 3 and 25 m. It was established that up to 80% of the population is within the maximum hazard zone considered. This evacuation modelling exercise indicates that a maximum of 13% of the population would have insufficient time to reach safety when using a mobility-impaired ambulatory speed. The use of three vertical evacuation buildings can reduce the risk of losing population in this category by 99%. Although some conservative assumptions were used (vertical datum at higher high water, reductions in safe zones by generalization process and mobility-impaired evacuation speeds), the evacuation potential is likely overestimated due to the coarseness of the topographic data used in the evacuation modelling and from an overestimated first wave arrival time. This is the first Canadian study which used anisotropic evacuation modelling to evaluate the vulnerability of a Canadian community to tsunami inundation.

  相似文献   

8.
Almost all engineering evacuation models define the objective as minimizing the time required to clear the region or total travel time, thus making an implicit assumption that who will or should evacuate is known. Conservatively evacuating everyone who may be affected may be the best strategy for a given storm, but there is a growing recognition that in some places that strategy is no longer viable and in any case, may not be the best alternative by itself. Here, we introduce a new bi-level optimization that reframes the decision more broadly. The upper level develops an evacuation plan that describes, as a hurricane approaches, who should stay and who should leave and when, so as to minimize both risk and travel time. The lower level is a dynamic user equilibrium (DUE) traffic assignment model. The model includes four novel features: (1) it refocuses the decision on the objectives of minimizing both risk and travel time; (2) it allows direct comparison of more alternatives, including for the first time, sheltering-in-place; (3) it uses a hurricane-scenario-based analysis that explicitly represents the critically important uncertainty in hurricane track, intensity, and speed; and (4) it includes a new DUE algorithm that is efficient enough for full-scale hurricane evacuation applications. The model can be used both to provide an evacuation plan and to evaluate a plan’s performance in terms of risk and travel time, assuming the plan is implemented and a specified hurricane scenario then actually occurs. We demonstrate the model with a full-scale case study for Eastern North Carolina.  相似文献   

9.
Ashland  Francis X. 《Landslides》2021,18(6):2159-2174

The potential for widespread landslides is generally increased when extraordinary wet periods occur during times of elevated subsurface hydrologic conditions. A series of storms in early 2018 in Pittsburgh, Pennsylvania, overlapped with a period of increased shallow soil moisture and rising bedrock groundwater levels resulting from seasonally diminished evapotranspiration and induced widespread landslides in the region. Most of the landslides were shallow slope failures in colluvium, landslide deposits, and/or fill. However, deep-seated landslide activity also occurred and corresponded with record cumulative precipitation from late February to April and bedrock groundwater levels rising to an annual high. Landslides blocked or damaged roads, adversely affected multiple houses, disrupted electrical service, crushed vehicles, and resulted in considerable economic losses. The initial landslides occurred during or immediately after a rare period of three successive days of heavy rain that began on February 14. Subsequent landslides between late February and April were induced by multiday storms with smaller rainfall totals. As shallow soil moisture at a monitoring site rose above a volumetric water content of 32%, the mean rainfall intensities necessary to induce slope failure in colluvium and other surficial deposits decreased. Deep-seated landslide movement occurred in the region mostly when the groundwater level in a bedrock observation well was shallower than 1.7 m. The availability of hydrologic and landslide movement monitoring data during this extraordinary series of storms highlighted the evolution of the landslide hazard with changing moisture conditions and yielded insights into potential hydrologic criteria for anticipating future widespread landslides in the region.

  相似文献   

10.
The relationships between phytoplankton productivity, nutrient distributions, and freshwater flow were examined in a seasonal study conducted in Escambia Bay, Florida, USA, located in the northeastern Gulf of Mexico. Five sites oriented along the salinity gradient were sampled 24 times over the 28-mo period from 1999 to 2001. Water column profiles of temperature and salinity were measured along with surface chlorophyll and surface inorganic nutrient concentrations. Primary productivity was measured at 2 sites on 11 dates, and estimated for the remaining dates and sites using an empirical regression model relating phytoplankton net production to the product of chlorophyll, euphotic zone depth, and daily solar insolation. Freshwater flow into the system varied markedly over the study period with record low flow during 2000, a flood event in March 2001, and subsequent resumption of normal flow. Flushing times ranged from 1 d during the flood to 20 d during the drought. Freshwater input strongly affected surface salinity distributions, nutrient flux, chlorophyll, and primary productivity. The flood caused high turbidity and rapid flushing, severely reducing phytoplankton production and biomass accumulation. Following the flood, phytoplankton biomass and productivity sharply increased. Analysis of nutrient distributions suggested Escambia Bay phytoplankton alternated between phosphorus limitation during normal flow and nitrogen limitation during low flow periods. This study found that Escambia Bay is a moderately productive estuary, with an average annual integrated phytoplankton production rate of 290 g C m−2 yr−1.  相似文献   

11.
Three sequential hurricanes made landfall over the South Florida peninsula in August and September 2004. The storm systems passed north of the Everglades wetlands and northeastern Florida Bay, but indirect storm effects associated with changes in freshwater discharge during an otherwise drought year occurred across the wetland–estuary transition area. To assess the impacts of the 2004 hurricane series on hydrology, nutrients, and microbial communities in the Everglades wetlands to Florida Bay transition area, results are presented in the context of a seasonal cycle without hurricane activity (2003). Tropical activity in 2004 increased rainfall over South Florida and the study area, thereby temporarily relieving drought conditions. Not so much actual rainfall levels at the study site but more so water management practices in preparation of the hurricane threats, which include draining of an extensive freshwater canal system into the coastal ocean to mitigate inland flooding, rapidly reversed hypersalinity in the wetlands-estuary study area. Although annual discharge was comparable in both years, freshwater discharge in 2004 occurred predominantly during the late wet season, whereas discharge was distributed evenly over the 2003 wet season. Total organic carbon (TOC), ammonium ( \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} ), and soluble reactive phosphorus (SRP) concentrations increased during the hurricane series to concentrations two to five times higher than long-term median concentrations in eastern Florida Bay. Spatiotemporal patterns in these resource enrichments suggest that TOC and SRP originated from the Everglades mangrove ecotone, while \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} originated from the bay. Phytoplankton biomass in the bay increased significantly during storm-related freshwater discharge, but declined at the same time in the wetland mangrove ecotone from bloom conditions during the preceding drought. In the bay, these changes were associated with increased nanophytoplankton and decreased picophytoplankton biomass. Heterotrophic bacterial production increased in response to freshwater discharge, whereas bacterial abundance decreased. Hydrochemical and microbial changes were short-lived, and the wetland–bay transition area reverted to more typical oligotrophic conditions within 3 months after the hurricanes. These results suggest that changes in freshwater discharge after drought conditions and during the hurricane series forced the productivity and P-enriched characteristics of the wetland’s mangrove ecotone, although only briefly, to the south into Florida Bay.  相似文献   

12.
Though most hurricane evacuation studies have focused on residents, tourists are also a vulnerable population. To assess their perceptions of risk and evacuation likelihood under different hurricane conditions, we surveyed 448 tourists visiting central Florida. Respondents viewed four maps emulating track forecast cones produced by the National Hurricane Center and text information featuring variations of storm intensity, coast of landfall, centerline position relative to the survey site, time until landfall, and event duration. We performed chi-square tests to determine which hurricane conditions, and aspects of tourists such as their demographics and previous hurricane experience, most likely influenced their ratings of risk and evacuation likelihood for respondents located on Pinellas County beaches or inland near Orlando, FL. Highly rated scenarios featured a Category 4 hurricane making landfall along the Gulf Coast with the centerline passing over the sampling site. Overall, tourists that indicated the highest risk and evacuation ratings were not previously affected by a hurricane, had a trip duration of less than 6 days, and had checked for the possibility of a hurricane strike before departure. However, results for other tourist attributes differed between tourists in coastal and inland locations. We found that although somewhat knowledgeable about hurricanes, tourists misinterpreted the track forecast cone and hurricane conditions, which led to a lower perception of risk and subsequent likelihood to evacuate. Tourists, particularly those from outside of Florida, need to be better educated about the risks they face from hurricanes that make landfall.  相似文献   

13.
Water temperature, dissolved oxygen (DO), pH, and specific conductivity (spc) were measured in a time interval of 15 min in a karst spring and the spring-fed pool with flourishing submerged plants in Guilin, SW China under dry weather for periods of 2 days. Measurements allowed calculation of calcium and bicarbonate concentrations ([Ca2+] and [HCO3 ]), and thus CO2 partial pressure ( ) and saturation index of calcite (SIc). Results show that there were not any diurnal variations in the physico-chemical parameters of the water for the spring. However, during daytime periods, pool water decreased to far less than the spring water in a few hours, pH and SIc increased to greater than the spring, and [Ca2+] and [HCO3 ] decreased to less than the spring. During nighttime periods, pool water returned to or even increased to greater than the spring, pH and SIc decreased to less than the spring, and [Ca2+] and [HCO3 ] increased to greater than the spring. The decrease in [Ca2+] and [HCO3 ] to less than the spring during daytime periods implies daytime deposition of calcium carbonate, while the increase in [Ca2+] and [HCO3 ] to greater than the spring during nighttime periods implies nighttime dissolution of calcium carbonate. The direction of the observed changes depended essentially on the illumination, indicating that daytime photosynthetic and nighttime respiratory activities in the pool aquatic plant ecosystem, which were further evidenced by the increase and decrease in DO during daytime and nighttime periods respectively, were the main processes involved. The large variations of the components of the carbonate system imply considerable changes of the capacities of CO2 and O2 in water. The finding has implications for water sampling strategy in slow-flowing karst streams and other similar environments with stagnant water bodies such as estuaries, lakes, reservoirs, and wetlands, where aquatic plant ecosystem may flourish.  相似文献   

14.
Juvenile spot,Leiostomus xanthurus (Pisces), were collected at 2-h intervals over two 48-h periods in a tidal creek in North Inlet, South Carolina, during July 1986. Gut fullness, dry gut contents weight as a percentage of fish wet weight, was measured to test the hypothesis that feeding intensity is randomly distributed through time. Spot were also collected and serially sacrificed from a holding tank to estimate their gut evacuation rate. Gut fullness was greatest during periods of ebb and high tides and was little affected by the amount of light available. Gut contents were evacuated at a rate of about 15% per hour in the laboratory, in close agreement with field emptying times of about 6 h from peak fullness to empty guts. A conservative estimate of daily ration for juvenile spot (19–42 mm standard length) was 4.5% of their live body weight per day. Studies of spot feeding ecology can be greatly affected by when fish are collected during the tidal cycle.  相似文献   

15.
Kono  Tatsuhito  Okuno  Masaya  Yamaura  Kazuho 《Natural Hazards》2022,111(1):139-162

This paper constructs an evacuation decision-making model that takes cognitive dissonance into consideration. The purpose of this construction is to clarify the psychological mechanism for the evacuation behavior of residents during an emergency, based on Akerlof and Dickens (Akerlof and Dickens Am Econ Rev 72:307–319, 1982) "The economic consequences of cognitive dissonance". Specifically, we empirically explore people’s psychological mechanism (e.g., cognitive dissonance) for evacuation behavior when a tsunami disaster occurs. As a result, we show that the level of anxiety depends on the area where residents live and that the average anxiety of residents is mostly correlated with the level of damage of past disasters, and that it is affected also by the ages of residents. Since the level of anxiety largely affects an individual’s evacuation behavior, this result can indicate for what kinds of people intervention and assistance are required based on the level of anxiety. A high level of anxiety basically promotes evacuation. Since our results show that anxiety is increased by the experience of tsunamis, education having people virtually experience tsunamis may increase evacuation rates efficiently.

  相似文献   

16.
Li  Bingyao  Hou  Jingming  Ma  Yongyong  Bai  Ganggang  Wang  Tian  Xu  Guoxin  Wu  Binzhong  Jiao  Yongbao 《Natural Hazards》2022,110(1):607-628

Flooding is now becoming one of the most frequent and widely distributed natural hazards, with significant losses to human lives and property around the world. Evacuation of pedestrians during flooding events is a crucial factor in flood risk management, in addition to saving people’s lives and increasing time for rescue. The key objective of this work is to propose a shortest evacuation path planning algorithm by considering the evacuable areas and human instability during floods. A shortest route optimization algorithm based on cellular automata is established while using diagonal distance calculation methods in heuristic search algorithms. The Morpeth flood event that occurred in 2008 in the UK is used as a case study, and a highly accurate and efficient 2D hydrodynamic model is adopted to discuss the flood characteristics in flood plains. Two flood hazard assessment approaches [i.e., empirical and mechanics-based and experimental calibrated (M&E)] are chosen to study human instability. A comprehensive analysis shows that extreme events are better identified with mechanics-based and experimental calibration methods than with an empirical method. The result of M&E is used as the initial condition for the Morpeth evacuation scenario. Evacuation path planning in Morpeth shows that this algorithm can realize shortest route planning with multiple starting points and ending points at the microscale. These findings are of significance for flood risk management and emergency evacuation research.

  相似文献   

17.
238 marine carbonate samples were collected from seven sedimentary sections ofthe entire late Palaeozoic (Permian, Carboniferous and Devonian) in the Upper Yangtze Plat-form, southwest China. Based on the absence of cathodoluminescence and very low Mn (gener-ally<50 ppm) contents of the samples, it is thought that they contain information on the orig-inal sea water geochemistry. The results of isotopic analyses of these samples are presented interms of δ~(13)C and ~(87)Sr/~(86)Sr ratios versus geological time. The strontium data, consistent withother similar data based on samples from North America, Europe, Africa and other areas inAsia, support the notion of a global consistency in strontium isotope composition of marinecarbonates. The strontium data exhibit three intervals of relatively low ~(87)Sr/~(86)Sr ratios in thelate Middle Devonian to early Late Devonian, Early Carboniferous and Early Permian, corre-sponding to global eustatic high sea level stands. The lowest ~(87)Sr/~(86)Sr ratio recorded in theLate Permian was probably caused by substantial basalt eruptions in the Upper Yangtze Plat-form at the time. Three corresponding periods of relatively high δ~(13)C values at roughly the samethe intervals were caused by a relatively high rate of accumulation of organic carbon duringsea level rises at these times. The deposition of coal was probably responsible for the increaseof sea water δ~(13)C at other times. The δ~(13)C values drop dramatically near theDevonian/Carboniferous, Carboniferous/Permian and Permian/Triassic boundaries, con-sistent with other similar data, which further support the notion that geological time boundariesare associated with mass extinction and subsequent rejuvenation.  相似文献   

18.
19.
Florida Bay is Florida’s (USA) largest estuary and has experienced harmful picocyanobacteria blooms for nearly two decades. While nutrient loading is the most commonly cited cause of algal blooms in Florida Bay, the role of zooplankton grazing pressure in bloom occurrence has not been considered. For this study, the spatial and temporal dynamics of cyanobacteria blooms, the microbial food web, microzooplankton and mesozooplankton grazing rates of picoplankton, and the effects of nutrients on plankton groups in Florida Bay were quantified. During the study, cyanobacteria blooms (>3 × 105 cells mL−1) persisted in the eastern and central regions of Florida Bay for more than a year. Locations with elevated abundance of cyanobacteria hosted microzooplankton grazing rates on cyanobacteria that were significantly lower (p < 0.001) and less frequently detectable compared to sites without blooms. Consistent with this observation, cyanobacteria abundances were significantly correlated with ciliates and heterotrophic nanoflagellates at low cyanobacteria densities (p < 0.001) but were not correlated during bloom events. The experimental enrichment of mesozooplankton abundance during blooms yielded a significant decrease in the net growth rate of picoplankton but had the opposite effect when blooms were absent, suggesting that the cascading effect of mesozooplankton grazing on the microbial food web was also altered during blooms. While inorganic nutrient enrichment significantly increased the net growth rates of eukaryotic phytoplankton and heterotrophic bacteria, such nutrient loading had no effect on the net growth rates of cyanobacteria. Hence, this study demonstrates that low rates of zooplankton grazing and low rates of inorganic nutrient loading contribute to the persistence of cyanobacteria blooms in Florida Bay.  相似文献   

20.
Efforts to characterize population exposure to near-field tsunami threats typically focus on quantifying the number and type of people in tsunami-hazard zones. To develop and prioritize effective risk-reduction strategies, emergency managers also need information on the potential for successful evacuations and how this evacuation potential varies among communities. To improve efforts to properly characterize and differentiate near-field tsunami threats among multiple communities, we assess community variations in population exposure to tsunamis as a function of pedestrian travel time to safety. We focus our efforts on the multiple coastal communities in Grays Harbor and Pacific Counties (State of Washington, USA), where a substantial resident and visitor population is threatened by near-field tsunamis related to a potential Cascadia subduction zone earthquake. Anisotropic, path distance modeling is conducted to estimate travel times to safety, and results are merged with various population data, including residents, employees, public venues, and dependent-care facilities. Results suggest that there is substantial variability among communities in the number of people that may have insufficient time to evacuate. Successful evacuations may be possible in some communities assuming slow walking speeds, are plausible in others if travel speeds are increased, and are unlikely in another set of communities given the large distances and short time horizon. Emergency managers can use these results to prioritize the location and determine the most appropriate type of tsunami risk-reduction strategies, such as education and training in areas where evacuations are plausible and vertical-evacuation structures in areas where they are not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号