首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north–northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U–Pb and [U–Th]/He dating and apatite fission track and [U–Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U–Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63–58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U–Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U–Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E–W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.  相似文献   

2.
Low-grade carbonate-rich manganese ore of sedimentary origin in the giant Kalahari Manganese Field, South Africa, is upgraded to high-grade todorokite–manganomelane manganese ore by supergene alteration below the unconformity at the base of the Cenozoic Kalahari Formation. Incremental laser-heating 40Ar/39Ar dating of samples from the supergene altered manganese ore suggest that chemical weathering processes below the Kalahari unconformity peaked at around 27.8 Ma, 10.1 Ma and 5.2 Ma ago. Older ages are dominant in the upper part of the weathering profile, while younger ages are characteristic of the deeper part of the profile. Younger ages partially overprint older ages in the upper part of the weathering profile and demonstrate the downward progression of the weathering front by as little as 10 cm per million years. The oldest age obtained in the weathering profile, namely 42 Ma, is considered a minimum estimate for the onset of the post African I cycle of weathering and erosion that followed the break up of Gondwanaland and formation of the Cretaceous to early Cenozoic African land surface. The youngest ages, recorded at around 5 Ma, in turn, correspond well to the Pliocene transition from humid to arid climatic conditions in Southern Africa.  相似文献   

3.
Rare remnants of a Mesozoic subduction high pressure (HP) accretionary complex are exposed on Diego de Almagro Island in Chilean Patagonia. We herein focus on the Lazaro unit, a coherent slice of oceanic crust exposed on this island that has been first affected by high temperature (HT) metamorphism followed by a lower temperature deformation event (LT). Its Pressure-Temperature-time (P-T-t) evolution is reconstructed using field and petrographic observations, phase relations, thermobarometry and geochronology. Remnants of a primary amphibolite to HP granulite-facies event in mafic rocks comprising garnet (with ilmenite exsolutions), diopside, trondhjemitic melt, pargasite, plagioclase ± epidote are reported for the first time in neosomes, indicating peak P-T conditions of 1.1–1.3 GPa and c. 750 °C. This peak T paragenesis has been thoroughly overprinted by a phengite-chlorite-actinolite assemblage during isobaric cooling down to c. 450 °C. U-Pb dating of zircon metamorphic rims from a metasedimentary rock yielded a homogeneous age population of 162 ± 2 Ma for the HT event. Sm-Nd dating of two peritectic garnet-bearing samples yield ages of 163 ± 2 Ma and 163 ± 18 Ma for the HT event. Multi-mineral Rb-Sr dating of a metasedimentary rock overprinted by LT deformation suggests retrograde shearing between 120 and 80 Ma. Our results show that the HT event in the Lazaro unit took place at around 160–165 Ma, shortly before the onset of Patagonian Batholith emplacement. Partial melting of subducted oceanic crust reported in the Lazaro unit is related to the early stages of hot subduction along the Gondwana western margin. The Lazaro unit remained at c. 40 km depth along the subduction interface for > 80 Ma, recording the deformation and long-term cooling of the subduction channel environment until the upper Cretaceous.  相似文献   

4.
Palynological and sedimentological studies of a series of slimes collected from a 284 m-long drill-well from the Kathmandu Basin reveal paleoclimatic records and environmental changes within the Kathmandu Valley during the last 2.5 myr. The slimes are composed of fluvio-deltaic and lacustrine sediments comprising sand beds of 66.3 m and mud beds of 218 m in length. Pollen analyses show Quercus and Cyclobalanopsis are predominant, with frequencies exceeding 70%. Pinus, Alnus and Gramineae are the next dominant taxa. Three fossil pollen zones were discriminated; each zone reflects major climatic change: Zone I, the oldest stage, indicates a cool and rather wet climate during 400 kyr from ca. 2.5 to 2.1 Ma; Zone II, the middle stage, reflects a warm and relatively dry climate without remarkable fluctuation; Zone III is characterized by seven cycles of warm-and-wet and cold-and-dry climate, which reflect the alternation of glacial and interglacial periods. The last cold maximum, 11 m deep, corresponds to the last glacial age around 20 kyr bp, judging from the 14C dating of the uppermost part of the lacustrine sediments.The Paleo-Kathmandu Lake is likely to have been initiated at around 2.1 Ma and to have been filled with black organic mud, the Kalimati Clay. The top of the Kalimati Clay is eroded and was overlain by fluvial sand after the last glacial age. The abrupt appearance of a 4 m-thick fossiliferous sand bed at the top of the middle member suggests a lowering of water level at around 1 Ma.  相似文献   

5.
The Urals can be regarded as a significant Cu-Mo-porphyry province, hosting over 30 porphyry deposits. Although their geological structure and ore-forming processes have been studied in great detail, uncertainty remains about their age and related geotectonic setting. In this contribution we report for the first time the Re-Os dating of molybdenites from three Cu-Mo porphyry deposits, namely Kalinovskoe, Mikheevskoe and Talitsa. Three molybdenite samples from the Kalinovskoe deposit yield Silurian Re-Os ages ranging from 427.1 Ma to 431.7 Ma (mean 429.8 ± 4.8 Ma; 2σ standard deviation), and a Re–Os isochron age of 430.7 ± 1.3 Ma (MSWD = 0.63), which coincides with previous U-Pb zircon dating of ore-hosting diorites from the same ore field (427 ± 6 Ma). The molybdenite from the Mikheevskoe deposit gives Re-Os ages of 357.8 ± 1.8 Ma and 356.1 ± 1.4 Ma (mean 357.0 ± 2.4 Ma; Carboniferous/Tournaisian), which corresponds to previous U-Pb dating of zircons from the diorite hosting porphyry deposit (356 ± 6 Ma). The molybdenite from Talitsa Mo-porphyry deposit yields the youngest Re-Os ages of 298.3 ± 1.3 and 299.9 ± 2.9 Ma (mean 299.1 ± 2.3 Ma) at Carboniferous-Permian boundary. Thus, the studied Cu and Mo porphyry deposits are not synchronous and belong to distinct tectonic events of the Urals.  相似文献   

6.
The Ranger 1 unconformity-related uranium deposit in the Northern Territory of Australia is one of the world's largest uranium deposits and has ranked in the top two Australian producers of uranium in recent years. Mineralisation at the Ranger, Jabiluka and other major unconformity-related deposits in the Alligator Rivers Uranium Field (ARUF) occurs in Paleoproterozoic metamorphic basement rocks immediately beneath the unconformity with the Paleo- to Mesoproterozoic McArthur Basin.The sites of uranium mineralisation and associated alteration at the Ranger 1 deposit (Number 3 orebody) were fundamentally controlled by reactivated shear zones that were initiated during the regional Nimbuwah tectonothermal event. The timing of shearing at medium metamorphic grade was constrained by ion microprobe U–Pb dating of zircons in two pegmatites, one weakly foliated (1867.0 ± 3.5 Ma) and another that is unfoliated and cuts the shear fabric (1862.8 ± 3.4 Ma). The younger age of ~ 1863 Ma represents the minimum age of D1 shearing during the Nimbuwah event at the Ranger 1 deposit (Number 3 orebody). Titanite within veins of amphibole-plagioclase-apatite yielded an ion microprobe U–Pb age of 1845.4 ± 4.2 Ma, which represents a previously unrecognised hydrothermal event in the ARUF. Based on previous data, retrograde hydrothermal alteration during D2 reactivation of D1 shear zones is interpreted to have occurred at ~ 1800 Ma during the regional Shoobridge tectonothermal event.Detailed paragenetic observations supported by whole-rock geochemical data from the Ranger 1 deposit (Number 3 orebody) reveal a sequence of post-D2 hydrothermal events, as follows. (1) Intense magnesium-rich chlorite alteration and brecciation, focussed within schists of the Upper Mine Sequence in the Cahill Formation. (2) Silicification of Lower Mine Sequence carbonate rock units and overlying schist units, comprising quartz ± Mg-foitite (tourmaline) ± muscovite ± pyrite ± marcasite, and rare uraninite (early U1). (3) Formation of main stage uranium ore and heterolithic breccias including clasts of olivine–phyric dolerite, with breccia matrix composed of uraninite (U1), Mg-chlorite ± Mg-foitite and minor pyrite and chalcopyrite. (4) A second generation of uraninite (U2) veinlets with disordered graphitic carbon and quartz of hydrothermal origin. (5) Late-stage veinlets of massive uraninite (U3). As inferred in a previous study and confirmed herein, olivine–phyric dolerite dykes at Ranger are mineralised and chloritised, and are geochemically similar to the regional Oenpelli Dolerite. A maximum age for uranium mineralisation at the Ranger 1 deposit is therefore set by the age of the Oenpelli Dolerite (~ 1723 Ma).In-situ ion microprobe U–Pb analysis of texturally oldest U1 uraninite yielded a discordia array with a 206Pb/238U-207Pb/235U upper intercept age of 1688 ± 46 Ma. The oldest individual ion microprobe 207Pb–206Pb age is 1684 ± 7 Ma whereas the oldest age determined by in-situ electron microprobe chemical dating of U1 uraninite is ~ 1646 Ma. Another sample containing both U1 and U2 uraninite yielded discordant data with a 206Pb/238U–207Pb/235U upper intercept age of 1421 ± 68 Ma. When the 207Pb/206Pb ages are considered the data are suggestive of U2 uraninite formation and possible resetting of the U1 age between ~ 1420 Ma and ~ 1040 Ma. All ion microprobe analyses of U1 and U2 uraninite indicate variable and possibly repeated lead loss. In contrast ion microprobe U–Pb dating of the third generation of uraninite (U3) yielded several near-concordant analyses and a 206Pb/238U–207Pb/235U upper intercept age of 474 ± 6 Ma. This age is supported by electron microprobe chemical ages of U3 uraninite between 515 Ma and 385 Ma.The new results constrain the timing of initial uranium mineralisation at the Ranger 1 deposit (Number 3 orebody) to the period ~ 1720 Ma to ~ 1680 Ma, which just overlaps with a previous U–Pb age of 1737 ± 20 Ma for uraninite-rich whole-rock samples. Our results are consistent with individual laser-ICPMS 207Pb/206Pb and chemical ages of uraninite as old as 1690–1680 Ma reported from other deposits and prospects in the ARUF.Whole-rock geochemical data in this study of the Ranger 1 deposit (Number 3 orebody) and in other studies in the ARUF demonstrate that zones of intense chloritisation associated with uranium mineralisation experienced large metasomatic gains of Mg, U, Co, Ni, Cu and S and losses of Si, Na, Ca, Sr, Ba, K, Rb, Y and the light REE. More broadly in the ARUF, a regionally extensive illite–hematite ± kaolinite-bearing ‘paleoregolith’ zone in basement beneath the McArthur Basin exhibits depletion of about half of its uranium as well as major losses in Na, Sr, Pb, Ba and minor losses of Mg. These features together with new petrographic observations suggest this zone is a regional sub-McArthur Basin alteration zone produced by interaction with diagenetic or hydrothermal fluids of primary basinal origin, rather than representing a low-temperature paleo-weathering zone before the deposition of the McArthur Basin, as previously suggested.Based on these results and a synthesis of previous work, a new multi-stage model is proposed for the Ranger 1 ore-forming mineral system that may apply to other major unconformity-related uranium deposits in the ARUF and which may be used for targeting new deposits in the region. As in most recent models, oxidised diagenetic brines within the McArthur Basin are envisaged as crucial in mobilising uranium. However, a different architecture of fluid flow is proposed involving the sub-unconformity regional basement alteration zone as a preferential source of leached uranium. Possibly driven by convection during regional magmatism at ~ 1725–1705 Ma, oxidised basinal brines were drawn downwards and laterally through fault networks and fractures in the regional sub-unconformity alteration zone, leaching uranium from hematite-altered basement rocks. Simultaneously within deeper and lateral parts of the hydrothermal system, Mg-metasomatism produced chloritic alteration and brines with increased acidity and silica content (from the desilicification of the basement rock), analogous to processes described in sub-seafloor hydrothermal systems. Silicification occurred locally (e.g., Ranger deposit) within upflow zones of convective systems due to decreases in temperature and/or pressure of the brines and/or CO2 generation during carbonate dissolution. Interruptions to convection during transient regional extensional or strike-slip tectonic events resulted in generalised lateral and downwards flow of fluids from the McArthur Basin through deepened zones of sub-unconformity alteration, transferring leached uranium into reactivated shear zones within the basement. The main stage of uraninite precipitation at the Ranger deposit and elsewhere in the ARUF is proposed to have occurred between ~ 1720 Ma and ~ 1680 Ma as a result of reduction of oxidised and evolved basin-derived ore fluids during reaction with pre-existing Fe2 +-bearing minerals and/or mixing of the ore fluids with basement-reacted silica-rich brines.A second, volumetrically minor but locally high-grade, stage of uraninite mineralisation was associated with hydrothermal disordered carbon and quartz of presently unknown origin. Available data suggest formation between ~ 1420 Ma and ~ 1040 Ma. Almost a billion years later at ~ 475 Ma, fluids capable of mobilising uranium again resulted in uraninite (U3) deposition as sparse veinlets in the Ranger deposit, representing the first documentation of uranium mineralisation of this age in the region.  相似文献   

7.
40Ar/39Ar dating studies have been carried out along the Dangjin Pass transect across the Altyn Strike-Slip Fault (ASSF). The samples gave ages of 445.2–454.3 Ma in the Northern Belt, 164.3–178.4 Ma in the Mesozoic Shear Zone and 26.3–36.4 Ma in the Cenozoic Shear Zone. Using the piercing point of the Bashikaogong Fault and the Cangma-Heihe Fault an offset of 350–400 km along the ASSF has been estimated. The 40Ar/39Ar dating of the syntectonic-growth or syntectonic-resetting minerals from the samples within the ASSF belt, and offset estimations from different age piercing points suggest that the ASSF should be initiated in the Middle Jurassic (178.4–160 Ma). Combined with previously reported ages, our studies show that the ASSF is characterized by multi-phase re-activation during 85–100, 25-40 and 8–10 Ma following its initiation in the Middle Jurassic in the regional tectonic setting of convergence between the Indian and Eurasian continents.  相似文献   

8.
The origin of bedded iron-ore deposits developed in greenstone belt-hosted (Algoma-type) banded iron formations of the Archean Pilbara Craton has largely been overlooked during the last three decades. Two of the key problems in studying these deposits are a lack of information about the structural and stratigraphic setting of the ore bodies and an absence of geochronological data from the ores. In this paper, we present geological maps for nearly a dozen former mines in the Shay Gap and Goldsworthy belts on the northeastern margin of the craton, and the first U-Pb geochronology for xenotime intergrown with hematite ore. Iron-ore mineralisation in the studied deposits is controlled by a combination of steeply dipping NE- and SE-trending faults and associated dolerite dykes. Simultaneous dextral oblique-slip movement on SE-trending faults and sinistral normal oblique-slip movement on NE-trending faults during initial ore formation are probably related to E–W extension. Uranium–lead dating of xenotime from the ores using the sensitive high-resolution ion microprobe (SHRIMP) suggests that iron mineralisation was the cumulative result of several Proterozoic hydrothermal events: the first at c. 2250 Ma, followed by others at c. 2180 Ma, c. 1670 Ma and c. 1000 Ma. The cause of the first growth event is not clear but the other age peaks coincide with well-documented episodes of orogenic activity at 2210–2145 Ma, 1680–1620 Ma and 1030–950 Ma along the southern margin of the Pilbara Craton and the Capricorn Orogen farther south. These results suggest that high-grade hematite deposits are a product of protracted episodic reactivation of a structural architecture that developed during the Mesoarchean. The development of hematite mineralisation along major structures in Mesoarchean BIFs after 2250 Ma implies that fluid infiltration and oxidative alteration commenced within 100 myr of the start of the Great Oxidation Event at c. 2350 Ma.  相似文献   

9.
The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U–Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979–711 Ma), Paleozoic (507–400 Ma), and Early (252–185 Ma) and Late (158–100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979–911 Ma, weakly deformed I-type granites at 894–815 Ma, and A-type granites at 759–711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507–470 Ma, 460–422 Ma and ∼415–400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507–470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460–422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ∼415–400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225–200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250–240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction of the Mianlue Ocean between the South Qinling Belt and the South China Block. Voluminous late-stage (225–185 Ma) magmatism evolved from early I-type to later I-A-type granitoids associated with contemporaneous lamprophyres, representative of a transition from syn- to post-collisional setting in response to the collision between the North China and the South China blocks. Late Mesozoic (158–100 Ma) granitoids, located in the southern margin of the North China Block and the eastern part of the North Qinling Belt, are characterized by I-type, I- to A-type, and A-type granitoids that were emplaced in a post-orogenic or intraplate setting. The first three of the four periods of magmatism were associated with three important orogenic processes and the last one with intracontinental process. These suggest that the tectonic evolution of the Qinling Orogen is very complicated.  相似文献   

10.
The Jiehe gold deposit, containing a confirmed gold reserve of 34 tonnes (t), is a Jiaojia-type (disseminated/stockwork-style) gold deposit in Jiaodong Peninsula. Orebodies are hosted in the contact zone between the Jurassic Moshan biotite granite and the Cretaceous Shangzhuang porphyritic granodiorite, and are structurally controlled by the NNE- to NE-striking Wangershan-Hedong Fault. Sulphide minerals are composed predominantly of pyrite with lesser amounts of chalcopyrite, galena, and sphalerite. Hydrothermal alteration is strictly controlled by fracture zones, in which disseminated sulfides and native gold are spatially associated with pervasive sericitic alteration. Mineralogical, textural, and field relationships indicate four stages of alteration and mineralization, including pyrite-bearing milky and massive quartz (stage 1), light-gray granular quartz–pyrite (stage 2), quartz–polysulfide (stage 3) and quartz–carbonate (stage 4) stages. Economic gold is precipitated in stages 2 and 3.The Jiehe deposit was previously considered to form during the Eocene (46.5 ± 2.3 Ma), based on Rb-Sr dating of sericite. However, 40Ar/39Ar dating of sericite in this study yields well-defined, reproducible plateau ages between 118.8 ± 0.7 Ma and 120.7 ± 0.8 Ma. These 40Ar/39Ar ages are consistent with geochronological data from other gold deposits in the region, indicating that all gold deposits in Jiaodong formed in a short-term period around 120 Ma. The giant gold mineralization event has a tight relationship with the extensional tectonic regime, and is a shallow crustal metallogenic response of paleo-Pacific slab subduction and lithospheric destruction in the eastern NCC.  相似文献   

11.
Formation of the Urals Volcanic-Hosted Massive Sulphide (VHMS) deposits is considered to be related with the intra-oceanic stage of the island arc(s) development in Late Ordovician – Middle Devonian time (ca. 460–385 Ma) based on the biostratigraphic record of ore-hosting sedimentary rocks. However, the known radiometric ages of ore hosting volcanics are very limited. Here we present direct dating results of sulphide mineralisation from the Yaman-Kasy and Kul-Yurt-Tau VHMS deposits using Re-Os isotope systematics showing similar mineralisation ages of 362 ± 9 Ma and 363 ± 1 Ma. These ages coincide with the previous Re-Os dating of the Alexandrinskoe (355 ± 15 Ma) and Dergamysh (366 ± 2 Ma) VHMS deposits. This Late Devonian (Famennian) age corresponds to the late stage of the ‘Magnitogorsk arc – Laurussia continent’ collision event and coincides with a beginning of large scale subduction-related granitoid magmatism. The younger mineralisation age relative to the biostratigraphic ages of host rocks is interpreted as one of the latest episodes of the multi-stage history of VHMS deposits development. Ar-Ar ages of sericites from metasomatic rocks of Barsuchi Log and Babaryk deposits show even younger ages clustering around 345 Ma, and testify another late hydrothermal event in the history of the Urals VHMS deposits.  相似文献   

12.
The latest evolution of the Neoproterozoic Agudos Grandes Batholith (Apiaí domain, SE Brazil) is marked by an important change in the type of granitic magmatism. The “late-orogenic” Piedade, Roseira, Serra dos Lopes, and Pilar do Sul granites are elliptical plutons with roughly concentric zoning and a spatial arrangement suggesting a continuous southwestward migration of the magmatic focus. The main rock types are “contaminated” calc-alkaline granites that range from mafic-rich (color index > 10), porphyritic biotite (±muscovite) granite-granodiorite in Piedade to pink, equigranular, muscovite–biotite leucogranite (CI < 5) strongly affected by hydrothermal effects in Pilar do Sul. U–Pb monazite dating indicates that these plutons were emplaced during 600–605 Ma, slightly after the main “synorogenic” magmatic stage (615–610 Ma), which was dominated by high-K, calc-alkaline, metaluminous, porphyritic hornblende-biotite granites with minor peraluminous leucogranite bodies. The “postorogenic” granites are divided into two groups on the basis of pluton shapes and U–Pb dating, both with “A-type” affinities. The approximately 585 Ma group (São Miguel Arcanjo and Capão Bonito granites) relates to the Itu granitic province, which developed around 10 m.y. after the cessation of the main regional compressional events, and cross-cuts the reworked border of the Paranapanema plate; the younger, approximately 565 Ma group is represented by two elongated plutons (Serra da Batéia and Serra da Queimada) that seem to reflect coeval orogenic events farther east in the Ribeira belt. The modal composition, magnetic susceptibility, and mafic mineral chemistry of the late-orogenic granites are consistent with an origin by contamination of metaluminous, oxidized, calc-alkaline magmas with crustal melts.  相似文献   

13.
A complete thermal history for the Qulong porphyry Cu–Mo deposit, Tibet is presented. Zircon U–Pb geochronology indicates that the mineralization at Qulong resulted from brecciation-veining events associated with the emplacement of a series of intermediate-felsic intrusions. Combined with previously published ages, our results reveal a whole intrusive history of the Qulong composite pluton. Causative porphyries were emplaced at ~ 16.0 Ma as revealed by 40Ar–39Ar dating of hydrothermal biotite (15.7 ± 0.2 Ma) and sericite (15.7 ± 0.2 Ma). Zircon and apatite (U–Th)/He (ZHe and AHe) dating of Qulong revealed that both followed similar, monotonic thermal trajectories from 900 °C (U–Pb ages: 17.5–15.9 Ma) to 200 °C (ZHe: 15.7–14.0 Ma), and that the causative porphyries experienced faster cooling at a maximum rate of greater than 200 °C/myr. The Qulong deposit was exhumed between 13.6 Ma and 12.4 Ma (AHe) at an estimated rate of 0.16–0.24 mm/y, which is consistent with previous estimates for other Gangdese Miocene porphyry deposits. Our AHe thermochronology results suggest that neither the Gangdese thrust system, nor the Yadong–Gulu graben affected or accelerated exhumation at the Qulong deposit.  相似文献   

14.
The Sanbagawa Metamorphic Belt in Japan is one of the best studied high-pressure, low temperature metamorphic belts. Recent work applying new dating techniques has challenged the previously accepted temporal framework for the evolution of the belt, as it was shown that large parts of the belt contain detrital zircons of Late Cretaceous age (younger than 100 Ma), i.e. they have protolith ages younger than the previously accepted age of metamorphism at ca. 110 Ma. A 2000 m bore hole from north-western Shikoku provided an excellent opportunity to further evaluate the areal extent of Late Cretaceous protoliths as the drill hole was drilled in an area considered to be part of the Jurassic to Early Cretaceous part of the Sanbagawa Belt. Dating of single zircon grains using the LA–ICP–MS U–Pb dating method shows that all but one sample contain zircons younger than 100 Ma and thus the protoliths are younger than the previously accepted age of metamorphism of the Sanbagawa Belt. The single sample that contains only zircons dated at 136 ± 3 Ma, apparently is of volcanic origin and could be a clast representing the source of 130–140 Ma zircons of the sample taken about 120 above this sample. In addition, three surface samples were analysed. Two of these also contain zircons younger than 100 Ma, whereas the third sample contains only zircons older than 159 Ma. The zircons from this sample also exhibit an age spectrum different from that exhibited by the other samples. The exact significance of this sample is not clear as yet.  相似文献   

15.
The crystalline basement of the Tatra Mountains in the Central Western Carpathians, forms part of the European Variscides and contains fragments of Gondwanan provenance. Metabasite rocks of MORB affinity in the Tatra Mountains are represented by two suites of amphibolites present in two metamorphic units (the Ornak and Goryczkowa Units) intercalated with metapelitic rocks. They are interpreted as relics of ocean crust, with zircon δ18OVSMOW values of 4.97–6.96‰. Zircon REE patterns suggest oxidizing to strongly oxidizing conditions in the parent mantle-derived basaltic magma. LA-MC-ICP-MS U-Pb dating of magmatic zircon cores yields a crystallization age of c. 560 Ma, with inherited components at c. 600 Ma, corresponding to the Pannotia break-up event and to the formation of the Eastern Tornquist–Paleoasian Ocean.However, the zircon rims of both suites yield evidence for two different geological histories. Zircon rims from the Ornak amphibolites record two overgrowth phases. The older rims, dated at 387 ± 8 Ma are interpreted as the result of an early stage of Variscan uplift while the younger rims dated at 342 ± 9 Ma are attributed to late Variscan collisional processes. They are characterized by high δ18OVSMOW values of 7.34–9.54‰ and are associated with migmatization related to the closure of the Rheic Ocean.Zircon rims from the Goryczkowa amphibolites yield evidence of metamorphism at 512 ± 5 Ma, subsequent Caledonian metamorphism at 447 ± 14 Ma, followed by two stages of Variscan metamorphism at 372 ± 12 Ma and 339 ± 7 Ma, the latter marking the final closure of the Rheic Ocean during late-Variscan collision.The presented data are the first direct dating of ocean crust formation in the eastern prolongation of the Tornquist Ocean, which formed a probable link to the Paleoasian Ocean.  相似文献   

16.
Porphyritic granitoids that host the Sangan iron mine deposit belong to the Khaf–Kashmar–Bardaskan volcanoplutonic belt in northeastern Iran. These intrusive rocks, mostly quartz monzonite to syenogranite porphyries, have been divided into three groups on the basis of crosscutting relationships and zircon U–Pb dating: (1) group 1, 42.3 ± 0.8 Ma, (2) group 2, 40.0 ± 0.5 Ma, and (3) group 3, 39.2 ± 0.6 Ma. The group 1 and 2 rocks host magnetite mineralization, whereas the group 3 intrusions are interpreted as syn-mineralization. They have features typical of high-K alkali-calcic to calc-alkalic magnesian rocks and are metaluminous to weakly peraluminous formed in a volcanic arc setting. Mantle-normalized, trace-element spider diagrams display enrichment in large ion lithophile elements, such as Rb, Ba, K, and Cs, and depletion in high field strength elements, e.g., Nb, Ti, Ta, Zr, Y, and heavy rare earth elements, with moderate to strong light rare earth elements enrichment ((La/Yb)N = 24.8–7.6) and a negative Eu anomaly. The parental magmas are probably derived from partial melting of mantle that had been metasomatized by a slab-derived fluid. During the upward migration of these melts, additional input of crustal materials could account for the high K characteristic for most of the intrusive rocks around the Sangan mine area.Textural evidence and mineral assemblages indicate the Sangan Fe-skarn is an oxidized magmatic-hydrothermal system caused by the group 3 intrusions.  相似文献   

17.
High-precision 40Ar/39Ar dating of lamprophyre dike swarms in the Western Province of New Zealand reveals that these dikes were emplaced into continental crust prior to, during and after opening of the Tasman Sea between Australia and New Zealand. Dike ages form distinct clusters concentrated in different areas. The oldest magmatism, 102–100 Ma, is concentrated in the South Westland region that represents the furthest inboard portion of New Zealand in a Gondwana setting. A later pulse of magmatism from ~ 92 Ma to ~ 84 Ma, concentrated in North Westland, ended when the first oceanic crust formed at the inception of opening of the Tasman Sea. Magmatic quiescence followed until ~ 72–68 Ma, when another swarm of dikes was emplaced. The composition of the dikes reveals a dramatic change in primary melt sources while continental extension and lithospheric thinning were ongoing. The 102–100 Ma South Westland dikes represent the last mafic calc-alkaline magmatism associated with a long-lived history of the area as Gondwana's active margin. The 92–84 Ma North and 72–68 Ma Central Westland dike swarms on the other hand have strongly alkaline compositions interpreted as melts from an intraplate source. These dikes represent the oldest Western Province representatives of alkaline magmatism in the greater New Zealand region that peaked in activity during the Cenozoic and has remained active up to the present day. Cretaceous alkaline dikes were emplaced parallel to predicted normal faults associated with dextral shear along the Alpine Fault. Furthermore, they temporally correspond to polyphase Cretaceous metamorphism of the once distal Alpine Schist. Dike emplacement and distal metamorphism could have been linked by a precursor to the Alpine Fault. Dike emplacement in the Western Province coupled to metamorphism of the Alpine Schist at 72–68 Ma indicates a period of possible reactivation of this proto Alpine Fault before it served as a zone of weakness during the opening of the oceanic Emerald Basin (at ~ 45 Ma) and eventually the formation of the present-day plate boundary (~ 25 Ma–recent).  相似文献   

18.
《Precambrian Research》2006,144(3-4):278-296
The evolution of the basement of southern Madagascar north and south of the Ranotsara shear zone was investigated using (U + Th)/Pb electron probe monazite age dating in combination with petrographic constraints. Several monazite grains show a stepwise progression of younger ages towards the rim indicating partial and complete resetting during tectonic, metamorphic and/or fluid events. The oldest ages, ranging from 630–2400 Ma, occur relatively rare in relic cores. A first, clear age-population is dated at 550–560 Ma. Most ages fall in two populations at 420–460 and 490–500 Ma, which in some samples overlap in error. We interprete these ages as dating low-pressure and high-temperature metamorphism. We have also clear evidence for Carboniferous (300–310 Ma) monazite overgrowth rims, which can not directly be related to macroscopic structures or metamorphic parageneses. In combination with literature data, we propose that the observed monazite age populations are related to Gondwana amalgamation and subsequent rifting events during the break up of Gondwana. Our study confirms that only the electron or ion microprobe yields sufficient spatial resolution to date individual shells of multiple zoned monazites in the polymetamorphic basement of Madagascar.  相似文献   

19.
The Xingshan porphyry Mo deposit is located in the Lesser Xing’an Range–Zhangguangcai Range metallogenic belt, NE China. Mineralization occurred in granodioritic porphyry and monzogranite, which have zircon U–Pb ages of 171.7 ± 2.2 Ma and 170.9 ± 4.6 Ma, respectively. Molybdenite Re–Os dating indicates that Mo mineralization occurred at 167.3 ± 2.5 Ma. These geochronological data suggest that the magmatic and hydrothermal activities of the Xingshan Mo deposit happened during the Middle Jurassic in Mesozoic. Positive εHf values (6.2–11.6) and young TDM2 (473–826 Ma) of the monzogranite (XS-3) and granodioritic porphyry (XS-5) indicate that the source materials of Xingshan ore-bearing rocks are the juvenile crust, which mainly accreted on the Songnen block during the Meso-Neoproterozoic. Xingshan porphyry Mo deposits resulted from the magmatism and tectonism induced by the subduction of Paleo-Pacific Ocean.  相似文献   

20.
In situ U–Pb dating and trace element analysis of zircons, combined with a textural relationship investigation in thin section, is a powerful tool to constrain the ultra high-pressure stage of high-grade metamorphism. Two types of zircon grains have been identified in thin sections of a retrograde eclogite from the main hole of the Chinese Continental Scientific Drill project in the Sulu UHP terrane. Type 1 zircon grains occur as inclusions in fresh garnet and omphacite, and Type 2 zircon grains were found in symplectite around omphacite. The fresh rims of Type 1 zircons and mantles of a few Type 2 zircons exhibit remarkably lower REE, Y, Nb and Ta contents than the inherited zircon cores, suggesting coeval growth with garnet, rutile and apatite during UHP metamorphism. These may have formed in the UHP metamorphism and survived retrograde metamorphism. The weighted average 206Pb/238U age of these zircon domains (230 ± 4 Ma, 2σ) agrees well with the published age of coesite-bearing zircon separates (230 ± 1 Ma, 2σ), suggesting that the peak UHP metamorphism in the Sulu terrane may have occurred at ~ 230 Ma.Zircon domains surrounded or cut across by symplectite could have been altered by retrograde metamorphism. Together, they provide a younger weighted average 206Pb/238U age of 209 ± 4 Ma (2σ). These retrograde zircon domains have similar REE compositions to the ~ 230 Ma UHP zircon domains. These observations imply that the ~ 209 Ma zircon domains could have formed by fluid activity-associated alterations in the amphibolite-facies metamorphism, which could have resulted in the complete loss of Pb but not REEs in these domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号