首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We collected groundwaters in and around a large (313 Mt at 1.08% Cu and 0.3% cutoff) undisturbed porphyry copper deposit (Spence) in the hyperarid Atacama Desert of northern Chile, which is buried beneath 30–180 m of Miocene piedmont gravels. Groundwaters within and down-flow of the Spence deposit have elevated Se (up to 800 μg/l), Re (up to 31 μg/l), Mo (up to 475 μg/l) and As (up to 278 μg/l) concentrations compared to up-flow waters (interpreted to represent regional groundwater flow). In contrast, Cu is only elevated (up to 2036 μg/l) in groundwaters recovered from within the deposit; Cu concentrations are low down gradient of the deposit. The differential behavior of the metals/metalloids occurs because the former group dissolves as anions, enhancing their mobility, whereas the base metals dissolve as cations and are lost from solution most likely through adsorption to clay surface exchange sites and through formation of secondary copper chlorides, carbonates, and oxides. Most groundwaters within and down-flow of the deposit have Eh–pH values around the FeII/FeIII phase boundary, limiting the impact of Fe-oxyhydroxides on oxyanions mobility. Se, Re, Mo, and As are all mobile (with filtered/unfiltered samples ~ 1) to the limit of sampling 2 km down gradient from the deposit. The increase in ore-related metals, metalloids, and sulfate and decrease in sulfate–S isotope ratios (from values similar to regional salars, + 4 to + 8‰ δ34SCDT to lower values closer to hypogene sulfides, + 1 to + 4‰ δ34SCDT) is consistent with active water–rock reactions between saline groundwaters and the Spence deposit. It is likely that hypogene and/or supergene sulfides are being oxidized under the present groundwater conditions and mineral saturation calculations suggest that secondary copper minerals (antlerite, atacamite, malachite) may also be actively forming, suggesting that supergene and exotic copper mineralization is possible even under the present hyperarid climate of the Atacama Desert.  相似文献   

2.
When Fe(II) bearing groundwaters surface in streams, particulate authigenic Fe-rich material is produced by oxidation. Such freshly precipitated Fe minerals may be transported as suspended sediment and have a profound impact on the fate of trace metals and nutrients in rivers. The objective of this study was to monitor changes in mineralogy and composition of authigenic material from its source to streams of increasing order. Groundwaters, surface waters, and suspended sediment in streams of different order were sampled in the Kleine Nete catchment (Belgium), a lowland with Fe-rich groundwaters (3.5–53.8 mg Fe/L; pH 6.3–6.9). Fresh authigenic material (>0.45 μm) was produced by oxidising filtered (<0.45 μm) groundwater and surface water. This material contained, on average, 44% Fe, and smaller concentrations of C, P, and Ca. Iron EXAFS (Extended X-ray Absorption Fine Structure) spectroscopy showed that the Fe was present as poorly crystalline hydrous ferric oxides with a structure similar to that of ferrihydrite. The Fe concentration in the suspended sediment samples decreased to 36–40% (stream order 2), and further to 18–26% (stream order 4 and 5). Conversely, the concentrations of organic C, Ca, Si, and trace metals increased with increasing stream order, suggesting mixing of authigenic material with suspended sediment from a different source. The Fe speciation in the suspended sediment was similar to that in fresh authigenic material, but more Fe–Fe interactions were observed, i.e. it was increasingly hydrolysed, suggesting ageing reactions. The suspended sediment in the streams of order 4 and 5 is estimated to contain between 31% and 59% of authigenic material, but more data are needed to refine this estimate. The authigenic material is an important sink for P in these streams which may alleviate the eutrophication risk in this catchment.  相似文献   

3.
The competitive adsorption of arsenate and arsenite with silicic acid at the ferrihydrite–water interface was investigated over a wide pH range using batch sorption experiments, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) modeling. Batch sorption results indicate that the adsorption of arsenate and arsenite on the 6-L ferrihydrite surface exhibits a strong pH-dependence, and the effect of pH on arsenic sorption differs between arsenate and arsenite. Arsenate adsorption decreases consistently with increasing pH; whereas arsenite adsorption initially increases with pH to a sorption maximum at pH 7–9, where after sorption decreases with further increases in pH. Results indicate that competitive adsorption between silicic acid and arsenate is negligible under the experimental conditions; whereas strong competitive adsorption was observed between silicic acid and arsenite, particularly at low and high pH. In situ, flow-through ATR-FTIR data reveal that in the absence of silicic acid, arsenate forms inner-sphere, binuclear bidentate, complexes at the ferrihydrite surface across the entire pH range. Silicic acid also forms inner-sphere complexes at ferrihydrite surfaces throughout the entire pH range probed by this study (pH 2.8–9.0). The ATR-FTIR data also reveal that silicic acid undergoes polymerization at the ferrihydrite surface under the environmentally-relevant concentrations studied (e.g., 1.0 mM). According to ATR-FTIR data, arsenate complexation mode was not affected by the presence of silicic acid. EXAFS analyses and DFT modeling confirmed that arsenate tetrahedra were bonded to Fe metal centers via binuclear bidentate complexation with average As(V)-Fe bond distance of 3.27 Å. The EXAFS data indicate that arsenite forms both mononuclear bidentate and binuclear bidentate complexes with 6-L ferrihydrite as indicated by two As(III)–Fe bond distances of ∼2.92–2.94 and 3.41–3.44 Å, respectively. The As–Fe bond distances in both arsenate and arsenite EXAFS spectra remained unchanged in the presence of Si, suggesting that whereas Si diminishes arsenite adsorption preferentially, it has a negligible effect on As–Fe bonding mechanisms.  相似文献   

4.
Cadmium, Co, Cu, Ni and Pb adsorption is measured on montmorillonite as a function of pH (3–11), ionic strength (0.001–0.1 M NaNO3), and sorbate concentration (0.1–10 μM metal on 0.5 g/L solid). Sorption of all metals shows strong dependence on ionic strength and sorbate concentration, as well as a break in the slope of the edge, indicative of a 2-site interaction with montmorillonite. The resulting adsorption edges are used to parameterize diffuse layer surface complexation models (DLMs) for each metal. A 2-site DLM with a bidentate variable charge surface hydroxyl site and a bidentate permanent charge exchange site produced good fits for the individual experiments, but lacked the robustness to accurately predict adsorption across the entire experimental range. Other models, such as CCM, TLM, or CD-MUSIC may be required for more accurate predictions across broad ranges of solution conditions.  相似文献   

5.
Trace element geochemistry was studied in geothermal fluids in Iceland. The major and trace element compositions of hot springs, sub-boiling, and two-phase (liquid and vapor) wells from 10 geothermal areas were used to reconstruct the fluid composition in the aquifers at depth. Aquifer fluid temperatures ranged from 4 to 300 °C, pH values between 4.5 and 9.3, and fluids typically contained total dissolved solids <1000 ppm, except in geothermal areas that have seawater and seawater-meteoric water mixtures. Trace alkali elements Li, Rb and Cs are among the most mobile elements in aquifer fluids, with concentrations in the range of <1 ppb to 3.49 ppm Li, <0.01 to 57 ppb Cs, and <1 ppb to 3.77 ppm Rb. Their chemistry is thought to be dominated by rock leaching and partitioning into Na- and K-containing major alteration minerals. Arsenic, Sb, Mo and W are typically present in concentrations in the range of 1–100 ppb. They are relatively mobile, yet Mo may be limited by molybdenite solubility. The alkaline earth elements Ba and Sr are quite immobile with concentrations in the range of <0.1–10 ppb Ba and <1–100 ppb Sr in the dilute fluids, but up to 5.9 ppm Ba and 8.2 ppm Sr in saline fluids. These elements show a systematic relationship with Ca, possibly due to substitution for Ca in Ca-containing major alteration minerals like calcite, epidote and anhydrite. Incorporation into major Ca-minerals may also be important for Mn. Many metals including Fe, Cr, Ni, Zn, Cu, Co, Pb and Ag have low mobility and concentrations, typically <1 ppb for Ag, Cd, Co, Cr, Cu, Ni, and Pb, <10 ppb for Zn and < 100 ppb for Fe, although for some metals higher concentrations are associated with saline fluids. Based on the metals assessed, saturation is approached with respect to many sulfide minerals and in some cases oxide minerals but Cu, Ni and Pb minerals are slightly but systematically undersaturated, and Ag phases significantly undersaturated. Evaluation of mineral-fluid equilibria for these metals is problematic due to their low concentrations, problems associated with assessing the aqueous species distribution by thermodynamic calculations, and uncertainties concerning the exact minerals possibly involved in such reactions. Reaction path calculations, poor comparison of concentrations measured in the samples collected at the wellhead and published downhole data as well as boiling, cooling and mass precipitation calculations suggest removal of many metals due to changes upon depressurization boiling and conductive cooling of the aquifer fluids as they ascend in wells. These results imply that processes such as mass precipitation upon fluid ascent may be highly important and emphasize the importance of considering mass movement in geothermal systems.  相似文献   

6.
《Applied Geochemistry》2006,21(8):1301-1321
Low-quality pore waters containing high concentrations of dissolved H+, SO4, and metals have been generated in the East Tailings Management Area at Lynn Lake, Manitoba, as a result of sulfide-mineral oxidation. To assess the abundance, distribution, and solid-phase associations of S, Fe, and trace metals, the tailings pore water was analyzed, and investigations of the geochemical and mineralogical characteristics of the tailings solids were completed. The results were used to delineate the mechanisms that control acid neutralization, metal release, and metal attenuation. Migration of the low-pH conditions through the vadose zone is limited by acid-neutralization reactions, resulting in the development of distinct pore-water pH zones at depth; the neutralization reactions involve carbonate (pH  5.7), Al-hydroxide (pH  4.0), and aluminosilicate solids. As the zone of low-pH pore water expands, the pH will then be primarily controlled by less soluble solids, such as Fe(III) oxyhydroxides (pH < 3.5) and the relatively more recalcitrant aluminosilicates (pH  1.3). Precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxides and hydroxysulfates control the concentrations of dissolved Fe(III). Concentrations of dissolved SO4 are principally controlled by the formation of gypsum and jarosite. Geochemical extractions indicate that the solid-phase concentrations of Ni, Co, and Zn are associated predominantly with reducible and acid-soluble fractions. The concentrations of dissolved trace metals are therefore primarily controlled by adsorption/complexation and (or) co-precipitation/dissolution reactions involving secondary Fe(III) oxyhydroxide and hydroxysulfate minerals. Concentrations of dissolved metals with relatively low mobility, such as Cu, are also controlled by the precipitation of discrete minerals. Because the major proportion of metals is sequestered through adsorption and (or) co-precipitation, the metals are susceptible to remobilization if low-pH or reducing conditions develop within the tailings.  相似文献   

7.
Arsenate and antimonate are water-soluble toxic mining waste species which often occur together and can be sequestered with varying success by a hydrous ferric oxide known as ferrihydrite. The competitive adsorption of arsenate and antimonate to thin films of 6-line ferrihydrite has been investigated using primarily adsorption/desorption kinetics monitored by in situ attenuated total reflectance infrared (ATR-IR) spectroscopy on flowed solutions containing 10−3 and 10−5 mol L−1 of both species at pH 3, 5, and 7. ICP-MS analysis of arsenate and antimonate adsorbed to 6-line ferrihydrite from 10−3 mol L−1 mixtures in batch adsorption experiments at pH 3 and 7 was carried out to calibrate the relative surface concentrations giving rise to the IR spectral absorptions. The kinetic data from 10−3 and 10−5 mol L−1 mixtures showed that at pH 3 antimonate achieved a greater surface concentration than arsenate after 60 min adsorption on 6-line ferrihydrite. However, at pH 7, the adsorbed arsenate surface concentration remained relatively high while that of adsorbed antimonate was much reduced compared with pH 3 conditions. Both species desorbed slowly into pH 3 solution while at pH 7 most adsorbed arsenate showed little desorption and adsorbed antimonate concentration was too low to register its desorption behaviour. The nature of arsenate which is almost irreversibly adsorbed to 6-line ferrihydrite remains to be clarified.  相似文献   

8.
In situ zircon U–Pb ages and Hf isotope data, major and trace elements and Sr–Nd–Pb isotopic compositions are reported for coeval syenite–granodiorites–dacite association in South China. The shoshonitic syenites are characterized by high K2O contents (5.9–6.1 wt.%) and K2O/Na2O ratios (1.1–1.2), negative Eu anomalies (Eu/Eu* = 0.65 to 0.77), enrichments of Rb, K, Nb, Ta, Zr and Hf, but depletion of Sr, P and Ti. The adakitic granodiorite and granodiorite porphyry intrusions are characterized by high Al2O3 contents (15.0–16.8 wt.%), enrichment in light rare earth elements (LREEs), strongly fractionated LREEs (light rare earth elements) to HREEs (heavy rare earth elements), high Sr (438–629 ppm), Sr/Y (29.2–53.6), and low Y (11.7–16.8 ppm) and HREE contents (e.g., Yb = 1.29–1.64 ppm). The calc-alkaline dacites are characterized by LREE enrichment, absence of negative Eu anomalies, and enrichment of LILEs such as Rb, Ba, Th, U and Pb, and depletion of HFSEs such as Nb, Ta, P and Ti.Geochemical and Sr–Nd–Hf isotopic compositions of the syenites suggest that the shoshonitic magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and feldspar. The parent magmas may have originated from partial melting of the lithospheric mantle with small amount contribution from crustal materials. The adakitic granodiorite and granodiorite porphyry have Sr–Nd–Pb isotopic compositions that are comparable to that of the mafic lower crust. They have low Mg# and MgO, Ni and Cr contents, abundant inherited zircons, low εNd(t) and εHf(t) values as well as old whole-rock Nd and zircon Hf model ages. These granodiorites were likely generated by partial melting of Triassic underplated mafic lower crust. The Hf isotopic compositions of the dacites are relatively more depleted than the Cathaysia enriched mantle, suggesting those magmas were derived from the partial melting of subduction-modified mantle sources. The coeval shoshonitic, high-K calc-alkaline and calc-alkaline rocks in Middle to Late Jurassic appear to be associated with an Andean-type subduction. This subduction could have resulted in the upwelling of the asthenosphere beneath the Cathaysia Block, which induced partial melting of the mantle as well as the mafic lower crust, and formed an arc regime in the coastal South China during Middle to Late Jurassic.  相似文献   

9.
The Korba aquifer on the east coast of Cape Bon has been overexploited since the 1960s with a resultant reversal of the hydraulic gradient and a degradation of the quality due to seawater intrusion. In 2008 the authorities introduced integrated water resources planning based on a managed aquifer recharge with treated wastewater. Water quality monitoring was implemented in order to determine the different system components and trace the effectiveness of the artificial recharge. Groundwater samples taken from recharge control piezometers and surrounding farm wells were analyzed for their chemical contents, for their B isotopes, a proven tracer of groundwater salinization and domestic sewage, and their carbamazepine content, an anti-epileptic known to pass through wastewater treatment and so recognized as a pertinent tracer of wastewater contamination. The system equilibrium was permanently disturbed by the different temporal dynamics of continuous processes such as cation exchange, and by threshold processes linked to oxidation–reduction conditions. The B isotopic compositions significantly shifted back-and-forth due to mixing with end-members of various origin. Under the variable contribution of meteoric recharge, the Plio-Quaternary groundwater (δ11B of 35–40.6‰, a mean B concentration of 30 μmol/L, no carbamazepine, n = 7) was subject to seawater intrusion that induced a high δ11B level (δ11B of 41.5–48.0‰, a mean B concentration of 36 μmol/L, and n = 8). Fresh groundwater (δ11B of 19.89‰, B concentration of 2.8 μmol/L, no carbamazepine) was detected close to the recharge site and may represent the deep Miocene pole which feeds the upper Plio-Quaternary aquifer. The managed recharge water (δ11B of 10.67–13.8‰, n = 3) was brackish and of poor quality with a carbamazepine content showing a large short term variability with an average daily level of 328 ± 61 ng/L. A few piezometers in the vicinity of the recharge site gradually acquired a B isotopic composition close to the wastewater signature and showed an increasing carbamazepine content (from 20 to 910 ng/L). The combination of B isotopic signatures with B and carbamazepine contents is a useful tool to assess sources and mixing of treated wastewaters in groundwaters. Effluent quality needs to be greatly improved before injection to prevent further degradation of groundwater quality.  相似文献   

10.
Hematite is a common primary/secondary mineral in mine drainage and mine waste settings that can adsorb dissolved metals and metalloids. This study explored the ability of synthetic hematite to retain one such contaminant, molybdate, on its surfaces under highly alkaline (pH = ∼10) conditions. X-ray diffraction (XRD), Raman spectroscopy (RS), scanning electron microscopy (SEM), and specific surface area (BET) analyses show that synthetic hematite particles are stable and able to adsorb molybdate. Raman spectra show that the hematite efficiently adsorbs molybdate and retains it on its surfaces via strong inner-sphere surface complexation. Inductively coupled plasma-mass spectrometry (ICP-MS) data indicate that hematite aged (7 and 9 days) at high and room temperatures (75 and 25 °C) retains adsorbed molybdate and that molybdate sorption increases with aging. SEM images show that aged hematite particles with adsorbed molybdate are similar in size and shape to pure hematite and exhibit no significant reduction in surface area. These findings are valuable for understanding the fate of Mo in mine wastes and mill tailings environments where the 2-line ferrihydrite to which it is adsorbed can transform to hematite.  相似文献   

11.
The Karoo volcanic sequence in the southern Lebombo monocline in Mozambique contains different silicic units in the form of pyroclastic rocks, and two different basalt types. The silicic units in the lower part of the Lebombo sequence are formed by a lower unit of dacites and rhyolites (67–80 wt.% SiO2) with high Ba (990–2500 ppm), Zr (800–1100 ppm) and Y (130–240 ppm), which are part of the Jozini–Mbuluzi Formation, followed by a second unit, interlayered with the Movene basalts, of high-SiO2 rhyolites (76–78 wt.%; the Sica Beds Formation), with low Sr (19–54 ppm), Zr (340–480 ppm) and Ba (330–850 ppm) plus rare quartz-trachytes (64–66 wt.% SiO2), with high Nb and Rb contents (240–250 and 370–381 ppm, respectively), and relatively low Zr (450–460 ppm). The mafic rocks found at the top of the sequence are basalts and ferrobasalts belonging to the Movene Formation. The basalts have roughly flat mantle-normalized incompatible element patterns, with abundances of the most incompatible elements not higher than 25 times primitive mantle. The ferrobasalt has TiO2  4.7 wt.%, Fe2O3t = 16 wt.%, and high Y (100 ppm), Zr (420 ppm) and Ba (1000 ppm). The Movene basalts have initial (at 180 Ma) 87Sr/86Sr = 0.7052–0.7054 and 143Nd/144Nd = 0.51232, and the Movene ferrobasalt has even lower 87Sr/86Sr (0.70377) and higher 143Nd/144Nd (0.51259). The silicic rocks show a modest range of initial Sr-(87Sr/86Sr = 0.70470–0.70648) and Nd-(143Nd/144Nd = 0.51223–0.51243) isotope ratios. The less evolved dacites could have been formed after crystal fractionation of oxide-rich gabbroic cumulates from mafic parental magmas, whereas the most silica-rich rhyolites could have been formed after fractional crystallization of feldspars, pyroxenes, oxides, zircon and apatite from a parental dacite magma. The composition of the Movene basalts imply different feeding systems from those of the underlying Sabie River basalts.  相似文献   

12.
The Ebrahim-Attar (EBAT) leucogranite body is intruded within the Jurassic metamorphic complex of the Ghorveh area, located in the northern part of the Sanandaj Sirjan zone (SaSZ) of northwest Iran. The granite comprises alkali feldspar, quartz, Na-rich plagioclase and to a lesser extent, muscovite and biotite. Garnet and beryl are also observed as accessory minerals. Additionally, high SiO2 (71.4–81.0wt %) and Rb (145–440 ppm) content; low MgO (<0.12wt %), Fe2O3 (< 0.68 wt.%), Sr (mainly < 20 ppm), Ba (<57 ppm), Zr (10–53 ppm) and rare earth elements (REEs) low content (3.88–94.9 ppm with an average = 21.2 ppm); and flat REE patterns with a negative Eu anomaly characterize these rocks. The chemical composition and mineral paragenesis indicate that the rocks were formed by the partial melting of siliciclastic to pelitic rocks and can be classified as per-aluminous leucogranite or strongly per-aluminous (SP) granite. The Rb-Sr whole rock and mineral isochrons confirm that crystallization of the body occurred at 102.5 ± 6.1 Ma in Albian. The 87Sr/86Sr(i) and 143Nd/144Nd(i) ratios are 0.7081 ± 0.009 and 0.51220 ± 0.00005, respectively, and εNd(t) values range from −5.8 to −1.6. These values verify that the source of this body is continental crust. The Nd model ages (TDM2) vary between 1.0 and 1.3 Ga and are more consistent with the juvenile basement of Pan African crust. Based on these results, we suggest that the upwelling of the hot asthenospheric mantle in the SaSZ (likely during the Neo-Tethys rollback activity) occurred after the late Cimmerian orogeny. Consequently, we suggest that this process was responsible for a thinning and heating of the continental crust, from which the SP granite was produced by the partial melting of muscovite rich in pelitic or felsic-metapelitic rocks in the northern SaSZ.  相似文献   

13.
Between March 2008 and August 2009, 65,445 tonnes of ∼75 mol% CO2 gas were injected in a depleted natural gas reservoir approximately 2000 m below surface at the Otway project site in Victoria, Australia. Groundwater flow and composition were monitored biannually in two overlying aquifers between June 2006 and March 2011, spanning the pre-, syn- and post-injection periods. The shallower (∼0–100 m), unconfined, porous and karstic aquifer of the Port Campbell Limestone and the deeper (∼600–900 m), confined and porous aquifer of the Dilwyn Formation contain valuable fresh to brackish water resources. Groundwater levels in either aquifer have not been affected by the drilling, pumping and injection activities that were taking place, or by the rainfall increase during the project. In terms of groundwater composition, the Port Campbell Limestone groundwater is brackish (electrical conductivity = 801–3900 μS cm−1), cool (temperature = 12.9–22.5 °C), and near-neutral (pH = 6.62–7.45), whilst the Dilwyn Aquifer groundwater is fresher (electrical conductivity = 505–1473 μS cm−1), warmer (temperature = 42.5–48.5 °C), and more alkaline (pH = 7.43–9.35). Carbonate dissolution, evapotranspiration and cation exchange control the composition of the groundwaters. Comparing the chemical and isotopic composition of the groundwaters collected before, during and after injection shows no statistically significant changes; even if they were statistically significant, they are mostly not consistent with those expected if CO2 addition had taken place. The monitoring program reveals no impact on the groundwater resources attributable to the C storage demonstration project.  相似文献   

14.
The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO2 varying between (0.982–98.154 kPa) at 25 °C.The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO3 and Fe(CO3)33−, with formation constants log*β°1,1,1 = 10.76 ± 0.38 and log β°1,0,3 = 24.24 ± 0.42, respectively.The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO2 and at T = (25 ± 1) °C, as log*Ks,0 = 1.19 ± 0.41.The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO2-rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers.  相似文献   

15.
The Xincheng deposit is the only large gold deposit with a proven reserve of >200 t gold hosted by the Early Cretaceous granitoids in northwest Jiaodong Peninsula, East China. The granitoids hosting this ore deposit comprise an inner medium- to fine-grained quartz monzonite and an outer medium- to coarse-grained monzogranite with distinctive K-feldspar megacrysts. LA–ICP–MS zircon dating yields U–Pb ages of 128 ± 1 to 132 ± 1 Ma and 127 ± 2 to 129 ± 1 Ma, for the quartz monzonite and the monzogranite, respectively. The Early Cretaceous ages obtained in our study are comparable with the 126–130 Ma age range reported for the Guojialing granitic suite. The monzogranites, typical high Ba–Sr granites, possess high SiO2 (70.89–73.35%), K2O (3.85–4.32%), total alkalis (K2O + Na2O = 8.08–8.68%), Sr (634–888 ppm), Ba (1395–2111 ppm) and LREE (59.43–145.88), with low HREE and HFSE contents and insignificant Eu anomalies. The rocks display markedly high Sr/Y (114–297) and (La/Yb)N (20–79) ratios. They have low MgO (0.23–0.62%), Cr (0.4–8.33 ppm) and Ni (0.47–2.92 ppm) contents. The typical high Ba–Sr signatures of the outer acidic monzogranites are also shared by the inner intermediate-acidic quartz monzonites, with a relatively higher abundance of these elements. The plagioclases in the quartz monzonites and monzogranites are oligoclase–andesine with An contents of 11.7–44.5%, and oligoclase with An contents of 12.9–29.3%, respectively, which both show the reverse zoning texture. The quartz monzonites have zircon εHf(t) values of −21.3 to −13.9 (average −18.7), which are less negative and show larger variations than those of the monzogranites (εHf(t) = −24.7 to −18.1, average −19.5). Detailed elemental, mineralogical and isotopic data suggest that the high Ba–Sr quartz monzonites and monzogranites were most likely generated by partial melting of the basement rocks of the Jiaobei terrane accompanied by crustal assimilation, with minor addition of the intermediate magma derived from the partial melting of juvenile mafic lower crust formed by the earlier underplating of mantle magma, and the quartz monzonites may represent the path of intermediate magma inputting into felsic magma. In combination with previous investigations, we suggest subduction of the paleo-Pacific slab beneath the North China Craton (NCC) and associated asthenosphere upwelling were most likely the mechanism associated with the generation of the high Ba–Sr granites.  相似文献   

16.
This paper investigated the sources and behaviors of sulfate in groundwater of the western North China Plain using sulfur and oxygen isotopic ratios. The groundwaters can be categorized into karst groundwater (KGW), coal mine drainage (CMD) and pore water (subsurface saturated water in interstices of unconsolidated sediment). Pore water in alluvial plain sediments could be further classified into unconfined groundwater (UGW) with depth of less than 30 m and confined groundwater (CGW) with depth of more than 60 m. The isotopic compositions of KGW varied from 9.3‰ to 11.3‰ for δ34SSO4 with the median value of 10.3‰ (n = 4) and 7.9‰ to 15.6‰ for δ18OSO4 with the median value of 14.3‰ (n = 4) respectively, indicating gypsum dissolution in karst aquifers. δ34SSO4 and δ18OSO4 values of sulfate in CMD ranged from 10.8‰ to 12.4‰ and 4.8‰ to 8.7‰ respectively. On the basis of groundwater flow path and geomorphological setting, the pore water samples were divided as three groups: (1) alluvial–proluvial fan (II1) group with high sulfate concentration (median values of 2.37 mM and 1.95 mM for UGW and CGW, respectively) and positive δ34SSO4 and δ18OSO4 values (median values of 8.8‰ and 6.9‰ for UGW, 12.0‰ and 8.0‰ for CGW); (2) proluvial slope (II2) group with low sulfate concentration (median values of 1.56 mM and 0.84 mM for UGW and CGW, respectively) and similar δ34SSO4 and δ18OSO4 values (median values of 9.0‰ and 7.4‰ for UGW, 10.2‰ and 7.7‰ for CGW); and (3) low-lying zone (II3) group with moderate sulfate concentration (median values of 2.13 mM and 1.17 mM for UGW and CGW, respectively) and more positive δ34SSO4 and δ18OSO4 values (median values of 10.7‰ and 7.7‰ for UGW, 20.1‰ and 8.8‰ for CGW). In the present study, three major sources of sulfate could be differentiated as following: sulfate dissolved from Ordovician to Permian rocks (δ34SSO4 = 10–35‰ and δ18OSO4 = 7–20‰), soil sulfate (δ34SSO4 = 5.9‰ and δ18OSO4 = 5.8‰) and sewage water (δ34SSO4 = 10.0‰ and δ18OSO4 = 7.6‰). Kinetic fractionations of sulfur and oxygen isotopes as a result of bacterial sulfate reduction (BSR) were found to be evident in the confined aquifer in stagnant zone (II3), and enrichment factors of sulfate–sulfur and sulfate–oxygen isotopes calculated by Rayleigh equation were −12.1‰ and −4.7‰ respectively along the flow direction of groundwater at depths of 60–100 m. The results obtained in this study confirm that detailed hydrogeological settings and identification of anthropogenic sources are critical for elucidating evolution of δ34SSO4 and δ18OSO4 values along with groundwater flow path, and this work also provides a useful framework for understanding sulfur cycling in alluvial plain aquifers.  相似文献   

17.
《Applied Geochemistry》2006,21(8):1335-1346
The chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in marine sediments from two coastal regions of Singapore (Kranji in the NW, and Pulau Tekong in the NE) was determined using the latest version of the 3-step sequential extraction procedure, as described by the European Community Bureau of Reference (1999). To obtain a mass balance, a fourth step, i.e., digestion and analysis of the residue was undertaken using a microwave-assisted acid digestion procedure. The total content of all metals except for Pb in sediments was greater in Kranji than in Pulau Tekong. All metals, except Cd were more mobile and bio-available in Kranji, where metals were present at higher percentages in the acid-soluble fractions (the most labile fraction). In sediments from Kranji, the mobility order of the heavy metals studied was Cd > Ni > Zn > Cu > Pb > Cr, whereas sediments from Pulau Tekong showed the same order for Cd, Ni, Pb and Cr, but had a reverse order for Cu and Zn (Cu > Zn). The highest percentages of Cr, Ni and Pb were found in the residual fractions in both Kranji (78.9%, 54.7%, 55.9%, respectively) and Pulau Tekong (82.8%, 77.3%, 62.2%, respectively), meaning that these metals were strongly bound to the sediments. Results are consistent with findings from Barcelona, Spain where similar results for Cr and Ni have also been reported for marine sediments. The sum of the 4 steps (acid-soluble + reducible + oxidizable + residual) was in good agreement with the total content, which implies that the accuracy of the microwave extraction procedure in conjunction with the GFAAS analytical method is assured.  相似文献   

18.
The components and concentrations of metals in street dust are indictors of environmental pollution. To explore the pollution levels of Cd, Cr, Cu, Mn, Ni and Pb in street dust and their spatial distribution characteristics, 220 dust samples were collected in a grid pattern from urban street surfaces in Beijing. Multivariate statistics and spatial analyses were adopted to investigate the associations between metals and to identify their pollution patterns. In comparison with the soil background values, elevated metal concentrations were found, except those for Mn and Ni. The results of the geo-accumulation index (Igeo) and the potential ecological risk index (Eri) of the metals revealed the following orders: Cd > Cu > Cr > Pb > Ni > Mn and Cd > Cu > Pb > Cr > Ni. Levels of Igeo ranging from 0 to 5 were found and about 80% of the samples were below the moderately polluted level. The Eri values of single elements were within the low ecological risk level in most sampling sites. Most of the metals in the street dust of Beijing were statistically significantly correlated. It is hard to clearly identify the sources of each metal in the street dust since local environments are very complex. Cadmium, Cu, Cr, Mn and Pb showed medium spatial autocorrelations within the sampling region. Similar spatial distribution patterns were observed for Cu, Cr and Pb, and these metals had relatively high spatial variabilities and were enriched in the center of the city with several peaks scattered in the suburbs. Metal pollution anomalies were identified by using cluster and outlier analyses. Locations identified as clusters with high values indicated non-point source pollution, while locations identified as outliers with high values indicated point source pollution. Traffic, construction, and other human activities influenced these high values. In addition, the locations identified as outliers with low values in urban areas might benefit from less transportation and better management.  相似文献   

19.
Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K–Ar ages are presented for Quaternary (0.90–0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (Lan/Smn = 0.76–0.83), with 87Sr/86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/144Nd (εNd = + 5.9–+ 7.3) and Pb isotopic compositions (206Pb/204Pb = 18.47–18.55, 207Pb/204Pb = 15.52–15.57, 208Pb/204Pb = 38.62–38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.  相似文献   

20.
This study was conducted to assess the anthropogenic impact on metal concentrations in the bottom sediments of the Juam reservoir, Korea, and in stream sediments in its catchment, and to estimate the potential mobility of selected metals (Fe, Mn, Cu, Ni, Pb and Zn) using sequential extraction. A comparison of the metal concentrations in the stream sediments with mean background values in sediments collected from first- or second-order creeks shows that Pb, Cu and Ni are the most affected by anthropogenic inputs. The 206Pb/207Pb ratios of the bottom and core sediments (means: 1.2320 ± 0.0502 and 1.2212 ± 0.0040, respectively) suggest that Pb contamination is mainly due to the waste discharge of abandoned coal and metal mines rather than industrial and airborne sources. Considering the proportion of metals bound to the exchangeable, carbonate and reducible fractions, the comparative mobility of metals is suggested to decrease in the order Mn > Pb > Zn > Ni > Fe  Cu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号