首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 934 毫秒
1.
Biotite granites and muscovite-bearing granites are dominant rock types of the widespread granites in SE China. However, their petrogenesis has been enigmatic. A combined study of zircon U–Pb dating and Lu–Hf isotopes, whole-rock element geochemistry and Sr–Nd–O isotopes was performed for three late Mesozoic granitic plutons (Xinfengjie, Jiangbei and Dabu) in central Jiangxi province, SE China. All the plutons are composed of biotite granites and muscovite-bearing granites that have been poorly investigated previously. The new data not only allow us to assess their sources and magma evolution processes, but also helps us to better understand the genetic link to the large-scale polymetallic mineralization in SE China. LA-ICP-MS zircon U–Pb dating shows that three plutons were emplaced in the Late Jurassic (159–148 Ma) and that the muscovite-bearing granites are almost contemporaneous with the biotite granites. The biotite granites have SiO2 contents of 70.3–74.4 wt% and are weakly to strongly peraluminous with ASI from 1.00 to 1.26, and show a general decrease in ASI with increasing SiO2. They have relatively high zircon saturation temperatures (T Zr = 707–817 °C, most > 745 °C) and show a general decrease in T Zr with increasing SiO2. They have high initial 87Sr/86Sr ratios (0.7136 to 0.7166) and high δ18O values (9.1–12.8‰, most > 9.5‰) and clearly negative ε Nd (T) (? 9.5 to ? 11.8) and ε Hf (T) (in situ zircon) (? 13.1 to ? 13.5). The muscovite-bearing granites have high SiO2 contents (74.7–78.2 wt%). They are also weakly to strongly peraluminous with ASI of 1.04–1.18 but show a general increase in ASI with increasing SiO2. They have relatively low T Zr (671–764 °C, most < 745 °C) and also show a general decrease in T Zr with increasing SiO2. The muscovite-bearing granites have high Rb (up to 810 ppm) and high (K2O + Na2O)/CaO (up to 270), Rb/Sr (up to 42) and Rb/Ba (up to 30) as well as low K/Rb (< 150, down to 50), Zr/Hf (< 24, down to 11) and Nb/Ta (< 6, down to 2). They show similar Nd–O–Hf isotopic compositions to the biotite granites with ε Nd (T) of ? 8.7 to ? 12.0, δ18O of 8.7–13.0‰ (most > 9.5‰) and ε Hf (T) (in situ zircon) of ? 11.3 to ? 13.1. Geochemical data suggest the origin of the biotite granites and muscovite-bearing granites as follows: Partial melting of Precambrian metasedimentary rocks (mainly two-mica schist) in the lower crust at temperatures of ca. 820 °C generated the melts of the less felsic biotite granites. Such primary crustal melts underwent biotite-dominant fractionation crystallization, forming the felsic biotite granites. Progressive plagioclase-dominant fractionation crystallization from the evolved biotite granites produced the more felsic muscovite-bearing granites. Thus, the biotite granites belong to the S-type whereas the muscovite-bearing granites are highly fractionated S-type granites. We further suggest that during the formation of the muscovite-bearing granites the fractional crystallization was accompanied by fluid fractionation and most likely the addition of internally derived mineralizing fluids. That is why the large-scale polymetallic mineralization is closely related to the muscovite-bearing granites rather than biotite granites in SE China. This is important to further understand the source and origin of biotite granites and muscovite-bearing granites in SE China even worldwide.  相似文献   

2.
The ore potential of Pacific Li–F granites is considered on the basis of original and published data on composition of these granites and related metasomatic rocks in the Badzhal (Amur region) and Kuiviveem–Pyrkakai (Chukchi Peninsula) ore districts. The accessory mineralization in rare-metal granites is compared with that in W–Sn deposits. The main features in evolution of magmatic and hydrothermal mineralization are pointed out. A conclusion on the similarity between mineralization of the zwitter–tourmalinite type and accessory minerals in Li–F granites is drawn. It is established that magmatic and hydrothermal types of mineralization belong to the same evolutionary sequence. Genetic links between Li–F granites and the large ore deposits in the East Asian tungsten–tin zone are suggested.  相似文献   

3.
Despite extensive geochemical study and their importance to granite studies, the geochronology of Silurian to early-Devonian granitic rocks of southeastern Australia is poorly understood. In order to provide an improved temporal framework, new ion microprobe U–Pb zircon ages are presented from these rocks, and previous work is critically reviewed. Geochronological control is best in the Berridale Batholith, where S- and I-type granites have a close spatial relationship. In this region, there is a small volume of I-type granite that crystallised at 436 Ma, followed closely by a large volume of S-type granite at 432 Ma. I-type granite is abundant in a second peak at ca 417 Ma, although the Jindabyne pluton from the Kosciuszko Batholith is slightly older, at 424 Ma. A broader survey of S-type granite throughout the eastern Lachlan Orogen shows that the 432 Ma event is ubiquitous. There is no temporal overlap between S- and I-type granites in the Kosciuszko and Berridale Batholiths, which suggests that factors other than variations in degree of crustal contamination (which may include variation in tectonic setting, heat-flow, mass transfer across the crust–mantle boundary and/or availability in source materials) contribute to the diversity in granite types. The S-type granitic rocks occupy an aerial extent of greater than 28 000 km2, and geochronological constraints suggest that the crystallisation of these granites took place over a relatively small interval, probably less than 10 m.y. This implies a magmatic flux of over 64 km3/Ma per km strike length, comparable to other high-flux granitic belts. Previous work has linked the Benambran Orogeny to the generation of the S-type granites, and so the age of these granites constrains the age of Benambran Orogenesis  相似文献   

4.
《International Geology Review》2012,54(10):1222-1243
ABSTRACT

Neoproterozoic I-type granites could provide vital insights into the crust–mantle interaction and the crustal evolution along the western Yangtze Block, South China. This paper presents new zircon U–Pb ages, bulk-rock geochemistry, and in situ zircon Lu–Hf isotope on the Dalu I-type granites from the southwestern Yangtze Block. Zircon U–Pb dating show the crystallization ages of 781.1 ± 2.8 Ma for granodiorites and 779.8 ± 2.0 Ma for granites, respectively. The Dalu granodiorites are Na-rich, calc-alkaline, metaluminous to slightly peraluminous (A/CNK = 0.94–1.08). Zircons from granodiorite have positive εHf(t) values (+2.16 to +7.39) with crustal model ages of 1.21–1.54 Ga, indicating juvenile mafic lower crust source. The Dalu granites are high-K calc-alkaline, peraluminous rocks. They have variable zircon εHf(t) values (?4.65 to +5.80) with crustal model ages of 1.31–1.97 Ga, suggesting that they were derived from the mature metasediment-derived melts by the mixing of newly formed mafic lower crust-derived melts. The geochemical variations in Dalu pluton is dominated not only by the different source rocks but also by the different melting temperatures. Combining with the geochemistry and isotopic compositions of I-type granitoids and tectonic setting in the western Yangtze Block, we propose that the Dalu I-type granodiorites–granites associations are the magmatic response from different crustal levels, which were induced by the heat anomaly due to the asthenosphere upwelling in the subduction-related setting.  相似文献   

5.
The Sergipano Belt is the outcome of collision between the Pernambuco–Alagoas Massif and the São Francisco Craton during Neoproterozoic assembly of West Gondwana. Field relationships and U–Pb geochronology of granites intruded in garnet micaschists of the Macururé Domain are used to constrain the main collisional event (D2) in the belt. The granites are divided into two groups, the pre-collisional granites (pre- to early-D2) and the syn-collisional granites (syn- to tardi-D2), the latter were emplaced as sheets along the S2 axial plane foliation or they were collected at the hinge zones of F2 folds. A U–Pb SHRIMP zircon age of 628 ± 12 Ma was obtained for the pre-collisional Camará tonalite. Two U–Pb TIMS titanite ages were obtained for the syn-collisional granites, 584 ± 10 Ma for the Angico granite and 571 ± 9 Ma for the Pedra Furada granite, and these ages are close to the garnet-whole rock Sm–Nd isochron of 570 Ma found for the peak of metamorphism in the Sergipano Belt. The ages of the Camará tonalite (628 Ma) and the Pedra Furada granite (571 Ma) mark respectively the maximum age for beginning of the D2 event and minimum age for the end in the Macururé Domain. Using these ages, the main Neoproterozoic D2 collisional event has been in operation in the Sergipano Belt for at least 57 million years. Correlation with coeval granitoids farther north in the Borborema Province indicate that while in the Sergipano Belt the syn-D2 granites (ca. 590–570 Ma) were emplaced under compression, in the Borborema Province they emplaced under extensional conditions related to regional strike-slip shear zones. These contrasting emplacement settings for contemporaneous Neoproterozoic granitoids are explained by a combination of continent–continent collision and extrusion tectonics.  相似文献   

6.
New age dating (291 Ma) was obtained for one of the largest alkaline granite massifs in the world, the Khan–Bogd Massif (Mongolia). For the first time, apart from zircon, other zirconium silicates, elpidite and armstrongite, have been analyzed. Our determinations showed the highly depleted nature of the mantle sources of granites with εNd = 12. All the studied Zr-silicates demonstrate positive Eu anomalies in the REE patterns, which indicate a low oxidation potential during alkaline granite formation.  相似文献   

7.
Most rare-metal granites in South China host major W deposits with few or without Ta–Nb mineralization. However, the Yashan granitic pluton, located in the Yichun area of western Jiangxi province, South China, hosts a major Nb–Ta deposit with minor W mineralization. It is thus important for understanding the diversity of W and Nb–Ta mineralization associated with rare-metal granites. The Yashan pluton consists of multi-stage intrusive units, including the protolithionite (-muscovite) granite, Li-mica granite and topaz–lepidolite granite from the early to late stages. Bulk-rock REE contents and La/Yb ratios decrease from protolithionite granite to Li-mica granite to topaz–lepidolite granite, suggesting the dominant plagioclase fractionation. This variation, together with increasing Li, Rb, Cs and Ta but decreasing Nb/Ta and Zr/Hf ratios, is consistent with the magmatic evolution. In the Yashan pluton, micas are protolithionite, muscovite, Li-mica and lepidolite, and zircons show wide concentration ranges of ZrO2, HfO2, UO2, ThO2, Y2O3 and P2O5. Compositional variations of minerals, such as increasing F, Rb and Li in mica and increasing Hf, U and P in zircon are also in concert with the magmatic evolution from protolithionite granite to Li-mica granite to topaz–lepidolite granite. The most evolved topaz–lepidolite granite has the highest bulk-rock Li, Rb, Cs, F and P contents, consistent with the highest contents of these elements and the lowest Nb/Ta ratio in mica and the lowest Zr/Hf ratio in zircon. Ta–Nb enrichment was closely related to the enrichment of volatile elements (i.e. Li, F and P) in the melt during magmatic evolution, which raised the proportion of non-bridging oxygens (NBOs) in the melt. The rims of zoned micas in the Li-mica and topaz–lepidolite granites contain lower Rb, Cs, Nb and Ta and much lower F and W than the cores and/or mantles, indicating an exotic aqueous fluid during hydrothermal evolution. Some columbite-group minerals may have formed from exotic aqueous fluids which were originally depleted in F, Rb, Cs, Nb, Ta and W, but such fluids were not responsible for Ta–Nb enrichment in the Yashan granite. The interaction of hydrothermal fluids with previously existing micas may have played an important role in leaching, concentrating and transporting W, Fe and Ti. Ta–Nb enrichment was associated with highly evolved magmas, but W mineralization is closely related to hydrothermal fluid. Thus these magmatic and hydrothermal processes explain the diversity of W and Ta–Nb mineralizations in the rare-metal granites.  相似文献   

8.
Tonalite–trondhjemite–granodiorite gneisses (TTG) and K-rich granites are extensively exposed in the Mesoarchean to Paleoproterozoic Bundelkhand craton of central India. The TTGs rocks are coarse- grained with biotite, plagioclase feldspar, K-feldspar and amphibole as major constituent phases. The major minerals constituting the K-rich granites are K-feldspar, plagioclase feldspar and biotite. They are also medium to coarse grained. Mineral chemical studies show that the amphiboles of TTG are calcic amphibole hastingsite, plagioclase feldspars are mostly of oligoclase composition, K-feldspars are near pure end members and biotites are solid solutions between annite and siderophyllite components. The K-rich granites have biotites of siderophyllite–annite composition similar to those of TTGs, plagioclase feldspars are oligoclase in composition, potassic feldspars have \(\hbox {X}_{\mathrm{K}}\) ranging from 0.97 to 0.99 and are devoid of any amphibole. The tonalite–trondhjemite–granodiorite gneiss samples have high \(\hbox {SiO}_{2}\) (64.17–74.52 wt%), \(\hbox {Na}_{2}\hbox {O}\) (3.11–5.90 wt%), low Mg# (30–47) and HREE contents, with moderate \((\hbox {La/Yb})_{\mathrm{CN}}\) values (14.7–33.50) and Sr/Y ratios (4.85–98.7). These geochemical characteristics suggest formation of the TTG by partial melting of the hydrous basaltic crust at pressures and depths where garnet and amphibole were stable phases in the Paleo-Mesoarchean. The K-rich granite samples show high \(\hbox {SiO}_{2}\) (64.72–76.73 wt%), \(\hbox {K}_{2}\hbox {O}\) (4.31–5.42), low \(\hbox {Na}_{2}\hbox {O}\) (2.75–3.31 wt%), Mg# (24–40) and HREE contents, with moderate to high \((\hbox {La/Yb})_{\mathrm{CN}}\) values (9.26–29.75) and Sr/Y ratios (1.52–24). They differ from their TTG in having elevated concentrations of incompatible elements like K, Zr, Th, and REE. These geochemical features indicate formation of the K-granites by anhydrous partial melting of the Paleo-Mesoarchean TTG or mafic crustal materials in an extensional regime. Combined with previous studies it is interpreted that two stages of continental accretion (at 3.59–3.33 and 3.2–3.0 Ga) and reworking (at 2.5–1.9 Ga) occurred in the Bundelkhand craton from Archaean to Paleoproterozoic.  相似文献   

9.
This work presents isotope Sm-Nd data obtained for bulk samples of granites of all 8 emplacement phases of the Raumid granite massif, which occurred 35 Ma ago at a hypabyssal depth during the orogenic stage of development of Southern Pamir fold system. The 147Sm/144Nd ratio in studied collection of granite samples ranges between 0.091 and 0.323; the εNd(T) value is–4.0. The Sm-Nd isotope study results suggest that all granite varieties distinguished in the Raumid massif are comagmatic formations and contamination and hybridization processes did not play any role in REE distribution in granites. At this, the source of parental magma did not change during granite generation. We assume that the only process, resulted in the trace element evolution in granites, was differentiation of three batches of magma sequentially uplifted from the source.  相似文献   

10.
New whole-rock major and trace elements,and zircon U-Pb and Hf-Nd isotope compositions are reported for the Karamay dikes,enclaves,and host granites in the West Junggar,NW China.Zircon U-Pb dating of the Karamay pluton yields an age of 300.7 ± 2.3 Ma for the enclave and 300.0 ± 2.6 Ma for the host granite,which was intruded by dike with an age of 298 Ma.The host granites exhibit relatively low SiO_2 contents and A/CNK and Ga/Al ratios,low initial ~(87)Sr/~(86)Sr ratios(0.703421—0.703526) and positive εHf(t)(5.5—14.1) and εNd(t)(7.3—8.1) values with a young model age,suggesting that they are I-type granites and were mainly derived from a juvenile lower crustal source.The enclaves and dikes belong to an andesitic calc-alkaline series and have high MgO concentrations at low silica content and positive εNf(t)(7.6-13.2,14.2-14.9) and εNd(t)(6.8-8.3,~6.9) values.They are enriched in LILEs(Rb,Ba and U) and LREE and depleted in HFSEs(Nb and Ta) with insignificant negative Eu anomalies,indicating that the melts were derived from an enriched lithospheric mantle modified by subducted oceanic crust-derived melts and minor fluids,followed by fractional crystallization.The Karamay host granites and enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and lithospheric mantle-derived magmas,and were intruded by the unmixed dikes subsequently.The upwelling mantle through a slab window in an island arc environment might have triggered partial melting of the lithospheric mantle and its subsequent interaction with the granitic magma,further suggesting that the ridge subduction played an important role in the crustal growth of West Junggar.  相似文献   

11.
Accessory mineralization of the Late Cretaceous intrusive series in the Far East was investigated on the basis of published data and the author’s original evidence. The composition of accessory minerals from leucogranite, monzonitoid rocks, and Li–F granites has been established. The trend in the evolution of Late Cretaceous granitoids is characterized by an increase in the mineral-forming role of iron and rare elements. Diverse accessory minerals and their typomorphic assemblages have been identified for Li–F granites and ongonites. The regional specificity of accessory mineralization in rare-metal granites consists in the leading role of the minerals W, Ta, Nb, Bi, Y, REE, and As. The uniformity of mineral species and mineral assemblages and the typomorphism and evolution of accessory minerals are inherent to the Far East belt of Li–F granites.  相似文献   

12.
The late-Hercynian granites of Königshain underwent multistage hydrothermal processes. Extensive high-temperature late-magmatic alteration is, for example, indicated by low Zr/Hf and an REE pattern displaying the tetrad effect. Intensive post-magmatic alteration of the granite occurred along brittle structures. At least two main stages of post-magmatic hydrothermal alteration are involved. The first high-temperature stage, which is characterized by albitization and/or quartz leaching (episyenitization), resulted from fluid–rock interaction with late-magmatic fluids that very probably mixed with external low-salinity fluids. Quartz dissolution was triggered by vapour condensation and/or the cooling of these fluids (below 450??°C) along brittle structures. The high porosity resulting from quartz leaching during stage 1 assisted subsequent circulation of low-temperature fluids at stage 2; the latter is characterized by the chloritization and illitization of episyenites. Almost all major and trace elements were enriched or depleted during one of the main alteration stages. However, Zr, Hf, Th, and Ti were immobile during post-magmatic alteration. The significant depletion of LREE and the enrichment of HREE in albitized samples is controlled by the dissolution of monazite and the new formation of HREE-rich polycrase-(Y) or aeschynite-(Y) during post-magmatic stage 1. Negative Ce anomalies of episyenites are associated with illitization and suggest oxidizing conditions during stage 2.  相似文献   

13.
《International Geology Review》2012,54(13):1735-1754
Widespread granitic intrusions in the northeast part of the Wulonggou area were previously thought to be emplaced into the Palaeoproterozoic Jinshuikou Group during the Neoproterozoic. This contribution presents detailed LA-ICP-MS zircon U–Pb geochronology, major and trace element geochemistry, and zircon Hf isotope systematic on the Wulonggou Granodiorite and Xiaoyakou Granite from the Wulonggou area. Three granodiorite samples yielded U–Pb zircon ages of 247 ± 2, 248 ± 1, and 249 ± 1 Ma, and one granite sample yielded U–Pb zircon age of 246 ± 3 Ma. The granodiorite samples are metaluminous with an alumina saturation index of 0.90–0.96, as well as intermediate- to high-alkali contents of 5.49–6.14 wt.%, and low Zr+Nb+Ce+Y contents, and low Fe2O3T/MgO ratios, which suggest an I-type classical island arc magmatic source. The granite samples are peraluminous with an alumina saturation index of 1.02–1.03, Sr content of 305.00–374.00 ppm, Sr/Y ratios of between 17.68 and 28.77, (La/Yb)N values of 16.98–25.07, low HREEs (Yb = 1.10–2.00 ppm), and low Y (13.00–21.10 ppm), which suggest adakite-like rocks. All granodiorite samples have zircons εHf(t) values ranging from ?2.9 to +3.9, and granite samples have zircon εHf(t) values ranging from ?7.8 to +3.2. These Hf isotopic data suggest that the Early Triassic granites were derived from the partial melting of a mafic Mesoproterozoic lower crust, although the degree of ancient crustal assimilation may be higher for the Xiaoyakou Granite. It is suggested here that the ca. 246–248 Ma magma was generated during the northward subduction of the Palaeo-Tethys oceanic plate.  相似文献   

14.
We present the results of our study of the classical symbiotic star Z And during its period of activity in 2000–2010. In this period, the system experienced a series of six outbursts, for three of which high-resolution spectra were obtained and analyzed. These observations provided information about the system’s behavior during the entire activity period, rather than during an individual outburst. In particular, we found a fundamental difference between the first outburst, which initiated the activity period, and subsequent outbursts, namely, the presence of bipolar collimated optical outflows for some of the outbursts. We propose a model that can explain all the spectroscopic phenomena observed during this series of outbursts, as well as previous series of outbursts of Z And, and suggest that similar scenarios may be valid for other classical symbiotic stars.  相似文献   

15.
Mesoarchean to Neoarchean orthogneisses (2.95–2.79 Ga) in the Fiskenæsset region, southern West Greenland, are composed of an older suite of metamorphosed tonalites, trondhjemites, and granodiorites (TTGs), and a younger suite of high-K granites. The TTGs are characterized by high Al2O3 (14.2–18.6 wt.%), Na2O (3.4–5.13 wt.%), and Sr (205–777 ppm), and low Y (0.7–17.4 ppm) contents. On chondrite- and N-MORB-normalized trace element diagrams, the TTGs have the following geochemical characteristics: (1) highly fractionated REE patterns (La/Ybcn = 14–664; La/Smcn = 4.3–11.0; Gd/Ybcn = 1.5–19.7); (2) strong positive anomalies of Sr (Sr/Sr* = 1.0–15.9) and Pb (Pb/Pb* = 1.4–34.9); and (3) large negative anomalies of Nb (Nb/Nb* = 0.01–0.34) and Ti (Ti/Ti* = 0.1–0.6). The geochemical characteristics of the TTGs and trace element modeling suggest that they were generated by partial melting of hydrous basalts (amphibolites) at the base of a thickened magmatic arc, leaving a rutile-bearing eclogite residue. Field observations suggest that spatially and temporarily associated tholeiitic basalts (now amphibolites) in the Fiskenæsset region might have been the sources of TTG melts. The high-K granites have steep REE patterns (La/Ybcn = 3.8–506; La/Smcn = 2.7–18.9; Gd/Ybcn = 0.92–12.1) and display variably negative Eu anomalies (Eu/Eu* = 0.37–0.96) and moderate Sr (84–539 ppm) contents. Four outlier granite samples have variably positive Eu (Eu/Eu* = 1.0–12) anomalies. Given that the granodiorites have higher K2O/Na2O than the tonalites and trondhjemites, it is suggested that the granites were derived from partial melting of the granodiorites. It is speculated that the dense eclogitic residues, left after TTG melt extraction, were foundered into the sub-arc mantle, leading to basaltic underplating beneath the lower rust. Melting of the granodiorites in response to the basaltic underplating resulted in the production of high-K granitic melts. Formation of the Fiskenæsset TTGs, the foundering of the eclogitic residues into the mantle, and the emplacement of the high-K granites led to the growth of Archean continental crust in the Fiskenæsset region.  相似文献   

16.
The Early Cretaceous–Early Eocene granitoids in the Tengchong Block record the evolutionary history of the Mesozoic-Cenozoic tectono-magmatic evolution of Eastern Tethys. (a) The Early Cretaceous granitoids with relatively low (87Sr/86Sr)i ratios of 0.7090–0.7169 and εNd(t) values of ?9.8 to ?7.8 display metaluminous, calc-alkaline dominated by I-type granite affinity and hybrid mantle–crust geochemical signatures. They may have been derived from melting of the subducted Meso-Tethyan Bangong-Nujiang oceanic crust with terrigenous sediments in an arc-continent collisional setting. (b) The Late Cretaceous–Paleocene granitoids with relatively high (87Sr/86Sr)i ratios of 0.7109–0.7627, and εNd(t) values of ?12.1 to ?7.9 exhibit metaluminous to peraluminous, calc-alkaline dominated by S-type granite affinity and hybrid Lower–Upper crust geochemical signatures, which may be originated from partial melting of the Meso-Proterozoic continental crust in the collision setting between the Tengchong Block and Baoshan Block. (c) The Early Eocene granitoids have metaluminous, calc-alkaline I-type and S-type granites dual affinity, with relatively high (87Sr/86Sr)i ratios of 0.711–0.736, εNd(t) values of ?9.4 to ?4.7, showing crust-mantle mixing geochemical signatures. They may have been originated from partial melting of the late Meso-Proterozoic upper crustal components mixed with some upper mantle material during the ascent process of mantle magma caused by the subduction of the Neo-Tethyan Putao–Myitkyian oceanic crust, and collision between the Western Burma Block and the Tengchong Block. It is these multi-stage subductions and collisions that caused the spatial and temporal distribution of the granitic rocks in the Tengchong Block.  相似文献   

17.
ABSTRACT

The Nanling range (Nanling) is characterized by intense and widespread Mesozoic magmatism related large-scale W–Sn mineralization. A summary of geochemistry, geochronology, and petrogenesis for the W–Sn-bearing granites has been carried out in this study. A series of rock- and ore-forming ages in Nanling indicate that the W–Sn mineralization is closely related to the Early Yanshanian granitic magmatism both in temporal and spatial dimensions (165–150 Ma). Geochemical features show that both of the W- and Sn-bearing granites, which mainly belong to highly fractionated I-type granites with a few A-type granites, are characterized by high contents of SiO2, Al2O3, Na2O, and K2O; enrichment in Rb, Th, U, Zr, Hf, and REE; depletion in Sr, Ba, P, and Ti; and high ratios of A/CNK. Furthermore, the different Sr–Nd–Hf isotopic compositions indicate that they are mainly originated from the partial melting of the Precambrian basement rocks of the Cathaysia Block at low oxygen fugacity, and the estimated temperatures for the tungsten-bearing and tin-bearing granites are ca. 700°C and ca. 800°C, respectively. The model of the mantle–crust interaction exhibits that different percentages of mantle-derived magma were likely involved in the generation of the tin-bearing granites and tungsten-bearing granites. In combination with previous studies, we propose that these granites in Nanling were emplaced in an extensional setting, as a response to the break-off and roll-back of the subducted Palaeo-Pacific Plate during 175–150 Ma.  相似文献   

18.
Isotopic analyses of ancient mantle-derived magmatic rocks are used to trace the geochemical evolution of the Earth’s mantle, but it is often difficult to determine their primary, initial isotope ratios due to the detrimental effects of metamorphism and secondary alteration. We present in situ analyses by LA-MC-ICPMS for the Pb isotopic compositions of igneous plagioclase (An75–89) megacrysts and the Hf isotopic compositions of BSE-imaged domains of zircon grains from two mantle-derived anorthosite complexes from south West Greenland, Fiskenæsset and Nunataarsuk, which represent two of the best-preserved Archean anorthosites in the world. In situ LA-ICPMS U–Pb geochronology of the zircon grains suggests that the minimum crystallization age of the Fiskenæsset complex is 2,936 ± 13 Ma (2σ, MSWD = 1.5) and the Nunataarsuk complex is 2,914 ± 6.9 Ma (2σ, MSWD = 2.0). Initial Hf isotopic compositions of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 εHf units. In terms of Pb isotopic compositions of plagioclase, both anorthosite complexes share a depleted mantle end member yet their Pb isotopic compositions diverge in opposite directions from this point: Fiskenæsset toward a high-μ, more radiogenic Pb, crustal composition and Nunataarsuk toward low-μ, less radiogenic Pb, crustal composition. By using Hf isotopes in zircon in conjunction with Pb isotopes in plagioclase, we are able to constrain both the timing of mantle extraction of the crustal end member and its composition. At Fiskenæsset, the depleted mantle melt interacted with an Eoarchean (~3,700 Ma) mafic crust with a maximum 176Lu/177Hf ~0.028. At Nunataarsuk, the depleted mantle melt interacted with a Hadean (~4,200 Ma) mafic crust with a maximum 176Lu/177Hf ~0.0315. Evidence from both anorthosite complexes provides support for the long-term survival of ancient mafic crusts that, although unidentified at the surface to date, could still be present within the Fiskenæsset and Nunataarsuk regions.  相似文献   

19.
Summary Deformation experiments have been performed in a triaxial compression cell at a temperature of 300°C and confining pressures up to 65 MPa using samples of homogeneous, fresh two-mica-granite (RM) and monzogranite (CM). The cylindrical specimens (d=70 mm, h=140 mm, V=540 cm3) were tested undrained under dry (105°C), as received, and water saturated conditions at deformation rates between and . The mechanical behaviour of the two types of coarse-grained, crystalloblastic granites is critically influenced by mineralogical composition, porosity, and the amount of intergranular water present in the samples. The failure stress of the CM granite is at about 65% of that of the RM granite; in both rocks strength decreases with increasing porosity and water content.The presence of interstitial water causes a failure mode of non-localized, homogeneously distributed microcracking in the central parts of the samples, whereas, in runs with dry granites, strain localization along a single shear fracture was observed. When aqueous fluids are present, the macroscopic style of deformation of granites appears to be ductile even at lowP andT conditions. Strength and angle of internal friction are reduced to very low values. The style of deformation, as well as the reduction of strength of the water-saturated rock samples, is due to mechanical and chemical effects of intergranular water at elevated temperatures.The maximum differential stresses measured for these coarse-grained granites are much lower than the strength commonly reported for other granites, e. g. Westerly and Charcoal granites. Our data suggest that the strength of the granitic crust under differential stress is lower than currently deduced from laboratory experiments.  相似文献   

20.
The Ysyk-Köl Basin filled with Lower Jurassic–Quaternary sedimentary rocks is the largest intermontane negative structural unit of the northern Tien Shan. The basement of this basin is composed of Precambrian–Paleozoic rocks, largely of Ordovician and Silurian granitoids exposed in mountain ranges of the basin framework and as separate anticlinal domes situated in areas occupied by the Mesozoic–Cenozoic sedimentary cover. The postmagmatic tectonic internalstructure of the Chonkurchak (Chunkurchak), Kyzyl-Choku, Kyzyl-Bulak, and Prishib massifs emplaced in the basement, as well as their relationships to the sedimentary cover, are described in the paper. The study was carried out using the morphostructural method, detailed geological mapping, structural kinematic analysis, and petrographic examination of rocks. The internalstructure of Paleozoic granites in the basement and indications of their 3D tectonic flow are characterized. It is shown that granites underwent 3D deformation after their emplacement in the consolidated crust, and this process had a substantial influence on tectonic processes at the plate and orogenic stages of regional evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号