首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
鲍佩声 《地质通报》2009,28(12):1941-1961
着重论述了蛇绿岩地幔橄榄岩中豆荚状铬铁矿的成因,并对现今盛行的岩石/熔体反应成矿说提出了质疑。世界含铬铁矿的地幔橄榄岩均显示上部偏基性、下部偏酸性的垂直熔融分带,与蛇绿岩堆晶岩中上部偏酸性、下部偏基性的岩浆分异垂直层序恰恰相反。豆荚状铬铁矿与熔融剖面上部的纯橄岩或纯橄岩-方辉辉橄岩杂岩带紧密伴生。豆荚状铬铁矿是原始地幔岩高度熔融再造的产物,高铬型铬铁矿与PPG型蛇绿岩伴生,形成于岛弧或弧前盆地环境;高铝型铬铁矿与PTG型蛇绿岩伴生,形成于扩张脊(MOR)或弧后盆地环境。玻安岩(boninite)与高铬型豆荚状铬铁矿无成因关系,铬铁矿(或富铬矿浆)的形成反而为boninite提供了其形成所需的残余地幔;高铝型铬铁矿不是地幔橄榄岩/拉斑玄武质熔体反应形成的,而是富铬矿浆与基性熔体发生再平衡的产物。豆荚状铬铁矿中超高压矿物包体的出现为其地幔深部成因提供了佐证,而boninite形成于浅部较低压的条件;豆荚状铬铁矿中富集强相容元素IPGE(Os、Ir、Ru)合金,boninite富集不相容元素PPGE (Pt、Pd)硫(砷)化物, 而亏损IPGE,显示其形成较晚。因此,boninite与铬铁矿无生因关系,两者均受岛弧(或弧前盆地)环境的制约而在空间上相伴产出。  相似文献   

2.
郭国林  杨经绥  刘晓东  徐向珍  武勇 《岩石学报》2016,32(12):3673-3684
本文对罗布莎三个矿区的铬铁矿进行了详细的原位PGM研究,发现罗布莎各个矿区的铬铁矿中PGM组合和显微结构不同,暗示PGM能够记录铬铁矿形成与演化过程。罗布莎矿区的PGM显微特征显示铬铁矿结晶于高温、低硫逸度的环境中,可能系岩石/熔体反应和结晶分异双重作用下的产物;康金拉矿区的原位PGM主要为组合型包裹体,有少量产于铬铁矿裂隙之间的贱金属硫化物和合金矿物,为不同来源的熔体混合作用的结果,并暗示铬铁矿成矿后还受到热液流体的改造;香卡山矿区的PGM表明铬铁矿成矿之后遭受到还原性流体的交代作用,铬铁矿中早期结晶出来的硫化物或者铂族矿物被还原改造,形成铁镍矿等次生矿物,保存于铬铁矿粒间或者铬铁矿的裂隙中,这个过程可能与蛇纹石化或者晚期构造流体改造作用有关。罗布莎原位PGM研究表明,PGM矿物贯穿于铬铁矿结晶成矿过程的始终,PGM的矿物及其组合能够记录铬铁矿结晶时母熔体的物理化学条件,甚至还能反映铬铁矿成矿后所经历的后期构造热液事件。因此,结合单矿物分选和原位调查两种方法,查明铬铁矿中PGM的赋存类型及微观结构,对全面理解铬铁矿的成矿过程有重要意义。  相似文献   

3.
Re-Os同位素体系在蛇绿岩应用研究中的进展   总被引:2,自引:1,他引:2  
Re-Os不同于由亲石元素构成的同位素体系,在原始上地幔(PUN)部分熔融过程中,母体Re是中等不相容元素,优先进入熔体相,子体Os是强相容元素,富集在残留相中,是研究蛇绿岩的极好示踪剂。在蛇绿岩应用研究中已经取得了4个方面的进展:(1)明确了熔体相的Re/Os和^187Os/^188Os比值高,而残留相的低;(2)铬铁矿中铂族元素矿物(PGM)的Re亏损年龄(TRD)证实了蛇绿岩中复杂的超镁铁岩体是多阶段部分熔融的产物;(3)现代大洋橄榄岩和玄武岩的Re-Os同位素研究表明熔体相和残留相的^187Os/^188Os比值在高于亏损地幔值(DMM)的部分是一致的,而低于DMM的存在不一致性,为研究蛇绿岩中熔体相与残留相是否存在“耦合”关系提供了新的制约因素;(4)揭示了蛇绿岩地幔橄榄岩中含有古大陆岩石圈地幔,这是前所未知的。虽然取得了不少进展,但是由于Re-Os同位素体系用于蛇绿岩研究的时间较短,尚存在一些问题,如显生宙蛇绿岩地幔橄榄岩的定年问题,有待进一步深化研究。  相似文献   

4.
豆荚状铬铁矿是十分重要的战略资源,目前学者对它们的成因尚未形成统一的认识。先前的研究主要从岩石学、地球化学和地质年代学等方面对铬铁矿的成因进行了约束,但对铬铁矿包裹体类型及其反映的地质过程还缺乏系统的总结和研究。通过对不同岩体的铬铁矿中矿物包裹体进行详细的研究,发现铬铁矿中含有丰富的矿物包裹体,分为5大类:(1)无水硅酸盐类矿物包裹体,包括橄榄石、斜方辉石、单斜辉石等;(2)含水矿物,包括角闪石、绿泥石、蛇纹石等;(3)含铂族元素矿物和硫化物,包括Os-Ir合金、Pt-Fe合金、自然Os和自然Ir,以及黄铁矿、黄铜矿、磁黄铁矿等;(4)壳源矿物,包括锆石、金红石、石英、钙铬榴石等;(5)异常矿物,包括金刚石、碳硅石、柯石英等超高压矿物,以及自然镍、自然铬、自然铁和自然钛等。通过对比研究,确定它们形成于不同期次,进而初步拟定豆荚状铬铁矿形成过程存在4个阶段,分别为地幔深部的地幔柱/地幔对流、大洋岩石圈中地幔橄榄岩的部分熔融/岩浆结晶分异、俯冲带环境中的岩石-熔体反应和后期的热液蚀变/流体改造。认为铬铁矿中矿物包裹体记录了铬铁矿成矿各个时期的环境条件,针对铬铁矿中包裹体的详细研究可以更加准...  相似文献   

5.
豆荚状铬铁矿多阶段形成过程的讨论   总被引:4,自引:1,他引:3       下载免费PDF全文
豆荚状铬铁矿是铬的主要来源,是中国的紧缺矿种,因此,寻找一批大型铬铁矿矿床已成为解决我国对铬铁矿长期依赖进口的途经.然而对于豆荚状铬铁矿的成因,一直以来都有较大分歧.豆荚状铬铁矿及其围岩地幔橄榄岩中大量异常地幔矿物的发现,引起了各国地质学家对豆荚状铬铁矿成因的新一轮思考.本文着重讨论近年来国内外学者对豆荚状铬铁矿研究的最新成果和进展,包括豆荚状铬铁矿的形态特征、产出规律、矿物化学、铂族元素(PGE)的分布模式,铬铁矿矿石中出现的超高压矿物,以及围岩地幔橄榄岩的演化过程等等.豆荚状铬铁矿中的铬来源于两种辉石的不一致熔融与副矿物铬尖晶石,其形成环境可能在下地幔或者是过渡带的位置.豆荚状中含铂族元素矿物呈包裹体状和裂隙状分布,铂族元素含量与铬铁矿形成过程中的S饱和程度有关,具有多期性的特征.进而初步地拟定了豆荚状铬铁矿形成过程存在四个阶段,分别为铬的来源阶段、铬尖晶石及超高压矿物的结晶阶段、铬铁矿的成矿阶段、铬铁矿的就位阶段,而每一阶段的特征还需进一步细化与翔实,并且需要对不同岩体不同产出的豆荚状铬铁矿矿床进行详细的对比研究.  相似文献   

6.
铂族元素矿物共生组合(英文)   总被引:1,自引:2,他引:1  
CHEN Yuan 《现代地质》2001,15(2):131-142
由于铂族元素能有效地降低汽车尾气的污染 ,其需求量日益增加 ,对铂族元素矿床的寻找已是当务之急。着重从矿物矿床学角度对铂族元素的矿物共生特点进行了探讨。铂族元素可呈独立矿床产出 ,主要产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中。铂族元素也伴生于铜镍矿床中 ,该类铜镍矿床主要与苏长岩侵入体、溢流玄武岩及科马提岩有关。产于基性超基性层状侵入体中的铂族矿物有铂钯硫化物、铂铁合金、钌硫化物、铑硫化物、铂钯碲化物、钯砷化物及钯的合金。这些铂族矿物可与硫化物矿物共生 ,也可与硅酸盐矿物共生 ,还可与铬铁矿及其他氧化物矿物共生。产于蛇绿岩套中的铂族矿物主要是钌铱锇的矿物 ,而铂钯铑的矿物则较少出现 ,这些铂族矿物可呈合金、硫化物、硫砷化物以及砷化物 4种形式出现。产于阿拉斯加式侵入体中的铂族矿物主要有铂铁合金、锑铂矿、硫铂矿、砷铂矿、硫锇矿及马兰矿等少数几种 ,其中铂铁合金与铬铁矿及与其同时结晶的高温硅酸盐矿物共生 ,而其他的铂族矿物则与后来的变质作用及蛇纹岩化作用中形成的多金属硫化物及砷化物共生。产于铜镍矿床中的铂族矿物主要是铂和钯的矿物。产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中的铂族矿物的共同特点是它们均与铬铁矿?  相似文献   

7.
田亚洲  杨经绥  杨华燊  田云雷 《地质学报》2019,93(10):2639-2655
新疆萨尔托海高Al型铬铁矿中几乎不含原生的铂族矿物(PGM)和贱金属硫化物(BMS)包体,显示出成矿岩浆贫硫的特征。BMS多产于铬铁矿铬粒间裂隙、基质及蚀变环带中,主要以赫硫镍矿和针镍矿为主,其次为辉铜矿、砷镍矿、硫砷镍矿、毒砂等。PGM以包体产于BMS或铬铁矿粒间缝隙中,以硫钌矿(RuS2)为主,还包括硫锇矿(OsS2)、硫镍锇矿\[(Os,Ni)S2\]、硫钌锇矿\[(Ru,Os)S2\],锑钯矿(Pd5Sb2)和少量Cu、Pt、Au的硫化物。铬铁矿全岩ΣPGE含量50. 64×10-9~92. 00×10-9,较世界范围内蛇绿岩型铬铁矿低,且具有IPGE较PPGE富集的特点,PdN/IrN在0. 1~0. 9之间,具有Os相对Ir富集的特点。铬铁矿主量元素和原位微量元素显示出与菲律宾阿科杰高Al型铬铁矿以及MORB中尖晶石相似的地球化学特征。根据萨尔托海铬铁矿中PGM及BMS的种类、产出特征,结合铬铁矿全岩PGE及单矿物微量元素地球化学特征,认为铬铁矿的形成与贫硫的拉斑玄武质岩浆与地幔橄榄岩的熔体岩石反应有关。铬铁矿形成后的晚期岩浆阶段使得自形程度较高的PGM(如硫锇矿)和BMS(如赫硫镍矿)形成,随后向热液阶段转变的过程中,由于温压条件改变、热液蚀变,形成了萨尔托海铬铁矿中Fe- Ni- As- S和PGM矿物组合。  相似文献   

8.
新疆达拉布特超镁铁岩成因——来自铬尖晶石的证据   总被引:6,自引:0,他引:6  
通过研究西准噶尔达拉布特蛇绿混杂岩中方辉橄榄岩和橄榄辉石岩的岩石学特征,分析方辉橄榄岩广泛发育的铬尖晶石和斜方辉石构成的蠕虫状共生连晶结构的成因,得出结论认为:这种共生连晶结构不是前人所认为的文象结构或者石榴石的后成合晶,而是原始地幔岩熔融形成富铬岩浆的演化产物。这种富铬岩浆高度分异形成铬铁矿块体(即萨尔托海铬铁矿矿床)后,熔体进入地幔岩中结晶形成铬尖晶石和斜方辉石的蠕虫状共生连晶结构。因此,铬尖晶石与辉石的共生连晶结构可以作为豆荚状铬铁矿的重要找矿标志。方辉橄榄岩中的斜方辉石发育铬尖晶石出溶结构,出溶棒的成分特点表明,该结构是达拉布特蛇绿岩在快速就位过程中环境氧逸度突然升高诱发变质反应的结果。  相似文献   

9.
陈艳虹  杨经绥 《地球科学》2018,43(4):991-1010
豆荚状铬铁矿是蛇绿岩的特征性矿产,对其成因的认识还存在较大的分歧,包括:(1)早期岩浆熔离;(2)地幔熔融残余;(3)熔体-岩石反应.豆荚状铬铁矿及其围岩地幔橄榄岩中大量异常地幔矿物群的发现,引起了地质学家对其形成过程的重新思考.回顾了铬铁矿的研究,借助pMELTS热力学软件模拟浅部地幔过程,使用定量化的方法限定这些过程对豆荚状铬铁矿形成的贡献,通过一个新的角度讨论其形成.初步模拟结果显示,单独的地幔部分熔融、熔体分离结晶以及拉斑质熔体与亏损地幔的反应等过程形成的铬铁矿,无论在数量还是品位上都难以达到矿床水平,暗示豆荚状铬铁矿的形成可能为多种作用耦合的结果,或与深部地幔作用有关.   相似文献   

10.
豆荚状铬铁矿:古大洋岩石圈残片的重要证据   总被引:16,自引:2,他引:16  
豆荚状铬铁矿为蛇绿岩的特征性矿产 ,保留了上地幔岩浆构造作用、高温变形以及岩石成因的重要信息。它们常见于方辉橄榄岩内 ,位于大洋岩石圈莫霍面下 1~ 2km的古深度范围内。豆荚状铬铁矿常被纯橄岩薄壳围限 ,保留特征的豆状、豆壳状等构造。豆荚状铬铁矿的TiO2 含量较低 ,铂族元素 (PGE)的分布模式显示特征的负斜率。普遍认为 ,豆荚状铬铁矿形成于部分熔融条件下 ,涉及原始地幔熔体与亏损地幔橄榄岩的相互作用 ,伴随复杂的岩浆混合及结晶过程。狭窄的上地幔岩浆通道或孔穴为豆荚状铬铁矿理想的堆积部位。超俯冲带 (弧后盆地、岛弧、弧前 )、大洋中脊、转换断层均可能是豆荚状铬铁矿形成的理想环境。其中 ,洋脊扩张模式及大洋上俯冲带模式较好地解释了豆荚状铬铁矿成因。对于经历高级变质及多期变形的华北大陆基底 ,豆荚状铬铁矿是研究古老蛇绿岩最直接而有效的地质标志 ,对于研究古大洋岩石圈增生过程 ,上地幔演化 ,探索早期板块构造意义重大。  相似文献   

11.
Voluminous platinum-group mineral(PGM) inclusions including erlichmanite(Os,Ru)S_2, laurite(Ru,Os)S_2, and irarsite(Ir,Os,Ru,Rh)As S, as well as native osmium Os(Ir) and inclusions of base metal sulphides(BMS), including millerite(NiS), heazlewoodite(Ni_3S_2), covellite(CuS) and digenite(Cu_3S_2), accompanied by native iron, have been identified in chromitites of the Zedang ophiolite, Tibet. The PGMs occur as both inclusions in magnesiochromite grains and as small interstitial granules between them; most are less than 10 μm in size and vary in shape from euhedral to anhedral. They occur either as single or composite(biphase or polyphase) grains composed solely of PGM, or PGM associated with silicate grains. Os-, Ir-, and Ru-rich PGMs are the common species and Pt-, Pd-, and Rh-rich varieties have not been identified. Sulfur fugacity and temperature appear to be the main factors that controlled the PGE mineralogy during crystallization of the host chromitite in the upper mantle. If the activity of chalcogenides(such as S, and As) is low, PGE clusters will remain suspended in the silicate melt until they can coalesce to form alloys. Under appropriate conditions of ?S_2 and ?O_2, PGE alloys might react with the melt to form sulfides-sulfarsenides. Thus, we suggest that the Os, Ir and Ru metallic clusters and alloys in the Zedang chromitites crystallized first under high temperature and low ?S_2, followed by crystallization of sulphides of the laurite-erlichmanite, solid-solution series as the magma cooled and ?S_2 increased. The abundance of primary BMS in the chromitites suggests that ?S_2 reached relatively high values during the final stages of magnesiochromite crystallization. The diversity of the PGE minerals, in combination with differences in the petrological characteristics of the magnesiochromites, suggest different degrees of partial melting, perhaps at different depths in the mantle. The estimated parental magma composition suggests formation in a suprasubduction zone environment, perhaps in a forearc.  相似文献   

12.
High-Cr podiform chromitites hosted by upper mantle depleted harzburgite were investigated for PGM and other solid inclusions from Faryab ophiolitic complex, southern Iran. Chemical composition of the chromian spinels, Cr#[100*Cr/(Cr+Al) = 77–85], Mg# [100*Mg/(Mg+Fe2+) = 56–73], TiO2≤0.25wt%, and the presence of abundant primary hydrosilicates included in the chromian spinels indicate that the deposits were formed from aqueous melt generated by high degree of partial melting in a suprasubduction zone setting. Solid phases hosted by chromian spinel grains from the Faryab ophiolitic chromitites can be divided into three categories: PGM, base-metal minerals and silicates. Most of the studied PGM occurred as very small (generally less than 20 μm in size) primary single or composite inclusions of IPGE-bearing phases with or without silicates and base metal minerals. The PGM were divided into the three subgroups: sulfides, alloys and sulfarsenides. Spinel-olivine geothermometry gives the temperatures 1,131–1,177 °C for the formation of the studied chromitites. At those temperatures, fS2 values ranged from 10?3 to 10?1 and provided a suitable condition for Ru-rich laurite formation in equilibrium with Os-Ir alloys. Progressive crystallization of chromian spinel was accompanied by increase of fS2 in the melt. The formation of Os-rich laurite, erlichmanite and then sulfarsenides occurred by increase of fS2 and slight decrease in temperature of the milieu. The compositional and mineralogical determinations of PGM inclusions respect to their spatial distribution in chromian spinels show that the minerals regularly distributed within the chromitites, reflecting cryptic variation consistent with magmatic evolution during host chromian spinel crystallization.  相似文献   

13.
The new data for the geology and mineralogy of the platinum group element (PGE) mineralization related to the chromite–platinum ore zones within the dunite of the Svetly Bor and Veresovy Bor massifs in the Middle Urals are discussed. The geological setting of the chromite–platinum ore zones, their platinum content, compositional and morphological features of the platinum group minerals (PGM) are compared to those within the Nizhny Tagil massif, the world standard of the zonal complexes in the Platinum Ural belt. The chromite–platinum orebodies are spatially related to the contacts between differently granular dunites. Majority of PGM are formed by Pt–Fe alloys that are close in terms of stoichiometry to isoferroplatinum (Pt3Fe), and associated with Os–Ir alloys, Ru–Os and Ir–Rh sulfides, and Ir–Rh thiospinels of the cuproiridsite–cuprorhodsite–ferrorhodsite solid solution. The tetraferroplatinum (PtFe)–tulameenite (PtFe0.5Cu0.5) solid solution and Pt–Cu alloys belong to the later PGM assemblage. The established features of the chromite–platinum ore zones testify to the highly probable identification of the PGE mineralization within the dunite of the Svetly Bor and Vesesovy Bor massifs and could be used in prospecting and exploration for platinum.  相似文献   

14.
In this paper we present textural and mineral chemistry data for a PGM inclusion assemblage and whole-rock platinum-group element (PGE) concentrations of chromitite from Harold’s Grave, which occurrs in a dunite pod in a mantle tectonite at Unst in the Shetland Ophiolite Complex (SOC), Scotland. The study utilized a number of analytical techniques, including acid digestion and isotope dilution (ID) ICP-MS, hydroseparation and electron microprobe analysis. The chromitite contains a pronounced enrichment of refractory PGE (IPGE: Os, Ir and Ru) over less refractory PGE (PPGE: Rh, Pt and Pd), typical of mantle hosted ‘ophiolitic’ chromitites. A ‘primary’ magmatic PGM assemblage is represented by euhedrally shaped (up to 60 μm in size) single and composite inclusions in chromite. Polyphase PGM grains are dominated by laurite and osmian iridium, with subordinate laurite + osmian iridium + iridian osmium and rare laurite + Ir-Rh alloy + Rh-rich sulphide (possibly prassoite). The compositional variability of associated laurite and Os-rich alloys at Harold’s Grave fit the predicted compositions of experiment W-1200-0.37 of Andrews and Brenan (Can Mineral 40: 1705–1716, 2002) providing unequivocal information on conditions of their genesis, with the upper thermal stability of laurite in equilibrium with Os-rich alloys estimated at 1200–1250 °C and f(S2) of 10?0.39–10?0.07.  相似文献   

15.
Chromitite pods in the Mayarí-Cristal ophiolitic massif (eastern Cuba) were formed in the Late Cretaceous when island arc tholeiites and MORB-like back-arc basin basalts reacted with residual mantle peridotites and generated chromite-rich bodies enclosed in dunite envelopes. Platinum-group minerals (PGM) in the podiform chromitites exhibit important Os-isotope heterogeneities at the kilometric, hand sample and thin section scales. 187Os/188Os calculated at the time of chromitite crystallization (~90 Ma) ranges between 0.1185 and 0.1295 (γOs = −7.1 to +1.6, relative to enstatite chondrite), and all but one PGM have subchondritic 187Os/188Os. Grains in a single hand sample have initial 187Os/188Os that spans from 0.1185 to 0.1274, and in one thin section it varies between 0.1185 and 0.1232 in two PGM included in chromite which are only several millimeters apart. As the Os budget of a single micrometric grain derives from a mantle region that was at least several m3 in size, the variable Os isotopic composition of PGM in the Mayarí-Cristal chromitites probably reflects the heterogeneity of their mantle sources on the 10–100 m scale. Our results show that this heterogeneity was not erased by pooling and mingling of individual melt batches during chromitite crystallization but was transferred to the ore deposits on mineral scale. The distribution of the Os model ages calculated for PGM shows four main peaks, at ~100, 500, 750 and 1,000 Ma. These variable Os model ages reflect the presence of different depleted domains in the oceanic (Pacific-related) upper mantle of the Greater Antilles paleo-subduction zone. The concordance between the age of crystallization of the Mayarí-Cristal chromitites and the most recent peak of the Os model age distribution in PGM supports that Os in several grains was derived from fertile domains of the upper mantle, whose bulk Os isotopic composition is best approximated by that of enstatite chondrites; on the other hand, most PGM are crystallized by melts that tapped highly refractory mantle sources.  相似文献   

16.
The Mayarí-Baracoa ophiolitic belt in eastern Cuba hosts abundant chromite deposits of historical economic importance. Among these deposits, the chemistry of chromite ore is very variable, ranging from high Al (Cr#=0.43–0.55) to high Cr (Cr#=0.60–0.83) compositions. Platinum-group element (PGE) contents are also variable (from 33 ppb to 1.88 ppm) and correlate positively with the Cr# of the ore. Bulk PGE abundances correlate negatively with the Pd/Ir ratio showing that chromite concentrates mainly Os, Ir and Ru which gives rise to the characteristic negatively sloped, chrondrite-normalized PGE patterns in many chromitites. This is consistent with the mineralogy of PGEs, which is dominated by members of the laurite–erlichmanite solid solution series (RuS2–OsS2), with minor amounts of irarsite (IrAsS), Os–Ir alloys, Ru–Os–Ir–Fe–Ni alloys, Ni–Rh–As, and sulfides of Ir, Os, Rh, Cu, Ni, and/or Pd. Measured 187Os/188Os ratios (from 0.1304 to 0.1230) are among the lower values reported for podiform chromitites. The 187Os/188Os ratios decrease with increasing whole-rock PGE contents and Cr# of chromite. Furthermore, γOs values of all but one of the chromitite samples are negative indicating a subchondiritc mantle source. γOs decrease with increasing bulk Os content and decreasing 187Re/188Os ratios. These mineralogical and geochemical features are interpreted in terms of chromite crystallization from melts varying in composition from back-arc basalts (Al-rich chromite) to boninites (Cr-rich chromite) in a suprasubduction zone setting. Chromite crystallization occurs as a consequence of magma mixing and assimilation of preexisting gabbro sills at the mantle–crust transition zone. Cr#, PGE abundances, and bulk Os isotopic composition of chromitites are determined by the combined effects of mantle source heterogeneity, the degree of partial melting, the extent of melt-rock interactions, and the local sulfur fugacity. Small-scale (μm to cm) chemical and isotopic heterogeneities in the platinum-group minerals are controlled by the mechanism(s) of chromite crystallization in a heterogeneous environment created by the turbulent regime generated by successive inputs of different batches of melt.  相似文献   

17.
Summary ?We report, for the first time, the occurrence of five palladium-rich, one palladium bearing and two gold-silver minerals from podiform chromitites in the Eastern Alps. Minerals identified include braggite, keithconnite, stibiopalladinite, potarite, mertieite II, Pd-bearing Pt-Fe alloy, native gold and Ag-Au alloy. They occur in heavy mineral concentrates produced from two massive podiform chromitite samples (unaltered and highly altered) of the Kraubath ultramafic massif, Styria, Austria. Distribution patterns of platinum-group elements (PGE) in these chromitites show considerable differences in the behaviour of the less refractory PGE (PPGE-group: Rh, Pt, Pd) compared to the refractory PGE (IPGE-group: Os, Ir, Ru). PPGE are more enriched in chromitite showing pronounced alteration features. The unaltered chromitite displays a negatively sloped chondrite-normalised PGE pattern similar to typical ophiolitic-podiform chromitite. Except for the Pd- and Au-Ag minerals that are generally rare in ophiolites, about 20 other platinum-group minerals (PGM) have been discovered. They include PGE-sulphides (laurite, erlichmanite, kashinite, bowieite, cuproiridsite, cuprorhodsite, unnamed Ir-rich variety of ferrorhodsite, unnamed Ni-Fe-Cu-Rh- and Ni-Fe-Cu-Ir-Rh monosulphides), PGE alloys (Pt-Fe, Ir-Os, Os-Ir and Ru-Os-Ir), PGE-sulpharsenides (irarsite, hollingworthite, platarsite, ruarsite and a number of intermediate species), sperrylite and a Ru-rich oxide (?). Three PGM assemblages have been recognised and attributed to different processes ranging from magmatic to hydrothermal and weathering-related. Pd-rich minerals are characteristic of both chromitite types, although their chemistry and relative proportions vary considerably. Keithconnite, braggite and Pd-bearing ferroan platinum, together with a number of PGE-sulphides (mainly laurite-erlichmanite) and alloys, are typical only of the unaltered podiform chromitite (assemblage I). Euhedral mono- and polyphase PGM grains in the submicron to 100 μm range show features of primary magmatic assemblages. The diversity of PGM in these assemblages is unusual for ophiolitic environments. In assemblage II, laurite-erlichmanite is intergrown with and overgrown by PGE-sulpharsenides; other minerals of assemblage I are missing. Potarite, stibiopalladinite, mertieite II, native gold and Ag-Au alloys, as well as PGE-sulpharsenides, sperrylite and base metal arsenides and sulphides are characteristic for the highly altered chromitite (assemblage III). They occur either interstitial to chromite in association with metamorphic silicates, in chromite rims or along cracks, and are thus interpreted as having formed by remobilization of PGE by hydrothermal processes during polyphase regional metamorphism. Received August 3, 2000;/revised version accepted December 28, 2000  相似文献   

18.
We report highly unusual platinum-group mineral (PGM) assemblages from geologically distinct chromitites (banded and podiform) of the Kraubath massif, the largest dismembered mantle relict in the Eastern Alps. The banded chromitite has a pronounced enrichment of Pt and Pd relative to the more refractory platinum-group elements (PGEs) of the IPGE group (Os, Ir, Ru), similar to crustal sections of ophiolites. On the contrary, the podiform chromitite displays a negatively sloping chondrite-normalised PGE pattern typical of ophiolitic podiform chromitite. The chemical composition of chromite varies from Cr# 73-77 in the banded type to 81-86 in the podiform chromitite. Thirteen different PGMs and one gold-rich mineral are first observed in the banded chromitite. The dominant PGM is sperrylite (53% of all PGMs), which occurs in polyphase assemblages with an unnamed Pt-base metal (BM) alloy and Pd-rich minerals such as stibiopalladinite, mayakite, mertieite II, unnamed Pd-Rh-As and Pd(Pt)-(As,Sb) minerals. This banded type also contains PGE sulphides (about 7%) represented by a wide compositional range of the laurite-erlichmanite series and irarsite (8%). Os-Ir alloy, geversite, an unnamed Pt-Pd-Bi-Cu phase and tetrauricupride are present in minor amounts. By contrast, the podiform chromitite, which yielded 21 different PGMs, is dominated by laurite (43% of all PGMs) which occurs in complex polyphase assemblages with PGE alloys (Ir-Os, Os-Ir, Pt-Fe), PGE sulphides (kashinite, bowieite, cuproiridsite, cuprorhodsite, unnamed (Fe,Cu)(Ir,Rh)2S4, braggite, unnamed BM-Ir and BM-Rh sulphides) and Pd telluride (keithconnite). A variety of PGE sulpharsenides (33%) including irarsite, hollingworthite, platarsite, ruarsite and a number of intermediate species have been identified, whereas sperrylite and stibiopalladinite are subordinate (2%). The occurrence of such a wide variety of PGMs from only two, 2.5-kg chromitite samples is highly unusual for an ophiolitic environment. Our novel sample treatment allowed to identify primary PGM assemblages containing all six PGEs in both laurite-dominated podiform chromitite as well as in uncommon sperrylite-dominated banded chromitite. We suggest that the geologically, geochemically and mineralogically distinct banded chromitite from Kraubath characterises the transition zone of an ophiolite, closely above the mantle section hosting podiform chromitite, rather than being representative of the crustal cumulate pile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号