首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
2.
3.
The olivine-ilmenite thermometer of Andersen and Lindsley (1979) was based on an incorrect formulation for the excess free energy of an asymmetric ternary solution. A valid formulation is derived and used to revise the parameters of the olivine-ilmenite thermometer. For olivine and ilmenite that have equilibrated above 700°C, temperature can be calculated from: T(°C) = ?273 +¦-12549 + P[0.03Xfa + 0.01099(Xgk?Xil)?0.062] + 10496 Xfa + 5767(Xgk?Xil) + Xhem(38602?141550Xil?47183Xgk)|/[5.67?R ln KD + 6.52Xfa + 3.09(Xgk?Xil) + Xhem(16.49?109.46 Xil?36.49Xgk)] with Kd = (XilXfo)(XgkXfa). The revised model gives Wil·gkG = 5767?3.09T + 0.011P and ΔGexch = 7301 ? 8.9T ? 0.047P (T in K, P in bars). Applications include Apollo 17 breccias and kimberlites.  相似文献   

4.
Different geophysical tools such as geoelectric, gravity, and magnetic have been applied to detect groundwater potentiality and structural elements, which controlled a geometry of the groundwater aquifers in the study area. Nineteen vertical electrical soundings measured using ABEM SAS 4000 equipment through Schlumberger configuration of AB/2 ranged from 1.5 to 1,000 m; the quantitative interpretation was carried out using manual and analytical techniques. The results of quantitative interpretation used to construct six geoelectrical cross-sections indicate that the subsurface sequence of the study area consists of seven geoelectrical units. These units are Quaternary sand sheet and sand dunes, Quaternary aquifer, marly limestone, clay, sandy clay, clay with sandstone intercalation, and deep Nubian sandstone aquifer. The isopach map of the Quaternary aquifer exhibits thickness of the Quaternary aquifer that increased at the northern and southern part (50 m) and decreased at the eastern and western part (5 m), and the depth of the aquifer increased at the northern part (40 m) and decreased at the central part to 6 m. The isoresistivity map of the aquifer shows a high resistivity at the northern part but the southern part reveals low resistivity according to the lithology. The water salinity increases in the direction of groundwater flow from 500 to 10,500 mg/l. The low water salinity is due to direct recharge from El-Sheikh Zayed Canal, which supplied fresh water to this area. Sixty-five gravity stations were measured using Auto-Grav gravity meter; different gravity corrections were applied on raw data. The corrected gravity values were plotted to represent a Bouguer anomaly map; the residual gravity anomaly map was used for delineation of the fault elements. The area was dissected by different fault elements of trends NW–SE, NE–SW, and E–W. In addition, 65 ground magnetic stations were measured at the same sites of gravity stations. The results of magnetic interpretation indicate that the depth of the basement is shallow at the western and southern parts of the area (4,500 m), but the central part exhibits greater depth of 7,900 m.
الملخص العربي   طرق جيوفيزيقية مختلفة مثل الكهربية الأرضية, التناقلية الأرضية والمغناطيسية الأرضية تم تطبيقها لتحديد إمكانية تواجد المياه الجوفية والتراكيب الجيولوجية التي تتحكم في إبعاد وهندسة الخزان الجوفي في منطقة الدراسة. تسعة عشر جسة كهربية عمودية تم قياسها باستخدام جهاز من شركة (ِ ABEM) ساس 4000 من خلال تشكيل شلمبرجير بمسافة بين القطبين أب /2 تبدأ من 1.5 متر حتى 1000 متر, التفسير الكمي تم علي البيانات باستخدام التفسير اليدوي والتحليلي. نتائج التفسير الكمي تم استخدامها لتشييد ست قطاعات جيوكهربية والتي أوضحت أن التتابع التحت سطحي لمنطقة الدراسة يتكون من سبعة وحدات جيوكهربية. هذه الوحدات هي صفائح من الرمال والكثبان الرملية للعصر الرباعي, الخزان الجوفي الرباعي, حجر جيري مارلي, طفلة, طفله رمليه, طفله متداخلة مع الرمل والخزان الجوفي النوبي. خريطة السمك للخزان الجوفي الرباعي تظهر أن سمك الخزان الجوفي الرباعي يزيد عند شمال وجنوب منطقة الدراسة (50 متر) ويقل عند الجزء الشرقي والغربي (5 متر). وعمق هذا الخزان الجوفي الرباعي يزيد عند الجزء الشمالي (40 متر) وينقص عمق الخزان الرباعي عمد وسط المنطقة (6 متر). خريطة المقاومة الحقيقية للخزان الجوفي الرباعي تبين أن المقاومة تزيد عند الجزء الشمالي وتقل المقاومة عند الجزء الجنوبي من منطقة الدراسة بناءا علي التكوين الصخري للطبقات. ملوحة المياه الجوفية تزيد في اتجاه سريان المياه من 500 مليجرام/لتر إلي 10500 مليجرام/لتر. نقص الملوحة المياه ناتج عن التسرب المباشر من قناة الشيخ زايد والتي تعتبر مصدر المياه العزبة في منطقة الدراسة. خمس وستون محطة تثاقيلية أرضية تم قياسها باستخدام اوتو-جرافميتر, العديد من تصحيحات الجاذبية الأرضية نم تطبيقها علي البيانات الأصلية. قراءات الجاذبية الأرضية المصححة تم رسمها علي خريطة لتمثل شاذات البوجير وتم استخدام خريطة الشاذات المحلية لتجديد التراكيب الجيولوجية (الفوالق). حيت أوضحت الدراسة أن المنطقة تأثرت بعده فوالق باتجاهات مختلفة مثل شمال غرب- جنوب شرق, شمال شرق-جنوب غرب وشرق-غرب. نتيجة تفسير بيانات المغناطيسية الأرضية أظهرت أن عمق ضجور القاعدة تكون ضحلة عند الجزء الغربي والجنوبي (4500 متر) وتكون ضجور القاعدة عميقة (7900 متر) عند الجزء الأوسط من منطقة الدراسة.
  相似文献   

5.
Activity-composition relations are derived for ideal substitutional solid solutions through the Helmholtz free energy expressed in terms of the partition function. For solutions of the type (A, B)uZw involving mixing on one type of atom site, ideal activities of end-member components are expressed by: aAuZw = (XAuZw)u, and aBuZw = (XBuZw)u. With multi-site mixing excluding charge balance restrictions, as in (A, B)αu (C, D)βvZw, the ideal activity of an end-member component such as AuCvZw is calculated as: aAuCvZw = (XαA)u (Xβc)v. These expressions support the ‘ionic solid solution model for the activities of components in ideal solid solutions. Ideal solution models for coupled substitutions involving charge balance are considered using plagioclase as an example. Ideal activity expressions for solid solution of albite and anorthite are derived with and without adherence to the Al avoidance principle. Mixing models involving local electrostatic balance are contrasted with those involving independent, random mixing of Na-Ca and Al-Si. Of several possible ideal solution models for plagioclase, only that specifying complete Al-Si ordering and local electrostatic neutrality yields activities conforming to Raoult's Law.  相似文献   

6.
Diffusion of ions in sea water and in deep-sea sediments   总被引:3,自引:0,他引:3  
The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj1, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj1 or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj1 by Dj,sed. = Dj1 · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.  相似文献   

7.
 Calorimetric and PVT data for the high-pressure phase Mg5Al5Si6O21(OH)7 (Mg-sursassite) have been obtained. The enthalpy of drop solution of three different samples was measured by high-temperature oxide melt calorimetry in two laboratories (UC Davis, California, and Ruhr University Bochum, Germany) using lead borate (2PbO·B2O3) at T=700 C as solvent. The resulting values were used to calculate the enthalpy of formation from different thermodynamic datasets; they range from −221.1 to −259.4 kJ mol−1 (formation from the oxides) respectively −13892.2 to −13927.9 kJ mol−1 (formation from the elements). The heat capacity of Mg5Al5Si6O21(OH)7 has been measured from T=50 C to T=500 C by differential scanning calorimetry in step-scanning mode. A Berman and Brown (1985)-type four-term equation represents the heat capacity over the entire temperature range to within the experimental uncertainty: C P (Mg-sursassite) =(1571.104 −10560.89×T −0.5−26217890.0 ×T −2+1798861000.0×T −3) J K−1 mol−1 (T in K). The P V T behaviour of Mg-sursassite has been determined under high pressures and high temperatures up to 8 GPa and 800 C using a MAX 80 cubic anvil high-pressure apparatus. The samples were mixed with Vaseline to ensure hydrostatic pressure-transmitting conditions, NaCl served as an internal standard for pressure calibration. By fitting a Birch-Murnaghan EOS to the data, the bulk modulus was determined as 116.0±1.3 GPa, (K =4), V T,0 =446.49 3 exp[∫(0.33±0.05) × 10−4 + (0.65±0.85)×10−8 T dT], (K T/T) P  = −0.011± 0.004 GPa K−1. The thermodynamic data obtained for Mg-sursassite are consistent with phase equilibrium data reported recently (Fockenberg 1998); the best agreement was obtained with Δf H 0 298 (Mg-sursassite) = −13901.33 kJ mol−1, and S 0 298 (Mg-sursassite) = 614.61 J K−1 mol−1. Received: 21 September 2000 / Accepted: 26 February 2001  相似文献   

8.
Values of the complete adiabatic elastic tensor for single-crystal chrome-diopside (a monoclinic pyroxene mineral) are presented from 298 to 1,300 K. The data were obtained using resonant ultrasound spectroscopy (RUS). They are the first published results for the temperature T dependences of the 13 individual elastic constants C ij of any clinopyroxene mineral. Each C ij is appropriately described by a linear function in T throughout the range of T. Values for each (∂C ij /∂T) P in GPa K−1 are as follows: C 11, −0.0291; C 22, −0.0248; C 33, −0.0179; C 44, −0.0103; C 55, −0.0077; C 66, −0.0152; C 12, −0.0119; C 13, −0.0064; C 23, 0.0000; C 15, 0.0025; C 25, 0.0022; C 35, −0.0046; and C 46, 0.0026. Values of (∂M/∂T) P in GPa K−1, where M represents an isotropic bulk property calculated from the C ij data, are as follows: adiabatic bulk modulus K S , −0.0123; isothermal bulk modulus K T , −0.0178; and shear modulus G, −0.00998. Some diopside derivatives, notably (∂K S /∂T) P , (∂K T /∂T) P , and (∂V P /∂T) P , where V P is the compressional wave velocity, have smaller magnitudes than all other minerals of importance in Earth’s mantle, thus, confirming predictions from systematics studies. We find several dimensionless quantities for this monoclinic mineral have normal values compared to other mantle minerals. Further, αK T (α is the volume coefficient of thermal expansion) for diopside is approximately independent of both T and volume V at elevated temperature, so its equation of state is accurately expressed in simplified form.  相似文献   

9.
For a phase at equilibrium in which two cation species are partitioned ideally between two sub-lattice sites, the excess functions of mixing (free energy, enthalpy and entropy) are directly related to the bulk composition of the phase and ΔGE°(T, P), the standard-state intra- crystalline exchange free energy. If the phase is not at equilibrium internally, an additional ordering parameter is necessary to fix the excess free energy of mixing, GmixEX, unambiguously. Conversely, for any fixed GmixEX there exists an infinity of possible intracrystalline cation dis- tributions, only one of which is the equilibrium distribution for the specified temperature and pressure. As ideal intraphase cation ordering becomes more pronounced, GmixEX decreases. In response, the total free energy of mixing for the phase decreases progressively for non-end member compositions, approaching, at the limits of ordering, values appropriate for stabilizing compounds of intermediate composition.The model-dependent activity coefficient for component A in the phase, γAT, can be calculated for any bulk composition, XAT, either from GmixEX directly or from more basic equations involving the interrelation of chemical potentials at equilibrium. A general form for γAT is ln γAT= 1n[2(XAαXAβ)12/(XAα+XAβ)]+Y, where Xjκ denotes the mole fraction of species j in site κ. The first term on the right-hand side of this equation is the contribution to γAT from ideal intracrystalline partitioning, and is common to the several theories lately presented to model intraphase cation partitioning. It can be shown rigorously that this term contributes to a negative deviation from ideality for the bulk phase. The second term is the contribution to the macroscopic activity coefficient from non-ideal intraphase partitioning, and is related to an enthalpy of mixing, HmixN in excess of that resulting from ideal inter-site cation ordering. While the expression represented by Y can take several functional forms, the additional enthalpy can be evaluated explicitly for specific non-ideal partitioning models from the relation HmixN = 2RT(1? XAT) ∝ Y(1 ? XAT)2dXAT.In those cases, GmixEX can also be determined exactly.  相似文献   

10.
Experimental data for the standard Gibbs free energies of formation from the elements of a wide variety of metal sulfides and oxides, spinels, olivines and pyroxenes at 25°C and 1 bar define linear correlations, within about ±900 cal·mole?1, with the corresponding conventional standard partial molal Gibbs free energies of formation of the aqueous M2+ cations of the form ΔGf,mDZ0 = amDZΔGfM2+0+bMDZ where aMaZ and bMaZ are empirically determined constants characteristic of the structure MnZ. The only exceptions to correlations of this type are compounds of the heavy alkaline earths Ca, Sr and Ba, which appear to follow correlations with cation radius instead. The linear free energy correlations enable prediction of standard Gibbs free energies of formation of compositional end-members of a particular structure MnZ provided that aMaZ and bMaZ are known accurately. When only the free energy of the Mg end-member is known, the standard Gibbs free energy of formation at 25°C and 1 bar of the Fe endmember, and hence aMaZ and bMaZ Can be predicted from the temperature independence of aMaZaotivine and estimated entropies and heat capacities for the Fe end-member. Using this approach, the free energies of ferrosilite, hedenbergite and annite at 25°C and 1 bar were predicted to within ±1000 cal·mole?1 of the helgesonet al. (1978) values. Free energies of formation of talc (M3Si4O10(OH)2), clinchlore (M5Al2Si3O10(OH)8), and tremolite (Ca2M5(Si4O11)2(OH)2)-type compounds where M is Mg, Mn, Zn, Fe, Co, or Ni were then predicted at 25°C and 1 bar.Calculation of the equilibrium distribution of Mg, Zn and Sr between galena and hydrothermal solution, and Zn, Mg, Fe and Mn between chlorite and hydrothermal solution demonstrates: (1) that the Sr contents of low temperature galenas (e.g. Mississippi Valley-type) should be negligible (reported analyses of Sr content and Sr isotopic composition of such galenas are probably attributable to fluid inclusions or carbonate inclusions); and (2), that the Zn contents of hydrothermal chlorites in a model of the midoceanic ridge hydrothermal systems are sensitive to temperature, to complexing in the aqueous phase, and to the overall Fe/Mg ratio of the chlorite.  相似文献   

11.
The stability constants, K1MB, for borate complexes with the ions of Cu, Pb, Cd and Zn are determined in this work by DPASV in 0.7 M KNO3 at metal concentrations of 10?7 M. The acidity constants of the Cu2+ ion are determined by DPASV in the same conditions. The following values for log K1MB (β1MB2) have been obtained: CuB: 3.48, CuB2: 6.13, PbB: 2.20, PbB2: 4.41, ZnB: 0.9, ZnB2: 3.32, CdB: 1.42, and CdB2: 2.7, while the values for the acidity constants of Cu are pK1CuOH = 7.66 and 1Cu(OH2) = 15.91. At the low concentration of boron in 35%. S sea-water complexes with borate represent only about 0.2% Cu, 0.03% Pb, 0.02% Zn and 0.003% Cd.  相似文献   

12.
Fluids at crustal pressures and temperatures   总被引:1,自引:0,他引:1  
  相似文献   

13.
The ambient pressure elastic properties of single-crystal TiO2 rutile are reported from room temperature (RT) to 1800 K, extending by more than 1200 oK the maximum temperature for which rutile elasticity data are available. The magnitudes of the temperature derivatives decrease with increasing temperature for five of the six adiabatic elastic moduli (C ij ). At RT, we find (units, GPa): C 11=268(1); C 33=484(2); C 44=123.8(2); C 66=190.2(5); C 23=147(1); and C 12=175(1). The temperature derivatives (units, GPa K−1) at RT are: (∂C 11/∂T) P =−0.042(5); (∂C 33/∂T) P =−0.087(6); (∂C 44/∂T) P =−0.0187(2); (∂C 66/∂T) P =−0.067(2); (∂C 23/∂T) P =−0.025; and (∂C 12/∂T) P −0.048(5). The values for K S (adiabatic bulk modulus) and μ (isotropic shear modulus) and their temperature derivatives are K S =212(1) GPa; μ=113(1) GPa; (∂K S /∂T) P =−0.040(4) GPa K−1; and (∂μ/∂T) P =−0.018(1) GPa K−1. We calculate several dimensionless parameters over a large temperature range using our new data. The unusually high values for the Anderson-Gròneisen parameters at room temperature decrease with increasing temperature. At high T, however, these parameters are still well above those for most other oxides. We also find that for TiO2, anharmonicity, as evidenced by a non-zero value of [∂ln (K T )/∂lnV] T , is insignificant at high T, implying that for the TiO2 analogue of stishovite, thermal pressure is independent of volume (or pressure). Systematic relations indicate that ∂2 K S /∂TP is as high as 7×10−4 K−1 for rutile, whereas ∂2μ/∂TP is an order of magnitude less. Received: 19 September 1997 / Revised, accepted: 27 February 1998  相似文献   

14.
The solubility of cyclooctasulfur in water and sea water at various temperatures in the range between 4 and 80 °C was determined. Cyclooctasulfur in equilibrium with rhombic sulfur reacted with hot acidic aqueous potassium cyanide to form thiocyanate anion which was measured by anion chromatography. Sulfur solubility in pure water was found to increase with temperature by more than 78 times: from 6.1 nM S8 at 4 °C to 478 nM S8 at 80 °C. The following thermodynamic values for solubilisation of S8 in water were calculated from the experimental data: K° = 3.01 ± 1.04 × 10−8, ΔGr° = 42.93 ± 0.73 kJ mol−1, ΔHr° = 47.4 ± 3.6 kJmol−1, ΔSr° = 15.0 ± 11.7 J mol−1 K−1). Solubility of cyclooctasulfur in sea water was found to be 61 ± 13% of the solubility in pure water regardless of the temperature.  相似文献   

15.
Using experimental results at 1·0 GPa for the systemsCaO–SiO2, MgO–SiO2, CaMgSi2O6–SiO2 and CaMgSi2O6–Mg2SiO4,and all the currently available phase equilibria and thermodynamicdata at 1 bar, we have optimized the thermodynamic propertiesof the liquid phase at 1·0 GPa. The new optimized thermodynamicparameters indicate that pressure has little effect on the topologyof the CaO–SiO2, CaMgSi2O6–SiO2, and CaMgSi2O6–Mg2SiO4systems but a pronounced one on the MgO–SiO2 binary. Themost striking change concerns passage of the MgSiO3 phase fromperitectic melting at 1 bar to eutectic melting at 1·0GPa. This transition is estimated to occur at 0·41 GPa.For the CaMgSi2O6–SiO2 and CaMgSi2O6–Mg2SiO4 pseudo-binaries,the size of the field clinopyroxene + liquid increases withincreasing pressure. This change is related to the shift ofthe piercing points clinopyroxene + silica + liquid (from 0·375mol fraction SiO2 at 1 bar to 0·414 at 1·0 GPa)and clinopyroxene + olivine + liquid (from 0·191 molfraction SiO2 at 1 bar to 0·331 at 1·0 GPa) thatbound the clinopyroxene + liquid field in the CaMgSi2O6·SiO2and CaMgSi2O6·Mg2SiO4 pseudo-binaries, respectively. KEY WORDS: CaO–SiO2; CaMgSi2O6–Mg2SiO4; CaMgSi2O6–SiO2; experiments; MgO–SiO2  相似文献   

16.
The effect of presure on the solubility of minerals in water and seawater can be estimated from In
(KPspK0sp) + (?ΔVP + 0.5ΔKP2)RT
where the volume (ΔV) and compressibility (ΔK) changes at atmospheric pressure (P = 0) are given by
ΔV = V?(M+, X?) ? V?[MX(s)]ΔK = K?(M+, X?) ? K?[MX(s)]
Values of the partial molal volume (V?) and compressibilty (K?) in water and seawater have been tabulated for some ions from 0 to 50°C. The compressibility change is quite large (~10 × 10?3 cm3 bar?1 mol?1) for the solubility of most minerals. This large compressibility change accounts for the large differences observed between values of ΔV obtained from linear plots of In Ksp versus P and molal volume data (Macdonald and North, 1974; North, 1974). Calculated values of KPspKosp for the solubility of CaCO3, SrSO4 and CaF2 in water were found to be in good agreement with direct measurements (Macdonald and North, 1974). Similar calculations for the solubility of minerals in seawater are also in good agreement with direct measurements (Ingle, 1975) providing that the surface of the solid phase is not appreciably altered.  相似文献   

17.
The stable isotopic composition of dissolved Cl-Cl- in rainwater was measured from a coastal and an interior location in eastern Canada. At the interior Bonner Lake, Ontario, site the δ37Cl values of dissolved Cl-Cl- in precipitation ranged from −3.5‰ to −1.2‰ (SMOC) with an amount-weighted annual average of −2.3‰. At the coastal site, Bay D’Espoir, Newfoundland, δ37Cl values of dissolved Cl-Cl- values ranged from −3.1‰ to 0.0‰ with an amount-weighted annual average of −1.3‰. These negative δ37Cl values provide evidence that atmospheric HCl is 37Cl depleted, presumably from acidification of sea-salt aerosols. Accordingly, dissolved Cl-Cl- in the headwaters of two montane rivers in Western Canada had similarly depleted δ37Cl values. These results have implications to the interpretation of the isotopic compositions of dissolved Cl-Cl- in surface waters, formation fluids, and groundwaters.  相似文献   

18.
19.
Residence time measurements were made on a Denver laboratory flotation machine with and without the DR ring assembly. Soluble and insoluble tracers were used (a dye and fine quartz, respectively), and the variables studied were tank liquid volume, V, water and air volumetric flow rates, Q and QA respectively, and some geometric and design variables.By analogy with nominal residence time, tN (= VQ), a term “effective residence time” tE is defined by:
f(t)=exp[?ttE
where f(t) is the fraction of tracer remaining in the tank at time t. Perfect mixing is indicated if and only if: (i) data satisfies the exponential relationship; and (ii) tEtN = 1.Using the soluble tracer the machine behaved substantially as a perfect mixer under all operating conditions, except with the DR ring at values of QA nearly double the natural aeration capacity of the machine; condition (i) above was satisfied, but tEtN ~ 1.1.With the insoluble tracer the machine behaved as a perfect mixer only without air. As QA increased, tEtN increased from unity to about 1.2, and the effect was emphasized by the DR ring. In all cases condition (i) above was satisfied.A model in which the flow pattern in the tank includes a large component of pulp recirculation through the impeller region is developed. This model can account for the experimental findings but the details remain to be elucidated.  相似文献   

20.
Zusammenfassung Im System Fe–Mn–W–O wurden die heterogenen Gleichgewichte bei 1000°C ausgehend von allen binären und ternären Randsystemen untersucht. Im System Fe–Mn–W wurde die intermetallische Verbindung Mn5Fe2,7W2,3 gefunden. Im System Fe–Mn–O gibt es keine ternären Verbindungen, in den anderen Dreistoffsystemen nur FeWO4, Fe2WO6 und MnWO4. Mn2WO6 ließ sich bis pO2=100 atm nicht darstellen. Quaternäre Verbindungen fehlen völlig. ZnWO4 und NiWO4 sind gegen FeO und MnO nicht stabil und reagieren zu FeWO4 und MnWO4 plus ZnO und NiO. Hydrothermal konnte bei pH2O=2000 atm vollständige Mischbarkeit von FeWO4 und MnWO4 bis 160°C herab nachgewiesen werden. Die früher (Schröcke, 1960) durch Festkörperreaktionen festgestellte asymmetrische Mischungslücke im System FeWO4–NiWO4 konnte korrigiert werden,T kj =525°C,x kr =0.15 FeWO4. FeWO4–ZnWO4 und MnWO4–ZnWO4 sind bis mindestens 414°C, MnWO4 und NiWO4 bis mindestens 454°C herab vollständig mischbar.
Heterogeneous equilibria in the Wolframite group
Summary In the system Fe–Mn–W–O solid state equilibria at 1000°C were determined beginning with all binary and ternary bordering systems. In the system Fe–Mn–W the ternary phase Mn5Fe2.7W2.3 was found. In the system Fe–Mn–O there does not exist any ternary phase. In the other systems only FeWO4, Fe2WO6 and MnWO4 exist. Mn4WO6 could not be synthesized up to 100 atm partial pressure of oxygen. Quaternary phases do not exist. ZnWO4 and NiWO4 are not stable in coexistence with FeO and MnO oxides. Reaction products are always FeWO4 or MnWO4 with ZnO or NiO. Hydrothermal studies at pH2O=2000 atm showed complete solid solution in the system FeWO4–MnWO4 down to 160°C.Schröcke (1960) found an asymmetrical miscibility gap in the system FeWO4–NiWO4 by means of solid state reactions. Now this miscibility gap has been corrected: Critical temperature 525°C, critical composition 0,15 FeWO4. Complete miscibility exists in the systems FeWO4–ZnWO4 and MnWO4–ZnWO4 down to at least 414°C, in the system MnWO4–NiWO4 down to at least 454°C.


Mit 6 Abbildungen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号