首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The change in collectorless flotation of sphalerite with pH and Cu(II) concentration was correlated with the type and proportion of species present on the sphalerite surface. The solution and surface species were determined using a combination of analytical techniques including zeta potential measurement and X-ray photoelectron spectroscopy. An optimum copper concentration for maximum sphalerite flotation was identified, beyond which flotation decreased. This decrease in flotation coincided with the precipitation of copper hydroxide in neutral to mildly alkaline pH conditions. The hydrophobic polysulfide and hydrophilic copper hydroxide species were the main surface species influencing sphalerite flotation.  相似文献   

2.
The effect of sodium bisulphite on the xanthate-induced flotation of copper-activated sphalerite has been studied using batch flotation testing, surface analysis techniques (XPS and ToF-SIMS), and FTIR. The various techniques have been used to identify the mechanisms of interaction of sulphite ions with both collector and the sphalerite surface. The results indicate that sodium bisulphite depressed the flotation of sphalerite particles pre-treated with copper and xanthate at pH 9 with nitrogen and air purging. It was found that sodium bisulphite interacts with the sphalerite surface, as well as with xanthate in its adsorbed state. Based on the evidence obtained in the present study, and in conjunction with previous work, the mechanisms involved in the depression of the xanthate-induced flotation of copper-activated sphalerite by sulphite are proposed. It is suggested that copper xanthate decomposition on the surface of the activated sphalerite and the decomposition of the hydrophobic copper-sulphide-like species on the sphalerite surface are the active mechanisms for sphalerite depression by sodium bisulphite.  相似文献   

3.
Particle hydrophobicity has been derived from Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) measurements and its impact on the flotation behaviour of chalcopyrite investigated. Batch flotation tests were performed using a dithiophosphate-type of collector in different concentrations. Three flotation regimes were studied using particle size ranges of 20–38 μm, 75–105 μm and 150–210 μm. The individual particle contact angle, and hence, the distribution of contact angles of chalcopyrite within feed, concentrate and tail flotation samples has been determined using ToF-SIMS secondary ions. The effects of particle size and hydrophobicity on the flotation behaviour have been investigated using this new approach. The hydrodynamic effects of the particle size were highlighted by the different distributions of contact angles obtained for each concentrate size fraction, with fine and coarse sizes requiring higher average contact angles to float. This effect was overtaken by hydrophobicity when a high collector concentration was used. The broad distribution of contact angles observed in all samples, i.e. heterogeneity in hydrophobicity, has significant consequences for interpreting flotation behaviour. The methodology of analysis conducted in this study was applied to real ore and can be used as a quantitative, diagnostic tool for examining surface chemical factors affecting hydrophobicity. This new technique has promise and may advance the understanding of mechanisms, which may lead to better control strategies for improving flotation performance. Furthermore, any mineral–collector system can be targeted, provided appropriate calibration is performed.  相似文献   

4.
The Influence of pulp pH, dispersants and auxiliary collectors on reverse flotation of carbonate-containing iron ores were explored. Interactions between iron ores and quartz were theoretically analyzed by flotation solution chemistry and DLVO theory. The results indicated that the iron concentrate grade improved sharply when pH increased from 11.0 to 12.0, but changed unobviously when pH was larger than 12.0, which was related to solution chemistry of siderite and interactions among particles. Sodium tripolyphosphate was an effective dispersant and sodium dodecyl sulfate was an effective auxiliary collector of KS-III. Both recovery and grade enhanced by the action of sodium dodecyl sulfate or sodium tripolyphosphate when pH was 12.0.  相似文献   

5.
青海省格尔木市那陵郭勒河西地区铁多金属矿规模大,具有铁铜金等多金属矿化,属于接触交代型铁多金属矿床。本文采用工艺矿物学研究方法,查明了矿石工艺矿物学特性。研究结果表明,矿石的组成矿物种类较为简单,金属硫化物主要是黄铜矿、磁黄铁矿、黄铁矿、闪锌矿;铁矿物主要是磁铁矿、赤铁矿。脉石矿物主要是石英、方解石、透闪石、透辉石;其次为石榴子石、白云母、蛇纹石。矿石中铁、铜锌矿物均具均匀细粒—微细粒嵌布特征;通过选矿可获得铜精矿、锌精矿、铁精矿。  相似文献   

6.
Effects of particle size and chain length on flotation of quaternary ammonium salts (QAS) onto kaolinite have been investigated by mico-flotation tests. The two kinds of quaternary ammonium salts [RN(CH3)3] with different chain lengths, dodecyltrimethylammonium chloride (DTAC) and cetyltrimethylammonium chloride (CTAC) were used as collectors for kaolinite in different particle size fractions (0.075–0.01 mm, 0.045–0.075 mm, 0–0.045 mm). The anomalous flotation behavior of kaolinite have been further explained based on crystal structure considerations by adsorption tests and molecular dynamics (MD) simulation. The results show that the flotation recovery of kaolinite in all different particle size fractions decreases with an increase in pH when DTAC and CTAC are used as collectors. As the concentration of collectors increases, the flotation recovery increases. The longer the carbon chain of QAS is, the higher the recoveries of coarse kaolinite (0.075–0.01 mm and 0.045–0.075 mm) are. But the flotation recovery of the finest kaolinite (0–0.045 mm) decreases with chain lengths of QAS collectors increasing, which is consistent with the flotation results of unsifted kaolinite (0–0.075 mm). It is explained by the froth stability related to the residual concentration of QAS collector. In lower residual concentration, the froth stability becomes worse. Within the range of flotation collector concentration, it's easy of CTAC to be completely adsorbed by kaolinite in the particle size fraction (0–0.045 mm), which led to lower flotation recovery. Moreover, it is interesting that the particle size of kaolinite is coarser, the flotation recovery is higher. The anomalous flotation behavior of kaolinite is rationalized based on crystal structure considerations. The results of MD simulations show that the (001) kaolinite surface has the strongest interaction with DTAC, compared with the (001), (010) and (110) surfaces. On the other hand, when particle size of kaolinite is altered, the number of basal planes and edge planes is changed. It is observed that the finer kaolinite particles size become, the greater relative surface area of edges is, and the more the number of edges is. It means that fine kaolinite particles have more edges to adsorb less cationic colletors than that of coarse kaolinite particles, which is responsible for the poorer floatability of fine kaolinite.  相似文献   

7.
Fine hydrophilic particles are known to be entrained with water in flotation of many ores. Flocculation of the hydrophilic particles by polymer depressants could potentially reduce the mechanical entrainment of these particles. This paper reports testwork completed on fine particles of several solids, iron oxide, hydroxyapatite and sphalerite, as well as on a relatively coarse quartz sample (− 75 + 38 μm). Dodecylamine was used as a collector for quartz, and several dispersants and polymer depressants, including sodium silicate, sodium metaphosphate, zinc sulfate, cornstarch, corn dextrin and carboxymethyl celluloses (with molecular weights of both 700,000 and 80,000) were used as flotation modifiers. The major part of the testwork involved flotation tests in a 200 mL flotation column. It was observed that flocculation of the fine hydrophilic particles significantly reduced their mechanical entrainment, while dispersion severely aggravated it. Thus, in the flotation separation of synthetic mixtures of the − 75 + 38 μm quartz and fine (reagent grade) iron oxide or hydroxyapatite, polymer depressants that caused flocculation performed better than those that did not cause flocculation.  相似文献   

8.
《Applied Geochemistry》2006,21(2):269-288
Reliable quantification of mineral weathering rates is a key to assess many environmental problems. In this study, the authors address the applicability of pure mineral laboratory rate laws for dissolution of mill tailings samples. Mass-normalised sulfide and aluminosilicate mineral dissolution rates, determined in oxygenated batch experiments, were found to be different between two samples from the same ∼50-year-old, carbonate-depleted mill tailings deposit. Consideration of difference in particle surface area and mineralogy between the samples resolved most of this discrepancy in rates. While the mineral surface area normalised dissolution rates of pyrite in a freshly crushed pure pyrite specimen and a sulfide concentrate derived from the tailings were within the range of abiotic literature rates of oxidation by dissolved molecular O2, as were rates of sphalerite and chalcopyrite dissolution in the tailings, dissolution rates of pyrite and aluminosilicates in the tailings generally differed from literature values. This discrepancy, obtained using a consistent experimental method and scale, is suggested to be related to difficulties in quantifying individual mineral reactive surface area in a mixture of minerals of greatly varying particle size, possibly due to factors such as dependence of surface area-normalised mineral dissolution rates on particle size and time, or to non-proportionality between rates and BET surface area.  相似文献   

9.
In the UG2 ore (Bushveld Complex, South Africa) flotation, normally more than 3% of the gangue minerals, principally chromite with talc and pyroxene, report to the concentrate diluting the PGM recovery and contributing to subsequent processing costs. Previous studies have identified residual talc-like layers on orthopyroxene surfaces in Merensky ore flotation contributing to inadvertent flotation of relatively large particles (20–150 µm) of this mineral. Chromite (75–150 µm) from flotation of UG2 ore has been similarly examined. Statistical comparison of ToF-SIMS analysis of particles from concentrate and tails reveals no significant difference in Cu, Pb, Ni and collector (IBX and DTP) signals between these streams but surface exposure of Mg and Si is favoured in the concentrate. The flotation rate of coarse chromite correlates with the exposures of magnesium and silicon in patches on the chromite surface; higher exposures give earlier flotation. Conversely, there is a negative correlation with signals corresponding to the chromite surface, i.e. Cr, Fe, Al. Flotation of chromite without collector has confirmed this statistical discrimination. Hydrophobic talc-like residual layers, similar to those found on orthopyroxene surfaces, probably from partial alteration, explain this flotation mechanism.  相似文献   

10.
Floatability and surface characteristics of sphalerite in the presence of different concentrations of copper sulphate and K-ethylxanthate, for various times of activation and collection, were studied. The resulting changes on the sphalerite surface were determined by infrated attenuated total reflection spectroscopy and correlated with electrokinetic measurement and floatability test results.The collectorless flotation of the examined sphalerite was very weak in alkaline media, independent of whether the mineral was activated with copper or without copper treatment. However, copper showed an activating effect on KEX sphalerite flotation in the alkaline region. Copper ions of high concentration provoked an “apparently depressing effect” on KEX sphalerite flotation, reacting with EX to form copper-ethylxanthate-like species in the bulk of the solution. After decantation of the solution, before KEX was added, the depressing effect disappeared and sphalerite flotation was virtually complete.Cu(I)-ethylxanthate was the main surface product under the different experimental conditions. The kinetics of the copper-ion adsorption and KEX adsorption was relatively fast.  相似文献   

11.
The oxidation of ethyl xanthate on pyrite electrodes, and the influence of the flotation depressants hydroxide, cyanide, and sulphide, have been investigated using cyclic voltammetry. A layer of a hydrated iron oxide has been identified on pyrite surfaces. Xanthate does not interact with this layer but is oxidized to dixanthogen at positive potentials. An increase in pH results in an increase in the background current due to oxidation of the mineral, and at pH=11 this reaction becomes faster than xanthate oxidation. Cyanide interacts with the electrode to form a surface species which inhibits xanthate oxidation. Sulphide gives rise to an anodic wave preceding the wave due to xanthate oxidation. The flotation and depression of pyrite are interpreted in terms of mixed-potential mechanisms.  相似文献   

12.
我国是世界上最大的铜精矿进口国,研究不同产地铜精矿的矿物学特征,能支撑铜精矿原产地分析及相关固体废物属性鉴定。本文研究对象为来自8个国家12个矿区的进口铜精矿样品,采用X射线荧光光谱(XRF)、X射线粉晶衍射(XRD)以及偏光显微镜进行综合分析,探寻这些矿区铜精矿的元素组成、矿物组合特征,探讨不同成因类型铜精矿的矿物学差异。X射线荧光光谱分析表明铜精矿样品主要元素为Cu、Fe、S、O,普遍含有Zn、Si、Al、Mg、Ca、Pb;X射线粉晶衍射物相分析表明铜精矿样品主要物相为黄铜矿,其次常含有黄铁矿和闪锌矿等物相;偏光显微镜光片鉴定表明铜精矿样品金属矿物中黄铜矿的含量在88%~98%之间,观察到黄铜矿与闪锌矿、黄铁矿、磁黄铁矿共生,闪锌矿与斑铜矿、砷黝铜矿共生,黄铜矿、砷黝铜矿和斑铜矿共生等连生体矿相。结合铜精矿不同成矿类型分析表明,斑岩型、矽卡岩型、火山成因块状硫化型铜矿床样品中常见黄铜矿、黄铁矿、闪锌矿,并分别含有黑云母、草酸钙石、硫酸铅特征矿物;铁氧化物铜金矿床样品主要矿物为黄铜矿,常见磁黄铁矿、滑石特征矿物。通过本文采用多种技术表征不同产地铜精矿样品元素含量、物相组成、矿相组成的差异,能够全面分析不同产地铜精矿样品的矿物学特征,对进口铜精矿的风险识别和管控具有重要意义。  相似文献   

13.
通过化学分析、扫描电镜以及工艺矿物学自动定量分析系统(MLA)等测试方法对河南嵩县下蒿坪金矿进行了系统的工艺矿物学研究,包括原矿化学组成、矿物组成、金的赋存状态、主要载金矿物嵌布特征以及矿物解离特性等。结果表明,该金矿中主要可回收的有价金属为金,其品位为3.75×10-6。该金矿的原矿矿物主要由石英、钾长石、钠长石、黄铁矿和铁白云石组成,此外还有少量的赤铁矿、萤石、白云石以及方解石。原矿中的金主要赋存在黄铁矿中,而黄铁矿大部分以细粒、微细粒形式嵌布在石英和长石颗粒中。原矿中自然金的含量非常少,多以单独的自然金颗粒形式存在。原矿磨至P80=0.074 mm(-0.074 mm粒级含量占80%)时载金矿物黄铁矿、方铅矿、闪锌矿的单体解离度相对较高,有利于通过浮选回收。  相似文献   

14.
Abstract. Skeletal sphalerite with stellar, cruciform and snowflake-like (or cauliflower-like) shapes included in pyrite is widely found in the Dajing tin-polymetallic deposit. It occurs only in chalcopyrite-pyrite mineralization stage. The compositions of all sphalerites in the chalcopyrite-pyrite stage are characterized by high Cu content (3.9 - 7.0 wt% with a mean of 5.4 wt%), while the skeletal crystal sphalerite has higher zinc and cadmium contents, and lower copper and iron contents, compared with other sphalerites of the same stage. The skeletal crystal sphalerite in pyrite is possibly generated by exsolution.  相似文献   

15.
Electro-flotation tests were conducted on chalcopyrite particles with a modified Hallimond tube designed for electro-flotation, using platinum anode—copper cathode and graphite anode—copper cathode systems. Flotation tests were carried out for fines of chalcopyrite of size below 20 microns with potassium ethylxanthate as collector. Studies were done on flotation with hydrogen and oxygen separately with the usual variables. Dissolution of chalcopyrite at various current densities, with reagent at optimum conditions and without reagent was also studied. It is observed that electro-flotation particularly with oxygen, is effective in the flotation of fine particles of chalcopyrite.  相似文献   

16.
Flotation tests for sphalerite, smithsonite and dolomite were carried out in a Hallimond tube at various pH values and two concentrations of collector.Adsorption of 5-alkylsalicylaldoximes on the surface of minerals was examined and isotherms for 5-butylsalicylaldoxime plotted.It was shown that sorption intensity of 5-alkylsalicylaldoximes on the surface of minerals decreased in the order: smithsonite, sphalerite and dolomite.Relationship between length of aliphatic chain and collecting activity of 5-alkylsalicylaldoximes was investigated in microflotation tests in a Hallimond tube.5-Propylsalicylaldoxime proved to have the best selectivity in flotation for the range of parameters studied, taking the difference in flotation rates of smithsonite and dolomite as a criterion.It was found that modifications of pH value resulted in changes in both adsorption and flotation.  相似文献   

17.
Sedimentary phosphates contain-besides the phosphate minerals-, various associated gangue minerals such as: clays, silica, calcareous minerals (mainly calcite and dolomite), carbonaceous matter, iron oxides and/or pyrite. The common practiced flow-sheets for concentrating these types of phosphate ores consist of a combination of various mineral processing units such as: crushing and screening, attrition, washing, magnetic separation, and/or flotation. However, none of these combinations was successfully efficient to upgrade the calcareous ores because of the close similarity of the physical properties (density, particle size, particle shape, etc.) as well as the surface physico-chemical properties of the carbonate and phosphate minerals. For the last five decades extensive efforts have been spent to adopt flotation for separating carbonates from phosphate ores. These efforts include thermodynamic analysis, modification of the technique, controlling the pulp environment, and finding new reagents that can specifically differentiate between carbonates and phosphates.This paper reviews some of the published work on the separation of carbonates from phosphate ores by flotation and presents the flotation results of phosphate ore samples different in their physical properties and mineralogical composition. The results obtained reflect the effect of ore nature on the flotation performance and the reagents consumption.  相似文献   

18.
The ability of O-isopropyl-N-ethyl thionocarbamate (IPETC), O-isobutyl-N-ethoxycarbonyl thionocarbamate (IBECTC) and butyl ethoxycarbonyl thiourea (BECTU) collectors to increase the flotation of the sulphide minerals, chalcopyrite, galena and pyrite, has been studied. For each collector, the flotation characteristics of these minerals, flotation rate constant and flotation recovery maximum, have been calculated from the flotation data and compared as a function of pH and collector concentration. Overall, the flotation performance of these collectors is stronger for chalcopyrite than for galena and pyrite. Flotation increases with collector concentration and decreasing pH values. For chalcopyrite, the collector performances of BECTU are slightly better than those of IPETC but far superior to those of IBECTC, especially at high pH values or at low collector concentrations. The flotation performance of these collectors has been shown to be in good agreement with the amount of collector adsorbed at the mineral surface. The affinity of BECTU for the various minerals has been calculated using a multilayer adsorption model.  相似文献   

19.
曾广圣  欧乐明 《岩矿测试》2019,38(2):160-168
秘鲁铜硫矿石的主要回收对象是铜和硫矿物,由于铜矿物嵌布复杂、粒度过细以及与各种脉石矿物或金属矿物交生关系紧密,利用传统工艺矿物学研究方法如化学分析、光学显微镜检测等较难准确定量其工艺矿物学参数。本文采用化学分析、X射线衍射、扫描电镜、偏光显微镜及矿物参数自动分析系统(MLA)等技术手段,研究秘鲁铜硫矿石的化学成分、矿物组成和主要矿物的嵌布特征、粒度分布及单体解离特性等,并对影响选矿指标的主要矿物学因素进行分析。结果表明:矿石中主要元素为Cu(0.65%)和S(9.53%)。矿石中黄铁矿(16.57%)含量较高,形态较为规则,与其他矿物之间的交生关系相对简单,粒度普遍偏粗,其中粒径大于0.30mm的黄铁矿占95.06%。铜矿物主要以不规则粒状、皮壳状、网脉状、纤维状、尘粒状、斑点状分布于脉石中或与黄铁矿、闪锌矿、磁铁矿等金属矿物交生紧密,粒度极不均匀,使得铜矿物解离难度加大,且矿石中云母(12.51%)、绿泥石(3.74%)、滑石(3.34%)、高岭石、蒙脱石(3.59%)等黏土质矿物含量较高,在磨矿过程中易发生泥化从而恶化分选环境。根据该类型矿石的工艺矿物学特性,本文建议采用"粗磨-部分优先浮铜-铜硫混浮-混合精矿再磨再选分离"的工艺流程,可得到质量高的铜、硫精矿。  相似文献   

20.
微细粒低品位锰矿由于颗粒间的非选择性聚集、浮选药剂用量大、浮选效率低等技术难题而致使其利用困难,造成大量浪费。在品位低于13%的锰矿浮选技术研究中,捕收剂最受关注,前人已研究了多种类型的捕收剂,所得精矿品位在16.9%~18.3%之间,回收率为56%~97%,回收率比较理想,但精矿品位总体不高。本文将新型捕收剂RA-92应用于湖南凤凰-花垣地区低品位碳酸锰矿(锰品位为10.7%)的选矿工艺中,实验研究了磨矿细度、pH值、抑制剂和捕收剂用量对浮选效果的影响,在最佳工艺条件下,精矿品位由原矿的10.7%提升至17.4%,回收率达到80.2%。研究表明RA-92对碳酸锰矿具有良好的捕收性能,浮选工艺相对简单且捕收剂用量少,浮选成本较低,可为此种捕获剂在微细粒低品位碳酸盐锰矿选矿中的应用得到推广。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号