首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Based on the Rb-Sr isotopic study of the granitoids in the Hengduan Mountains, the classification andgeologic significance of whole-rock Rb-Sr isochrons as well as the factors influencing homogenization of theisotopic systems are discussed. Usually. there is no good linear correlation of isochrons for diorites andalkali-rich intrusive rocks (including alkaline rock and alkalic granite). But by means of the external isochron ofmonominerals from the rocks. isochrons with good linear correlation as well as ages and Sr initial ratios with ahigh confidence can be obtained. In order to obtain a satisfactory isochron, the discriminant parameters shouldbe calculated from the Rb/Sr ratios and estimated ages of samples. Only those that meet the requirements canbe used as the Rb-Sr isochrons. The quality of an isochron should be judged from three factors, i.e. correlationcoefficient. MSWD and homogenization degree.  相似文献   

2.
钟富道 《地球化学》1975,(2):114-122
The available data on K-Ar isochron ages of Precambrian rocks in Northern and Northeastern China have been disecssed in the present paper. The author has come into the conclusion that the metamorphic rocks in Wutaishan area have undergone, at least, more than one metamorphic events. The Huto Group, which was subjected to the main one of the metamorphisms, is 1740 m.y. in age. Another one took place 1330 m.y. ago. Wutai Group may be probably 2000 m.y.in age, showing a metamorphic event would oceur at that time. The metamorphic ages of the Liaoho Group in the Liaotung Peninsula and Taishan Group are 1840 m.y. and 2460 m.y. respectively. Relatively acceptable explanations have been obtained for some lower apparent ages by K-Ar isochron treatment. The lower apparent ages of the samples as shown by the negative intereeption of K-Ar isochron can be attributed to Ar loss and Kalternation (for example, biotitization of hornblend or microclinization of feldspar)of minerals, both of which, distinctive with each other, operate in combination.  相似文献   

3.
U-Pb同位素体系的三阶段模式研究   总被引:2,自引:0,他引:2  
朱炳泉 《地球化学》1975,(2):123-134
By means of multi-dimensional regression analysis the author proposes for the first time the concept of “isochron plane” and develops two methods for solving three-stage U-Pb equations. Evolution of Nanling granites, metamorphic rocks fromthe Liaotung Peninsula and lunar basalts from Ocean Procellarum has been discussed in the light of U-Pb three.stage model calculations. The U-Pb third-stage modcl ages for these rocks are consistent with their K-Ar or Rb-Sr ages as well as with geological field observations.  相似文献   

4.
Developed in the southeast coast of te East Shandong Peninsula,the Mesozoic fault-magma belt consists of five rock series:the syenite series;the monzonite series;the megaporphyritic monzogranite series;the biotite-granite series;and the alkali granite seres.Based on their Rb-Sr isochron ages(122-220Ma),these rock series may be divided into three magma subcycles dated at Triassic,Late Jurassic and Early Cretaceous.The initial ^87Sr/^86Sr ration in these rock series range from 0.70436 to 0.7155.The starting points of the Rb-Sr isochrons exhibit four different distribution trends on the(^87Sr/^86Sr)i-^87Rb/^86Sr diagram.These characteristics show that the multiple granitic rock series are different in genesis and derivation.The syenite series might be derived from the combination of mantle-derived magma and crustal material,and the others could be derived from granulite-facies and amphibilite-facies rocks in the deep crust.  相似文献   

5.
个旧含Sn花岗岩的Sr同位素特征及找矿标志的研究   总被引:30,自引:0,他引:30  
Whole-reck Rb-Sr isochron dating of Sb-bearing granites and alkaline rocks at Gejiu, Yunan Province has been conducted for their emplacement ages and initial ^87Sr/^84Sr ratios. The Sr isotopic compositions of apatites from some basic rocks in Jiasha and granite bodies have also been studied in decal, The genesis and evolution of Gejiu Snbearing granites as well as ore-search indicators are discussed on the basis of the available data in conjunction with the geochemical data on trace elements, such as Rb and Sr, Sr isotopic characteristics of the volcanie rocks, meta-diabase and host rocks, and isotopic features of ore leads.  相似文献   

6.
The newly obtained Sm-Nd isochron ages are 1034 Ma and 935 Ma for ophiolites from northeasternJiangxi and Fuchuan, southern Anhui respectively. There exist two unconformity surfaces under the initialLate Proterozoic volcanics as well as the Sinian rocks. The Xiuning intrusive body which was intruded into theShangxi Group in southern Anhui yields a whole-rock Rb-Sr isochron age of 963 Ma. There occurs a belt ofLate Proterozoic calc-alkali volcanic rocks extending from northeastern Jiangxi to northwestern Zhejiang. Inthe light of the above facts, the authors consider that the southeastern margin of Jiangnania is an ancient islandarc. At about 1000 Ma ago, the Huanan (South China) oceanic crust was subducted along the line linking Dex-ing and Hangzhou, thus starting the accretion of the island arc system to Jiangnania. At 800 Ma ago Cathaysiaand Jiangnania converged together along the Jiangshan-Shaoxing line, marking the end of the accretion.  相似文献   

7.
The samples of ductile-rheologic deformational augen granite from the Yunkai uplift area, western Guangdong province, were determined by the whole-rock Sm-Nd, Pb-Pb and Rb-Sr isotopic dating to have an Sm-Nd isochron age of 1414±68 Ma, a Pb-Pb isochron age of 1388±90 Ma and a Rb-Sr isochron age of 490±36 Ma. The first two ages are interpreted as the formation age of this suite of granite and the last age represents the timing of the tec-tono-thermal event of Caledonian ductile-rheologic shear partial melting. It is indicated that in the study area not only an orogeny took place in the Caledonian, but also a more important tectono-magmatic activity occurred in the Meso-proterozoic there , which may be related to the subduction-collision between the Yangtze block and Cathaysia block.  相似文献   

8.
Emplacement ages, geochemical characteristics and analysis of continental dynamics on gabbroic intrusions in Luodian County, Guizhou Province, have been discussed based on studies of isotopic chronology (the whole-rock Sm-Nd and Rb-Sr isochron methods), major elements, trace elements and PGE. Intrusive activities of the gabbroic intrusions in the study area took place during the Late Yanshanian Orogenic Movement (the Cretaceous Period), as indicated by the Sm-Nd isochron ages (t)=(99.6±4.5) (2σ) Ma and by the Rb-Sr isochron ages t=(97±1.6) (2σ) Ma. The gabbroic intrusions are attached to mafic rocks in cal-alkaline basaltic series. They occurred as dikes and might be formed under an extensional background of the continent. Differentiation of their magmatic crystallization resulted in obvious zonation of petrography. In the gabbroic intrusions of this study, large ion lithophile elements and LREE are enriched, and the chondrite-normalized REE distribution pattern is leftward inclined without anomalies of JCe or JEu, and there are high concentrations of PGE and ratios of Pd/Ir (averaging 4.21). All of these imply that their source areas may be basaltic magma in the upper mantle with high-level partial melting, derived from EMl-type enriched mantle. It is different from Emeishan basalt, which may be related to the upper mantle at low-grade partial melting. Emplacement mechanism of the gabbroic intrusions in this study may suppose to be asthenosphere upheaving as an isolated hot wave in the presence of mantle fluid, resulting in basaltic magma intruded into the continental crust as a diapiric intrusion. Therefore, uplifting of faulting-block and extensional deformation could take place in the shallow part of the continental crust while vertical amassing and accretion of magmatic materials in the deep part of the continental crust. These special processes could supposed to be a special background of continental dynamics for this large-scale epithermal metallogenic domain, such as Au  相似文献   

9.
The Ailaoshan aquamarine-bearing pegmatites are associated with Proterozoic metamorphic rocks in the southern portion of the Ailaoshan fault-folded complex.The gem-bearing pegmatite mineralization zones of the region occur in areas generally consistent with the regional tectonic trend.The pegmatites are found in metamorphic rocks,migmatites and in the inner/outer contact zones of gneissoid granites. The Rb-Sr isochron drawn for the pegmatites is 26~31 Ma,(i.e.in Himalayan).The homogenization temperatures of melt and liquid inclusions in minerals vary from 185 to 920℃,which are comparable to the inclusions observed in banded migmatites and ptygmatic quartz veins in the surrounding metamorphic rocks. The mineralization fluids of the pegmatite were rich in HCO_3 and CO_2,and their compositional assemblages are comparable to metamorphic fluids.Results of H,O,C,Si etc.isotopic analyses and REE,and Be analyses indicates that the sources of mineralization components that formed the pegmatites are closely associated with metamorphic fluids and the enclosing metamorphic rocks. A pegmatite structure simulation experiment was conducted at high temperature and pressure(840℃and 1,500×105Pa.),with various metamorphic rock samples in a water-rich and volatile-rich environment.When the liquidus was reached,the temperature was gradually decreased at the rate of 5~10℃/day over a time period of three months.SEM energy-dispersive spectrum analyses were performed on the experimental products.A series of pegmatoid textures were observed including zonal texture,megacryst texture,drusy cavities,crystal druses,and vesicular texture along with more than ten types of minerals including plagioclase,microcline,quartz and biotite.Different metamorphic rock melts generated different mineral assemblages.Experiment results revealed that the partial melting of metamorphic rocks could form melts similar to pegmatite magmas. Based upon the geological characteristics,geochemistry,and pegmatite texture simulation experimental results,it is concluded that the mineralization components of Ailaoshan aquamarine-bearing pegmatites came from metamorphic rocks.The petrogenetic model for the origin of pegmatites is related to ultrametamorphism and metamorphic anatexis.  相似文献   

10.
Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.  相似文献   

11.
Whole-rock Pb isotopic compositions of the high-pressure (HP) metamorphic rocks, consisting of two-mica albite gneisses and eclogites, and foliated granites from the HP metamorphic unit of the Tongbai-Dabie orogenic belt are firstly reported in this paper. The results show that the tip metamorphic rocks in different parts of this orogenic belt have similar Pb isotopic compositions. The twomica albite gneisses have ^206 pb/^204 Pb=17. 657 -18. 168, ^207pb/^204 Pb=15. 318-15. 573,^ 208Pb/^204ob=38.315-38. 990, and the eclogites have ^206Pb/^204 Pb=17. 599 -18. 310, ^207Pb/^204 Pb=15. 465 -15. 615,^208Pb/^204Pb=37. 968-39. 143. The HP metamorphic rocks are characterized by upper crustal Pb isotopic composition. Although the Pb isotopic composition of the HP metamorphic rocks partly overlaps that of the ultrahigh-pressure (UHP) metamorphic rocks, as a whole, the former is higher than the latter. The high radiogenic Pb isotopic composition for the HP metamorphic rocks confirms that the subducted Yangtze continental crust in the Tongbai-Dabie orogenic belt has the chemical structure of increasing radiogenic Pb isotopic composition from lower crust to upper crust. The foliated granites, intruded in the HP metamorphic rocks post the HP/UHP metamorphism, have ^206Pb/^204 Pb=17. 128- 17. 434,^207Pb/^204pb=15. 313-15. 422 and ^208Pb/^204Pb=37. 631-38. 122, which are obviously different from the Pb isotopic compositions of the HP metamorphic rocks but similar to those of the UHP metamorphic rocks and the foliated garnet-bearing granites in the UHP unit. This shows that the foliated granites from the HP and UHP units have common magma source. Combined with the foliated granites having the geochemical characteristics of A-type granites, it is suggested that the magma for the foliated granites in the UHP and HP unit would be derived from the partial melting of the retrometamorphosed UHP metamorphic rocks exhumed into middle to lower crust, and partial magmas were intruded into the HP unit.  相似文献   

12.
The metamorphic belt in central Jiangxi, located in the compound terrain within the Cathaysia, Yangtze Block and Caledonian fold zone of South China, is composed dominantly of meta-argillo-arenaceous rocks, with minor amphibolite. These rocks underwent amphibolite-facies metamorphism. The meta-argillo-arenaceous rocks show large variations in major element composition, but have similar REE patterns and trace element composition, incompatible element and LIE enrichments [ high Th/Sc (0.57-3.59) , La/Sc ( 1.46 - 12.4), La/Yb (5.84 - 19.0) ] and variable Th/U ratios, with ∑REE = 129-296μg/g, δEu =0.51 -0.86, and (La/Yb)N = 3.95 -12.9. The Nd isotopic model ages tDM of these rocks vary from 1597 to 2124 Ma. Their 143 Nd/144 Nd values are low [εNd (0) = - 11.4 to -- 15.8]. Some conclusions have been drawn as follows: (1) The metamorphic rocks in central Jiangxi Province are likely formed in a tectonic environment at the passive continental margin of the Cathaysia massif. (2) The metamorphosed argillo-arenaceous rocks are composed dominantly of upper crustal-source rocks (Al- and Krich granitic or/and sedimentary rocks of Early Proterozoic), which experienced good sorting, slow deposition and more intense chemical weathering. (3) According to the whole-rock Sm-Nd isochron ages (1113±49 to 1199 ± 26 Ma) of plagioclase-amphibole (schist) and Nd isotopic model age tDM ( 1597 - 2124Ma) of meta-argillo-arenaceous rocks, the metamorphic belt in central Jiangxi Province was formed during the Middle Proterozoic ( 1100 - 1600 Ma).  相似文献   

13.
Located on the northeast margin of the Qiangtang terrane between the Jinshajiang suture zone and Bangonghu-Nujiang suture zone, the Dongmozhazhua and Mohailaheng Pb-Zn deposits in the Yushu area of Qinghai Province are representative Pb-Zn deposits of the Pb-Zn-Cu polymetallic mineralization belt in the northern part of the Nujiang-Lancangjiang-Jinshajiang area, which are in the front belt of the Yushu thrust nappe system. The formed environments of these two deposits are different from those of sediment-hosted base metal deposits elsewhere in the world. The authors hold that they were formed during the Indian-Asian continental collision and developed within the foldthrust belt combined with thrust and strike-slip-related Cenozoic basins in the interior of the collisional zone. Studying on the metallogenic epochs of these two deposits is helpful to the understanding of ore-forming regularity of the regional Pb-Zn-Cu mineralization belt and also to the search for new deposits in this region. The age of the Dongmozhazhua deposit has been determined by the Rb-Sr isochron method for sphalerite residues, whereas the age of the Mohailaheng deposit has been determined by the Rb-Sr isochron method for sphalerite residues and the Sm-Nd isochron method for fluorite. The age of the Dongmozhazhua deposit is 35.0±0.0 Ma((87Sr/86Sr)0=0.708807) for sphalerite residues. The age of the Mohailaheng deposit is 32.2±0.4 Ma((87Sr/86Sr)0=0.708514) for sphalerite residues and 31.8±0.3 Ma((143Nd/144Nd)0=0.512362) for fluorite with an average of 32.0 Ma. Together with the regional geological setting during mineralization, a possible tectonic model for metallogeny of the Dongmozhazhua and Mohailaheng Pb-Zn deposits has been established. These two ages are close to the ages of the Pb-Zn deposits in the Lanping and Tuotuohe basins, indicating that it is possible that the narrow 1000-kilometer-long belt controlled by a thrust nappe system on the eastern and northern margins of the Tibetan plateau could be a giant Pb-Zn mineralized belt.  相似文献   

14.
The granitioids in question are located in the geosynclinal fold belt of the Northern Tianshan Mountains.The magmas are intruded into a Carboniferous marine volcanic-sedimentary rock series. forming a contempo-raneous. intermediate-basic to acid. composite intrusion. With a whole-rock Rb-Sr isochron age of 315.7 Ma. itis considered to be of middle Heicynian age. The granitoids have a SiO_2 content of 48-78%, a calc-alkali indexof 60 and silica-alkali indices ρ=2.2-2.4 and σ=1.5-2. From basic to acid compositions, the total REE con-tent increases from 38 to 143 ppm. δEu ranges from 0.47 to 0.86 and the Eu anomalies are negative. Thenormalized curves of REE of various rock types are very similar. These coupled with the characteristics of traceelement geochemistry show that the intrusion is an island arc-continental margin, calc-alkaline one. Theδ~(18)O values range from 5.8 to 8.9‰ and the ~(87)Sr/~(86)Sr initial ratio is 0.705. The materials of the intrusion arecomposed of a mixture of the magmas at the top of the upper mantle and in the lower crust, This indicates thatthe rocks might be consanguineous. differentiated and evolved products and possess the characteristics of Ⅰtype granites.  相似文献   

15.
The meta-basic volcanic rocks in the Tengtiaohe Zone yield zircon U–Pb ages of 258.8±2.5 Ma and 259.2±1.8 Ma, respectively which agree with the ages of flood basalts of ELIP and are similar to the basaltic rocks and komatiites from the Song Da Zone in northern Vietnam. The results suggest that the age of meta-basic volcanic rocks is Late Permian, rather than the Early Permian or Early Carboniferous ages as previously inferred. Most meta-basic volcanic rocks are strongly enriched in LREEs relative to HREEs and display trace element patterns similar to the ELIP high-Ti basalts, and are enriched in LILEs with negative Sr anomalies. Their initial ~(87)Sr/~(86) Sr ratios range from 0.705974 to 0.706188 and εNd(t) from-0.82 to-2.11. Their magmas were derived from an enriched and deep mantle source without significant crustal contamination. These meta-basic volcanic rocks formed in ELIP. Therefore, the Tengtiaohe Zone is not an ophiolite zone and can link to the Song Da Zone in northern Vietnam.  相似文献   

16.
Abstract: Sensitive, high-resolution ion microprobe zircon U–Pb ages of Paleoproterozoic, high-grade, metasedimentary rocks from the south-western part of the Siberian Craton are reported. Early Precambrian, high-grade complexes, including garnet–biotite, hypersthene–biotite, and cordierite-bearing gneisses compose the Irkut terrane of the Sharyzhalgay Uplift. Protoliths of studied gneisses correspond to terrigenous sediments, ranging from greywacke to shale. The paragneiss model Nd ages of 2.4–3.1 Ga indicate Archean-to-Paleoproterozoic source provinces. Zircons from gneisses show core-rim textures in cathodoluminescence (CL) image. Round or irregular shaped cores indicate detrital origin. Structureless rims with low Th/U are metamorphic in origin. The three age groups of detrital cores are: ≥2.7, ~2.3, and 1.95–2 Ga. The ages of metamorphic rims range from 1.86 to 1.85 Ga; therefore, the sediments were deposited between 1.95 and 1.86 Ga and derived from Archean and Paleoproterozoic source rocks. It should be noted that Paleoproterozoic metasedimentary rocks of the Irkut Block are not unique. High-grade metaterrigenous sediments, with model Nd ages ranging from 2.3 to 2.5 Ga, are widely distributed within the Aldan and Anabar Shields of the Siberian Craton. The same situation is observed in the North China Craton, where metasedimentary rocks contain detrital igneous zircon grains with ages ranging from 3 to 2.1 Ga (Wan et al., 2006). All of these sedimentary units were subjected to Late Paleoproterozoic metamorphism. In the Siberian Craton, the Paleoproterozoic sedimentary deposits are possibly marked passive margins of the Early Precambrian crustal blocks, and their high-grade metamorphism was related to the consolidation of the Siberian Craton.  相似文献   

17.
The Xiaoban gold deposit is a large-size deposit recently found in middle area of Fujian Province. It belongs to magmatic hydrothermal type occurred in Mayuan Group metamorphic rocks of Middle Proterozoic and is controlled by low angle fault (detachment) structures. The contents of Au in Mayuan Group metamorphic rocks, Caledonian-Indosinian deformed granite and early Yanshanian granite are higher with Au enrichment coefficient of 2.06-5.68, 5.11 and 6.67 than those in other geological bodies. And the higher enrichment coefficients (>2) of Ag, S, Sn and Te are similar to those of gold ore. Meanwhile, the distribution of Au in Mayuan Group metamorphic rocks and early Yanshanian granite with a low D-value (0.58 and 0.67) is favorable to gold mineralization. REE characteristics of gold ore, ratios of (LREE/HREE), (La/Sm)n, (Yb/Lu)n, (La/Tb)n and (Sm/Nd)n are similar to Mayuan Group metamorphic rocks, only non or little normal Eu abnormal of ore is dissimilar to metamorphic rocks. The δ(34S) of the gold ore, with a high homogenization, is (-4.7×10-3)-(-2.7×10-3). The study of inclusion indicates 180-249 ℃ of mineralization temperature, 3.69 %-11.81 % of salinities and 0.869-0.991 g/cm3 of densities of mineralization fluid. Based on hydrogen and oxygen isotope (δ(18O)=11.0×10-3-11.7×10-3, δ(D)=(-48×10-3)-(-62×10-3)) and initial w(87Sr)/w(86Sr) =0.715,combining to the analysis of geological history, regional metamorphism and magamtic activity, the authors confirm that the source for the ore fluid was mainly from magmatic, partly from metamorphic water, and with a little influence of meteoric water. Isotopic dating made on Rb-Sr isochron age of 182 Ma, by using alteration minerals of gold-ores from the deposit, indicates that the mineralization occurs in early Yanshanian epoch. This is close to the age of 187 Ma of the Anchun magmatite with a similar alteration and gold mineralization to the Xiaoban gold deposit. The age of early Yanshanian epoch of the Xiaoban gold is indentical with the characteristics of southern China gold metallogenic belt and the geotectonic evolution of the transition from paleo-Asian system and paleo-Tethyan system to paleo-Pacific active continental margin in eastern Asia.  相似文献   

18.
The Semail ophiolite of Oman and the United Arab Emirates(UAE) provides the best preserved large slice of oceanic lithosphere exposed on the continental crust,and offers unique opportunities to study processes of ocean crust formation,subduction initiation and obduction.Metamorphic rocks exposed in the eastern UAE have traditionally been interpreted as a metamorphic sole to the Semail ophiolite.However,there has been some debate over the possibility that the exposures contain components of older Arabian continental crust.To help answer this question,presented here are new zircon and rutile U-Pb geochronological data from various units of the metamorphic rocks.Zircon was absent in most samples.Those that yielded zircon and rutile provide dominant single age populations that are 95-93 Ma,partially overlapping with the known age of oceanic crust formation(96.5-94.5 Ma),and partially overlapping with cooling ages of the metamorphic rocks(95-90 Ma).The data are interpreted as dating high-grade metamorphism during subduction burial of the sediments into hot mantle lithosphere,and rapid cooling during their subsequent exhumation.A few discordant zircon ages,interpreted as late Neoproterozoic and younger,represent minor detrital input from the continent.No evidence is found in favour of the existence of older Arabian continental crust within the metamorphic rocks of the UAE.  相似文献   

19.
The newly discovered Laomiaogou porphyry-skarn Mo deposit is located south of the Machaoying fault in western Henan province. The ore-body is hosted in the contact between the Laomiaogou granite porphyry dyke and the Duguan Formation. LA-ICP-MS U-Pb analyses for zircons from the granite porphyry yield a weighted mean 206Pb/238U age of 152.1±0.6 Ma, and seven molybdenite separates yield a weighted mean age of 151.9±0.9 Ma and isochron age of 151.6±5.1 Ma. Thus, the granite porphyry dyke and Mo mineralization are contemporaneous. The ore-related granite porphyry dyke is a peraluminous I-type granite with high contents of SiO2 and K2O. The rocks are strongly depleted in P, Nb, Ta and Ti, indicative of intensive fractionation of apatite and Fe-Ti oxides, and characterized by low whole-rock εNd(t) (-20.6 to -17.6) and zircon εHf(t) values (-26.9 to -22.6). The old tDM2(Nd) ages (2.37 to 2.61 Ga) and zircon tDM2(Hf) ages (2.62 to 2.88 Ga) suggest that the granite porphyry was likely derived from an ancient crustal source. Considering the tectonic evolution and geochemical characteristics of the granite as well as other Mesozoic granites in the southern margin of the North China Craton, we suggest that the Laomiaogou granite porphyry dyke and Mo were most likely derived from partial melting of the Taihua Group metamorphic rocks under extensional tectonic regime related to the subduction of the paleo-pacific plate. © 2018, Science Press. All right reserved.  相似文献   

20.
Wudalianchi volcanic rocks are the most typical Cenozoic potassic volcanic rocks in easten China.Compositional comparisons between whole rocks and glasses of various occurrences indicate that the magma tends to become rich in silica and alkalis as a result of crystal differentiation in the course of evolu-tion.They are unique in isotopic composition with more radiogenic Sr but less radiogenic Pb.^87Sr/^86Sr is higher and ^143Nd/^144Nd is lower than the undifferentiated global values.In comparison to continental pot-ash volcanic rocks,Pb isotopes are apparently lower.These various threads of evidence indicate that the rocks were derived from a primary enriched mantle which had not been subjected to reworking and shows no sign of incorporation of crustal material.The correlation between Pb and Sr suggests the regional heterogeneity in the upper mantle in terms of chemical composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号