首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
白云鄂博矿床研究若干问题的探讨   总被引:4,自引:1,他引:3  
白云鄂博巨型稀土-铌-铁矿床是与火成碳酸岩(即H8)有关的矿床。在碳酸岩岩浆阶段,在其蚀变围岩(霓长岩)中以及晚期的热液阶段都有稀土、铌和铁等的富集。因此,白云鄂博矿床不是单一矿床类型,其涵盖了稀土-铌-铁碳酸岩岩浆型矿床、稀土-铌-铁交代蚀变岩型和热液型矿床,这种复合类型的矿床是十分罕见的,可称之为白云鄂博式矿床。根据已发表的年代数据,白云鄂博大规模碳酸岩的形成时代和伴随的稀土矿化的高峰期在1.3~1.4Ga。加里东构造热事件对本区的影响广泛和强烈,不仅有广泛发育的大型褶皱、冲断层和韧性剪切作用,并伴有广泛的流体交代作用和局部的热液活动,某些稀土矿物的同位素体系受到重置,表现为其Sm-Nd年龄和Th-Pb年龄的不一致。本区的碱性岩在基底杂岩中即有出露,随后在白云鄂博群中和1.3~1.4Ga白云鄂博碳酸岩形成时皆有产出。目前所获资料表明,至少1.3~1.4Ga的碱性杂岩在成因上与碳酸岩有密切的联系。本区基底杂岩显示了白云鄂博地区在2.0Ga左右曾经有一个弧地质体,该区在2.0~1.9Ga间经历了从被动大陆边缘到活动大陆边缘增生碰撞的一个完整的造山过程。  相似文献   

2.
朱祥坤  孙剑 《地球学报》2012,33(6):845-856
内蒙古白云鄂博REE-Fe-Nb矿床是世界罕见的超大型多金属矿床, 但矿床成因一直没有解决, 而年代学研究是解决矿床成因的基础。本文结合矿床地质特征, 系统地分析了前人的年代学研究成果, 并对白云鄂博矿床的Sm-Nd同位素体系进行了深入的分析和讨论。结果表明, 白云鄂博稀土的成矿时代约为1.3 Ga, 与碳酸岩墙的形成时间一致, 成矿物质来源于地幔。加里东期的热事件(约0.44 Ga)导致了白云鄂博矿床晚期稀土矿脉的形成和原有矿体中部分稀土矿物的重结晶, 但成矿物质主要来源于矿体内部的稀土再循环, 外源物质的贡献不明显。约1.3 Ga到约0.44 Ga间的一系列中间年龄为后期热扰动的结果, 并不代表成矿事件。简言之, 白云鄂博矿床只在中元古代发生过一次实质性的稀土矿化作用, 地幔是稀土物质的单一源区。  相似文献   

3.
白云鄂博稀土铌铁矿床具十分独特的地质、地球化学特征.所以多时代成矿是难以置信的.白云鄂博矿床成矿时间势必晚于赋矿白云岩及其下伏地层.而较多的地层古生物证据表明白云鄂博群形成于震旦纪至奥陶纪之间.基于赋矿白云岩是热水沉积形成,碳酸盐脉是同源热液交代变质岩或砂岩等形成的认识,笔者等认为,碳酸盐脉中的锆石可能是变质岩或砂岩中的锆石,它们虽被热液改造,其U-Pb年龄仍可能老于成矿年龄.已报道的白云鄂博矿床Sm-Nd等时线年龄虽然主要集中在1.2~1.6 Ga.但也有多个分别为0.4~O.5 Ga、0.8~0.9 Ga和1.O~1.1 Ga的年龄值.笔者等收集了所有已发表的98件白云鄂博矿床矿石、矿物及碳酸岩墙和上覆板岩的Sm-Nd年龄分析数据,用Isoplot程序计算,发现这些数据,除两件异常外,可以拟合成一条直线,相关系数R=0.96325,求得等时线年龄t=1125.8±32.5 Ma,εNd=-3.02.这一结果表明在1125.8±32.5 Ma白云鄂博Sm-Nd同位素时钟启动,且未再受后来的地质作用扰动,指示成矿作用应晚于或等于1.1 Ga,但地质意义尚待研究.若假定Sm-Nd同位素时钟不易被一般地质作用重置,则可以采信白云鄂博矿床辉钼矿的R.e-Os模式年龄(439±8 Ma)或黄铁矿Re-Os等时线年龄(439±86Ma)为白云鄂博的成矿年龄.这与赋矿地层的古生物化石年代相符.  相似文献   

4.
白云鄂博铁-铌-稀土矿床的成矿时代长期争论.笔者报道了采自矿床西矿体铌-稀土-铁矿石样品和白云岩样品的Sm-Nd等时年龄和Rb-Sr等时年龄.Sm-Nd等时年龄为809±80(2σ)Ma,INd=0.511 182±34(2σ),MSWD1.10;Rb-Sr等时年龄近似于391±97(2σ)Ma,ISr=0.704 53±72(2σ),MSWD 47.西矿Sm-Nd等时年龄与矿床主、东矿相同年代学方法年龄不同.白云鄂博矿床可能形成于中、新元古代,并在早古生代加里东期遭受过后期地质作用改造.西矿同主、东矿一样,在加里东期,铁矿石和白云岩的Sr同位素系统发生过扰动或再置.  相似文献   

5.
    
内蒙古白云鄂博稀土-铌-铁矿床是世界上著名的巨型多金属矿床,但对其区域地质演化历史的认识至今仍不统一,而同位素年龄是解决矿床区域地质演化历史的有效手段。本文基于测年方法对白云鄂博矿床同位素年龄数据收集整理,结合矿床地质背景对矿床区域地质演化历史进行讨论:白云鄂博矿床发育在上太古界-下元古界结晶基底色尔腾山群之上,中元古代白云鄂博裂谷期的海底火山喷发-同生沉积作用发育了层状的含稀土铌铁矿层,同时发育了广泛的碳酸岩墙群和基性岩墙群,这是白云鄂博矿床最主要的成矿事件。白云鄂博矿床还经历过至少三次后期成矿热事件叠加或改造成矿,主要包括:(1)新元古代南华期热事件(约720Ma);(2)早古生代志留纪晚期叠加成矿事件(约440Ma);(3)晚古生代二叠纪岩浆岩侵入事件(约280Ma)。白云鄂博矿床是中元古代裂谷成矿事件为主并叠加了后期多次热事件的结果。  相似文献   

6.
对白云鄂博矿床大地构造环境的几点认识   总被引:1,自引:0,他引:1  
分布于华北地台北缘的白云鄂博群厚万米,EW向展布长500km,宽20-50km,以碎屑岩为主,碳酸盐岩约占1/10。1997年,我们首次确定厚千余米的含矿岩系为海相火山沉积稀有金属碳酸岩—粗面岩;1982的,李继亮确定厚320m的次闪绿帘石岩(H15)为裂陷槽中的细碧角斑岩系。从而奠定了白云鄂博群属象谷沉积的基础。世界上许多富含轻稀土和铌和碱性岩、碳酸岩多产于裂谷系中。白云鄂博矿床中的特殊元素组合和稳定同位素组成只有裂谷带下的异常地幔才能提供。大量Sm-Nd同位素年龄资料说明白云鄂博矿床稀土成矿时代主要是中元古代,更证明了矿床成矿作用与裂谷发展的同步性。  相似文献   

7.
白云鄂博REE-Nb-Fe稀土矿赋矿岩系建造研究评述   总被引:2,自引:0,他引:2  
白云鄂博特大型铌、稀土、铁矿床,由于其矿物组成的多样性、地质构造的复杂性、成矿的多期性使之成为一类典型稀土矿床,成为研究稀土矿的天然实验室。尽管已有60多年的开采及研究历史,但其含铁及稀土的矿床建造机制仍具争议。本文通过搜集、整理国内外近几年来发表的有关赋矿岩性(白云岩、富钾板岩、富钠岩石及碳酸岩脉)的研究成果,结合笔者的认识,对各种不同观点进行了对比分析和总结,最终提出了白云鄂博碱性碳酸岩-热水沉积岩系的观点,为白云鄂博稀土矿的研究提供一定的参考价值。  相似文献   

8.
通过野外地质观察和室内镜下研究,利用XRF和ICP-MS对白云岩及其周围的板岩的主、微量元素进行分析,同时对硫化矿化的样品开展硫同位素测试。元素测试结果显示白云鄂博Fe-REE-Nb建造白云岩既具有部分火成碳酸岩的地球化学特征,也具有部分沉积碳酸岩的地球化学特征,表明白云鄂博Fe-REE-Nb建造赋矿白云岩不是典型的火成碳酸岩或沉积碳酸盐岩。硫同位素的测试结果表明,全岩的硫同位素组成不呈塔式模型分布,出现两个比较明显的峰值,一个在0‰左右,具有深源特征;另一个在+8‰左右,明显高于幔源硫,这个结果说明其来源可能有两个:地幔和海水。赋矿白云岩中Nb随着稀土的富集也发生富集作用,但是Ta的富集作用却十分微弱,显示了成矿热液强烈富REE和Nb及贫Ta的元素地球化学特征。据元素和硫同位素结果,我们认为白云鄂博赋矿白云岩是沉积碳酸盐受地幔碳酸岩岩浆及派生的流体交代的产物,而非直接源于火山碳酸岩喷发成因。地幔深部碳酸岩岩浆及其派生的富稀土流体沿区域性深大断裂上涌与沉积碳酸盐岩进行交代作用,形成了白云鄂博独特巨大的Fe-REE-Nb矿床及区域性的稀土矿床。  相似文献   

9.
白云鄂博矿床是全球最大的稀土-铌-铁矿床。本文对白云鄂博矿床主矿、东矿赋矿白云岩、不同类型稀土-铌-铁矿石和富钾板岩进行详细的野外地质调查和地球化学成分分析,揭示了成矿元素稀土、铌和主要蚀变元素钠、钾、氟、磷的空间分布规律。结果表明,白云鄂博主采坑比东采坑具有更高的稀土含量,矿体由外围向中心、由浅部向深部有明显的稀土元素(尤其是中-重稀土元素)富集的现象,矿体深部具有更大的中-重稀土元素找矿潜力;成矿元素铌的异常范围与重稀土的异常范围相吻合,表明二者具有密切的共生关系;蚀变元素氟的异常范围与稀土-铌-铁矿体的分布范围相一致,是重要的沉淀成矿元素;蚀变元素磷的异常要明显超过稀土-铌-铁矿体的分布范围,是重要的迁移载体元素;钠化蚀变主要出现在矿体下盘含稀土白云岩中,代表早期高温蚀变过程;钾化蚀变主要发育在矿体上盘的富钾板岩中,代表晚期低温蚀变过程;钾化、萤石化及磷的异常是碳酸岩型稀土矿床最主要的浅部和外围示矿指标。  相似文献   

10.
孟艳宁  范红海  陈金勇  钟军 《地质论评》2016,62(S1):397-398
白云鄂博铌稀土矿位于华北板块北缘,白云鄂博裂谷带中,宽沟背斜南翼。矿床东西长18 km,南北宽2~3 km。白云鄂博矿矿床最早作为铁矿体于1927年被丁道衡发现;随后在1934年,何作霖教授在主矿体中发现了稀土矿产;1944年,黄春江发现了东矿和西矿。 解放后,241地质队对主矿、东矿和西矿进行详细的地质勘探工作,向国家提交了铁矿和稀土矿储量及品位。白云鄂博矿床作为国内最大的铁稀土矿床,长期以来一直作为铁矿在开采,其稀土资源的利用率也仅仅为百分之十左右,而矿床中的钍资源的利用率几乎为零。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号