首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
Spatial and temporal distribution of heavy metals (Chromium, Copper, Nickel, Lead, and Zinc) in the sediment of Longgan Lake, middle reaches of Yangtze River, China were analyzed to discuss their enrichment characteristics and history in combination with geochronological data and to identify anthropogenic effects. The results showed that the enrichment state of heavy metals was higher in the western versus eastern lake area, although their concentrations behave in the opposite case, which demonstrated that stronger human activities existed in the western lake catchment. The enrichment history of heavy metals pointed out that prior to 1950, the enrichment state was lower in the ambient lake areas illustrating the natural effect on the lake; thereafter the human activities in the catchment enhanced markedly causing an increasing heavy metal enrichment. The increase of heavy metal enrichment in the 1970s occurred in the central lake areas. The temporal difference between the ambient and central areas elucidated that the heavy metal accumulation might be buffered by the lake before they entered the sediment. Correlation analysis revealed that there was a significant correlation between heavy metals in the sediment suggesting their similar sources. Heavy metals were distinctly related to aluminum, calcium, lithium, iron, and organic matters, which could denote their forms in the sediment.  相似文献   

2.
Major elements [aluminum (Al), calcium (Ca), iron (Fe), manganese (Mn)] and phosphorus (P) as well as its fractions in the sediment of Longgan Lake, a shallow lake in the middle reach of Yangtze River, China, were investigated to assess the effect of factors such as the grain size, organic matter (OM), and redox conditions on the behavior of P. Meanwhile, the anthropogenic impact on the P accumulation during the last century was distinguished from the natural one. The grain size, redox conditions, and major elements had close relationship with inorganic P, while there was a significant correlation between organic P and OM. Different relationships between Ca-bound P and Ca in the sediment indicated the anthropogenic Ca source besides the natural one. The marked anthropogenic impact on the lake was detected since 1950 ad, while it significantly intensified since 1970 ad. This change corresponded well to the history of the reclamation, constructions of dams, and reservoirs, the utilization of phosphate fertilizers, and the utilization of lime to kill off schistosomes. The P flux was applied to distinguish the anthropogenic versus natural P accumulation. Before 1950 ad, the natural P inputs by soil erosion, runoff, and so on, were the main source of P in the sediment, while thereafter the increasing human activity in the catchment resulted in more extra P or so-called anthropogenic P accumulation.  相似文献   

3.
1IntroductionGlobal change studies on the decennial and cen-tennial timescales,which can help put together the in-formation from long timescale study and meteorologicalstudy,is crucial for predicting future global changes(Hegerl,1998;Wang Pinxian and Jian Zhimin,1999;Wang Sumin et al.,1998).Lacustrine sedi-ments characterized by their continuity,major sedi-mentation rate,and high resolution can provide usefulinformation for reconstructing the past global changes(Steven,1996;Wang Sumin and …  相似文献   

4.
太湖大浦湖区近百年来湖泊记录的环境信息   总被引:11,自引:3,他引:11  
刘建军  吴敬禄 《古地理学报》2006,8(4):559-563,564
通过对太湖TJ-2钻孔的137Cs、粒度、总有机碳(TOC)、总氮(TN)、总磷(TP)及化学元素等多指标综合分析,探讨了太湖大浦湖区近百年来的环境演变特征。研究结果表明,20世纪50年代以前,沉积物中大部分金属元素如Al、Mn、Cu、Cr、Ni、Zn与粘土含量具很好的相关性,相关系数在0.74~0.82之间。此阶段湖泊生产力不高,水环境较好,沉积物以较低的营养元素含量为特征。50—90年代,是太湖向现代湖泊环境转化的显著时期,湖区生产力大幅提高,人为活动对湖泊系统严重干扰,湖区迅速达到富营养化。在沉积物中表现为Fe/Mn值下降,有机碳、总氮、总磷与重金属元素急剧上升,且重金属元素变化明显不同于沉积物粒度及Al元素变化曲线。90年代以后,湖区一直持续着富营养化状态,富营养趋势渐缓,沉积物中粘土含量上升、营养元素稍降及重金属指标变化不明显的趋势很好地体现了这一特征。TJ-2钻孔显示的环境信息与湖泊实际环境监测结果基本一致。  相似文献   

5.
Dissolved trace elements and heavy metals of waters and sediments in the ten shallow lakes in the middle and lower reaches of the Yangtze River region were determined to identify their composition and spatial distribution, and to assess the extent of their environmentally detrimental effects by comparison with water and sediment quality guidelines. Results indicated that As and Pb were the main pollutants in lake waters and Mn and Hg the potential ones, while As, Cu and Pb were the main pollutants in lake sediments. Their spatial distribution indicated that Daye Lake was seriously polluted by metals, which was corroborated by cluster analysis. Higher concentrations of trace elements have been found in lakes downstream of the Yangtze River delta, and higher concentrations of metals have been recorded in sediments of upstream lakes, suggesting that metals in water were more sensitive to anthropogenic activities and that metals in sediment were mainly controlled by minerals. Correlation analyses demonstrated that there were stronger associations among metals in lake sediments than those in lake waters, and their good relationships suggested the common sources. Further research on the subject will help develop water quality management with the aim of restoring shallow lakes in the Yangtze River.  相似文献   

6.
The BCR sequential extraction procedure is applied to probe into the speciation distribution of heavy metals (Cd, Cr, Zn, Cu and Pb) in lake sediments of Core XJ2 in Xijiu Lake, Taihu Lake catchment, China. The results showed that the effective species concentration of this five heavy metal elements increased obviously during the past century, the proportions of organic/sulphide fractions of Zn, Cu and Pb decreased while the Fe–Mn oxide fractions increased, and the proportion of Fe–Mn oxide fractions of Cd decreased while the exchangeable and carbonate fractions increased. The concentrations of exchangeable and carbonate fractions of these five elements were increased in the past century, especially the proportions of these fractions of Cd, Zn, Cu and Pb increased prominently. These changes could be attributed to the anthropogenic pollution. Since the changes of the heavy metal concentrations were corresponding to the history of human activities, especially the industry development, within the catchment.  相似文献   

7.
太湖沉积物重金属及营养盐污染研究   总被引:26,自引:1,他引:25  
通过太湖MS沉积岩芯元素地球化学指标的分析,对太湖沉积物污染历史进行了系统的讨论。根据化学元素的聚类分析结果、变化趋势,并与太湖流域经济发展进程对比,认为太湖沉积物铅、锌、锰、镍污染开始于20世纪70年代末期,砷、汞污染分别开始于30年代和40年代,随着底泥重金属污染程度的加重,沉积物表层磁化率明显升高;总磷自40年代以来含量不断增加,总氮、总有机碳含量增加开始于70年代末期,表明湖泊富营养化程度不断加重。太湖沉积物重金属及营养盐污染历史与该区经济发展阶段相吻合。  相似文献   

8.
Upcoming International Events   总被引:3,自引:0,他引:3  
Metals in lacustrine sediment have both anthropogenic and natural sources. Because of intensified human activities, the anthropogenic input of metal elements has exceeded the natural variability. How to distinguish the anthropogenic sources in lake sediments is one of the tasks in environmental management. The authors present a case study, which combined the geochemical and statistical methods to distinguish the anthropogenic sources from the natural background. A 56 cm core (core DJ-5) was collected from Dongjiu Lake, Taihu Lake catchment, China. The concentration distributions of Al, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, Pb, Sr, Ti, V and Zn in core DJ-5 indicated that Dongjiu Lake had serious Cd pollution, and the concentrations of Cr, Cu, Pb, Mn and Zn had also exceeded the Chinese State Standards of Soil Environmental Quality in the upper layer of the core. Using Al as a reference element, the other metals were normalized and compared with their baselines to calculate the enrichment factors (EFs). The principal component analysis (PCA) of metal concentrations was performed using ViSta6.4. The results of EFs and PCA indicated that the concentration variations of Cd, Cu, Pb, Mn and Zn were mainly caused by the anthropogenic sources, and the concentration variations of Cr and Ni were influenced by both the anthropogenic and natural factors, while the other metals were mainly derived from the natural sources. Intensified human activities within the lake catchment area resulted in the increase of heavy metal inputs directly and the acceleration of erosion which caused other metal elements to deposit in the aquatic environment. The results of this work will be useful in probing changes forced by humans in the lake environment and in adjusting human activity in restoring the lake environment.
Yanhong WuEmail:
  相似文献   

9.
In this paper, we examined the response of geochemical records in lacustrine sediments to climate and human activity in Mengjin, Henan Province of China during the middle Holocene. Indices used in this study include K, Na, Mn, Ba, Sr, Al, Ti, cation ratios, and Gramineae pollen in lacustrine sediments. Results indicate a drought event in this area around 5660 cal a BP, which weakened soil leaching and changed the element composition of surface soil runoff entering the paelo-lake and lacustrine sediments. Human activity appearing from 4695 cal a BP to 4000 cal a BP also affected the chemical composition of lake sediments. Human activities led to enhanced soil erosion and destroyed soil leaching horizons. Therefore, the substance of soil illuvial layer exposed to the surface and entering the paleo-lake were substantially altered by human activities.  相似文献   

10.
陕北红碱淖沉积物粒度特征所揭示的环境变化   总被引:13,自引:0,他引:13  
通过沉积物粒度参数,对陕西红碱淖近几十年以来的湖泊演化和区域环境变化进行了探讨。沉积岩芯下部样品粒度组成呈双峰特征,据此可以分辨沉积物中湖相和风成组分。结果表明红碱淖形成于1928年,成湖初期流域风沙发育,其中1936年、1939年和1941年发生了三次强沙尘暴事件;1952~1960年为湖泊快速扩张时期,系人为改造使入湖地表径流在短时间内快速增强所致;1960年以后,红碱淖演化为稳定深湖环境,湖区降水增多,风沙发生的频率和强度大大降低,沉积物粒度频率分布曲线也演变为单峰形态。20世纪90年代中期以来,该湖水面有下降趋势。红碱淖粒度参数特征较好地反映了湖泊演化历史、区域风沙强度变化以及人类活动特征。   相似文献   

11.
The Dongting Lake, the second biggest freshwater lake in China, consists of three wetlands of national importance, namely the East Dongting Lake, the South Dongting Lake, and the West Dongting Lake. Surface sedi-ments were sampled from 57 locations across the lake. Nutrient concentrations [total organic carbon (TOC), total N (TN) and total P (TP)] and 16 element concentrations (Al, As, B, Ca, Cd, Cr, Cu, K, Fe, Hg, Mn, Ni, Pb, Si, Ti and Zn) in the sediments were measured to investigate the impact of industrialization along the lake's coastline and sev-eral tributaries on the profiles of nutrients and heavy metals in the lake's surface sediments. R-mode cluster analysis (CA) was used to integrate geochemical data. The result showed that euthophication of the Dongting Lake resulted mainly from TN and TOC. The main polluting trace metals are Hg, As, Cd, Zn, Pb and Mn, which are largely ad-sorbed on clay minerals or Fe/Mn oxides, or deposited as carbonates. Principal component analysis (PCA) revealed the source of micropollutants. The worst affected district by heavy metals is the East Dongting Lake, the pollution sources may originate mainly from the Xiangjiang drainage area. The results demonstrated that multivariate methods are the potentially great tools for the interpretation of the environmental data on lake sediments.  相似文献   

12.
太湖MS岩芯重金属元素地球化学形态研究   总被引:21,自引:4,他引:17  
采用BCR三步提取法对太湖MS岩芯沉积物中Cu、Fe、Mn、Ni、Pb和Zn等6种重金属元素的化学形态进行了研究.结果表明,有效结合态的Cu、Ni和Pb主要以有机物及硫化物结合态、Fe-Mn氧化物结合态存在,Fe和Zn主要以Fe-Mn氧化物结合态存在,Mn主要以可交换态及碳酸盐结合态存在;Fe-Mn氧化物结合态的Ni、Pb和Zn与可还原态的Mn有较好的正相关关系,有机物及硫化物结合态的Cu、Mn、Ni、Pb和Zn与有机碳含量有较好的正相关关系;重金属形态分布体现了重金属元素地球化学性质的差异,以及重金属形态含量与沉积物理化性质的关系.沉积岩芯重金属元素形态垂向变化规律及次生相富集系数表明,Cu、Mn、Ni、Pb和Zn在沉积岩芯13~4 cm有效结合态含量较稳定,为自然沉积;4~0 cm有效结合态含量明显升高,存在一定程度的人为污染.根据137Cs测年结果判断,沉积岩芯Cu、Mn、Ni、Pb和Zn等重金属污染开始于20世纪70年代末期,主要污染元素及污染历史与太湖流域污染工业类型及经济发展阶段相吻合.  相似文献   

13.
Core and surface sediment samples were collected from three sub-lakes ( Lake Nanyang, Lake Dushan and Lake Zhaoyang) in the Lake Nansi Basin, Shandong Province. In order to reveal the characteristics of spatial and historical distribution of heavy metals in different sublakes of the Upper Lake Nansi, heavy metal (As, Cr, Cu, Hg, K, Mn, Ni, Pb, Zn, Al, Fe, Ti and V) concentrations of sediment samples were investigated. Based on the activity of^137Cs in the sediments, the modem accumulation rate of Lake Nansi sediments is 3.5 mm/a. Our results show that the whole Upper Lake Nansi has been already polluted by heavy metals, among which Lake Nanyang has been polluted seriously by mercury, as well as by lead and arsenic, while Lake Dushan has been most seriously polluted by lead and arsenic. Historical variation of heavy metal (Cr, Cu, K, Ni, Zn, A1, Fe, Ti and V) concentrations shows an abrupt shift in 1962, resuiting in a division of two periods: from 1957 to 1962 when metal enrichment increased with time, and from 1962 to 2000 when it decreased with time, while that of some anthropogenic elements such as Hg, Pb and Mn tend to increase toward the surface. However, the variation trend of As in the sediments is different from that of Hg, Pb and Mn, with its maximum value appearing in 1982. Since 1982 the concentrations of As have decreased due to the forbidden use of arsenite pesticides. This variation trend revealed changes in manner of human activity (coal combustion, waste discharges from both industries and urban sewage ) within the catchment during different periods.  相似文献   

14.
太湖沉积物和湖岸土壤的污染元素特征及环境变化效应   总被引:38,自引:3,他引:38  
太湖沉积物和湖岸土壤具有相似的物质组成,具有相同的物源,通过补给区的径流,营养元素和重金属元素随着土壤迁入湖泊,由于沉积物和土壤物化条件的不同,它们的营养元素和重金属含量有差异。土壤中氮,磷的总量和有效态均比沉积物中高,表明有一部分营养物质进入了水体;营养元素高的沉积物均靠近城镇,其原因为居民生活污水排放,土壤和沉积物中多数重金属元素尚未超过自然背景值,只有沉积物中Cd和Pb,土壤中的Cu,Cd和Hg超过,但沉积物中重金属元素大多比土壤中高,特别在北部沿岸沉积物中,重金属元素含量大大超过平均值,这种不正常的高值是由人类不合理的废水,废物敢排放引起。  相似文献   

15.
The lakes of the Himalaya are degrading due to increase in toxic heavy metal loading. This study reports the last 50-year heavy metal pollution loading in the Rewalsar Lake, Himachal Pradesh, India. Sediment cores were recovered to study the pollution loading in the lake sediments. The 137Cs and 210Pb isotope-based sedimentation rate suggest rapid sedimentation in the lake during the last ~50 years. The concentrations of Mn, Cu, Zn, Cd, Pb, Co, Ni, Cr metals in the lake sediments owe its contributions both to the natural and anthropogenic sources. Prior to ca 1990 AD, metal loading was dominated by the lithogenic input, whereas post ca 1990 AD the metal loading was controlled by the anthropogenic factors. The Pb concentration in the lake gradually increased during 1990–2004 and then decreased significantly till present. The higher concentration of Pb seems to be derived from the fossil fuel burning, while the Cr concentration in the lake indicates the use of fertilizer in the catchment area. The lowest concentrations of elements around ca 1990 AD seem to have occurred due to channelization of the lake feeding system.  相似文献   

16.
The heavy metal contents of Mn, Ni, Cu, Zn, Cr, Co, Pb, Cd, Fe, and V in the surface sediments from five selected sites of El Temsah Lake was determined by graphite furnace atomic absorption spectrophotometer. Geochemical forms of elements were investigated using four-step sequential chemical extraction procedure in order to identify and evaluate the mobility and the availability of trace metals on lake sediments, in comparison with the total element content. The operationally defined host fractions were: (1) exchangeable/bound to carbonate, (2) bound to Fe/Mn oxide, (3) bound to organic matter/sulfides, and (4) acid-soluble residue. The speciation data reveals that metals Zn, Cd, Pb, Ni, Mn, Cu, Cr, Fe, and V are sink primarily in organic and Fe–Mn oxyhydroxides phases. Co is mainly concentrated in the active phase. This is alarming because the element is enriched in Al Sayadin Lagoon which is still the main site of open fishing in Ismailia. Average concentration of the elements is mostly above the geochemical background and pristine values of the present study. There is a difference on the elemental composition of the sediment collected at the western lagoon (Al Sayadin Lagoon), junction, the shoreline shipyard workshops, and eastern beach of the lake. Depending upon the nature of elements and local pollution source, high concentration of Zn, Pb, and Cu are emitted by industrial wastewater flow (shoreline workshops), while sanitary and agricultural wastewater (El Bahtini and El Mahsama Drains) emit Co and Cd in Al Sayadin Lagoon. On the other hand, there is a marked decrease in potentially toxic heavy metal concentrations in the sediments at the most eastern side of the lake, probably due to the successive sediment dredging and improvements in water purification systems for navigation objective. These result show that El Temsah receives concentrations in anthropogenic metals that risk provoking more or less important disruptions, which are harmful and irreversible on the fauna and flora of this lake and on the whole ecobiological equilibrium.  相似文献   

17.
洪泽湖流域沉积物重金属元素的环境记录分析*   总被引:3,自引:5,他引:3  
以淮河中下游洪泽湖湖底沉积物为研究载体,将放射性核素计年与沉积物重金属元素含量变化分析相结合,初步探讨了近百年来洪泽湖湖底重金属元素变化特征及人类活动对湖泊环境的影响。结果表明: 20世纪50年代初以前,洪泽湖沉积物中重金属元素主要为自然沉积,元素含量具有一致的变化趋势; \{1950~\}1978年,特别是1952年后各元素含量开始小幅度上升, Pb,Zn,As等元素均出现较为明显的累积峰值。原因在于1953年洪泽湖下游三河闸水利工程的修建,使部分重金属重新溶出吸附,导致沉积物中重金属元素含量发生波动,另一方面也反映出当时洪泽湖已经受到流域重金属的污染; \{1979~\}1989年间, Hg元素含量开始逐渐增加上升,系自然来源、人类污染及生物累积效应的影响; \{1990~\}2001年,大规模城乡开发活动对环境污染影响加剧,所有重金属元素均呈现逐渐增加的趋势,尤其在表层达到最高值,此阶段Hg和Cd的上升幅度较大,Hg元素平均含量为0.21ppm,Cd元素平均含量2.36ppm,超过土壤环境质量重金属评价三级标准。洪泽湖水体中Hg元素含量的上升,Cd元素含量的严重超标及其引起的生态效应问题应引起高度重视。  相似文献   

18.
In 1998, a 59-cm sediment box core (PLB98-2) was taken from the deepest part of Pyramid Lake (water depth =106 m), Nevada. Age control for PLB98-2 was provided using a variety of approaches. Dried sediment samples were leached with 10% ultra-pure nitric acid and analyzed for their elemental concentrations using standard ICP techniques. The variations in elemental concentrations can be divided into two periods: one prior to European settlement and one influenced by anthropogenic activities. The concentrations of K, Al, Na, Zn, and Mn all began to increase after pre-European manipulation of the watershed in ~1860, which indicates the increasing soil erosion in the watershed was due to deforestation and development. The highest concentrations of these elements and lithogenic elements such as P, Mg, Fe, Cu, Ba, and Si occurred during the flood event of the 1990s. The Pb enrichment times are similar to what has been observed in estuaries draining the western Sierra Nevada, but the Pb enrichments in Pyramid Lake are much less. The Ca, TOC, TIC, Sr, and Ba concentrations show a strong association that is closely related to drought-wet variations of climate and the construction of Derby Dam for water diversions in the early 1900s. Se concentrations vary with the '18O of the carbonate in the sediments. Although the '18O "leads" the other species and Truckee River discharge by a few years, it is an excellent indicator of the hydrological change of Pyramid Lake, which is related to climate changes and human activities. From ~1920, Mn and Mo vary inversely in the sediments. In general, the Mo concentrations varies directly with the organic carbon content of the sediments from 1910 to ~1980, suggesting enhanced removal of Mo during times of increased productivity in the lake, and anoxic conditions at the sediment/water interface. This coincides with low lake levels. The elemental composition of the sediments in Pyramid Lake clearly reflect the timing of important anthropogenic activities and climatic variations that have taken place within the watershed over the past 240 years.  相似文献   

19.
抚仙湖是我国面积、蓄水量最大的高原湖泊之一。通过对抚仙湖FXH-B2钻孔岩芯296 cm沉积物的矿物组成和碳酸盐含量分析,结合岩芯XRF扫描数据和AMS^14C年代的测定,探讨了抚仙湖湖泊沉积物中碳酸盐含量与方解石矿物及沉积物Ca元素相对含量之间的关系及其环境指示意义,在对比和参考水下地形测量、地球物理勘探、水质和地球化学监测和不同部位钻孔岩芯的分析结果的基础上,重建了抚仙湖全新世以来气候和湖泊水位的变化。结果指示,抚仙湖碳酸盐含量与方解石的XRD信号强度、沉积物Ca元素的XRF扫描数据之间存在很高的相关性,沉积物中碳酸盐类物质主要为方解石(其他碳酸盐类矿物相对含量极微甚至可以忽略不计),沉积物中Ca元素主要来自碳酸盐,因此其含量由碳酸盐、即方解石矿物含量决定。沉积物中碳酸盐含量的变化可以用沉积物中Ca元素XRF扫描结果进行表示。由于抚仙湖处于亚热带季风气候区,以10月至次年4月降水量极少而蒸发强烈为特点的干季和以5月至9月降水为主的湿季所形成的干湿变化控制了湖泊演化的主要过程,区域气候变化是湖泊演化和水位变化的主要动力。结合湖泊沉积碳酸盐稳定同位素δ^18O和δ^13C、有机质含量及其同位素δ^13C、抚仙湖北部边缘水下侵蚀地形测量、地球物理勘探和沉积地层年代的确定和讨论,明确了抚仙湖沉积碳酸盐含量指示湖泊水位的变化,并重建了抚仙湖过去约12 ka以来水位变化的历史。结果显示,在约12 cal.ka B.P.至2.2 cal.ka B.P.期间的湖泊水位变化主要经历了波动式降低的过程,其中4.37~2.2 cal.ka B.P.期间高CaCO3含量、偏正的碳酸盐δ^18O、δ^13C值指示抚仙湖一度出现低于现代湖面约30 m左右的低水位,可能记录了抚仙湖流域极端的干旱时期,在2.2~2.0 cal.ka B.P.期间抚仙湖水位经历了快速升高的变化事件,期间湖水位快速上升达到现代湖水水位,揭示了印度季风控制区区域降水的特殊性和气候变化的突发性。  相似文献   

20.
Total organic carbon (TOC), Total nitrogen (TN) and the phosphorus species concentrations of sediment cores taken from Zhushan Bay, Meiliang Bay, and East Taihu Lake regions in Taihu Lake, a large shallow lake in China, were determined. Experimental results showed a conspicuous eutrophication trend in the northern area of Taihu Lake. Inorganic P was found to be the main phosphorus form. Fe-bound P accounted for the largest proportion of Inorganic P in Meiliang Bay, an alga-type lake region. In East Taihu Lake, a macrophytic lake region, Ca-bound P was found in higher proportions than in other lake regions, with Organic P present in similarly large proportions. With respect to Taihu Lake sediment cores, the date at approximately 20 cm layer depth was roughly identified as 1950s, while upper 5 cm layers corresponded to the turn of the century. The drastic increase in phosphorus species concentration except for Ca-bound P was indicative of the large quantities of effluent discharge into Zhushan Bay owing to the increased industrial and agricultural production from the 1950s onwards. TN, Inorganic P, Organic P, and total phosphorus (TP) concentrations increased by over 2, 2.5, 2 and 2.5-fold, respectively, over the past five decades. A large proportion of Organic P accounted for TP, and high C/N ratios indicated that East Taihu Lake can be properly classified as an oligotrophic lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号