首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
文思强  李云鹏  马康 《岩土力学》2015,36(Z2):185-192
强夯法具有高效的地基处理能力而被广泛应用,但加固地基的同时会对周围工程结构和环境产生一定的振动危害。以能量转换原理为基础,近似将夯击能分为振动波能和土体塑性功两部分,通过建立的强夯椭球体分区加固模型,导出塑性功计算格式,提出利用监测强夯夯坑深度变化信息来反演强夯能量利用率的反演方法,并导出了相应的反演公式。依据加固压实区和加固影响区椭球体分布假设和夯坑深度变化监测结果,给出了强夯加固范围和影响范围大小的计算思路和方法。以北京园博园回填土地基强夯加固工程为背景,利用现场监测试验信息对强夯能量利用率和加固范围及影响范围进行了反演分析和计算。分析表明,文中方法不仅能够有效地反演出强夯能量利用率和计算出强夯加固范围和影响范围,且可利用分析结果能够方便地估算地基强夯加固时的有效夯击次数,进行加固方案设计等。通过分析结果与现场地基测试结果的比较,验证了文中方法的有效性和实用性。  相似文献   

2.
杨哲峰 《探矿工程》2009,(Z1):281-283
大连保税区油库工程一期工程强夯加固地基先试验夯击确定参数,后正式施工。通过对试验区强夯参数的分析(包括有效加固深度、夯击能、夯击遍数、夯点间距、夯击击数及消散期等),为正式施工提供了参数依据。  相似文献   

3.
旧路改建高速公路中地基强夯效应测试与工艺参数分析   总被引:2,自引:1,他引:1  
吕国仁  崔新壮 《岩土力学》2008,29(9):2542-2546
旧路改建高速公路遇到的最主要的问题是地基的不均匀沉降。数值分析表明,对新的天然地基进行处理是解决这一问题的关键。强夯是加固地基的一种有效措施,为了对强夯工艺参数进行优化研究,对夯锤冲击地面过程中产生的动孔隙水压力、动土应力以及夯后超静孔隙水压力的消散过程进行了跟踪测试与分析。结果表明,对以风化料为主的地基,最大夯击数不宜超过4击,而且铺底夯完成2d后就可进行满夯。  相似文献   

4.
西北某回填湿陷性黄土地基强夯处理项目,施工完成后部分区域土层湿陷性未完全消除。对强夯法加固回填湿陷性黄土地基有效加固深度的影响因素进行分析,认为夯击能量和夯击次数是影响有效加固深度的首要因素,此外还有地基土含水量、不同土层的厚度及埋藏顺序、回填土层的密实程度及强夯设计参数等。  相似文献   

5.
强夯法加固岷江防洪堤粉土地基的效果检验   总被引:4,自引:1,他引:3  
王保田  张福海  祝子泓 《岩土力学》2004,25(7):1159-1162
对宜宾市岷江防洪堤工程粉土地基进行了强夯法加固现场试验,介绍了试验区强夯法的施工设计和现场检测与室内试验结果。强夯法加固地基现场检测结果表明,采用1 600 kN?m的夯击能使该粉土地基有效加固深度达到8 m。 当夯点间距为5 m,强夯2遍,满夯1遍后,现场检测和取土实验结果表明:由于强夯作用,粉土层的干密度明显增加,压缩性和渗透性降低。在天然地基中,32.2 %的标准贯入击数小于5,强夯以后,标准贯入击数全部大于7。粉土地基经过强夯处理后,满足了防洪堤地基对承载力和渗透性的要求,消除了Ⅶ度地震液化势。采用正三角形夯点布置区的加固效果明显优于正方形夯点布置区的加固效果。  相似文献   

6.
胡长明  梅源  王雪艳 《岩土力学》2012,33(10):2903-2909
针对离石地区超高填方下深厚湿陷性黄土地基强夯加固参数及效果开展了系列试验研究,分析了强夯前、后各试验区平均夯沉量和土体主要物理力学指标的变化规律,并给出2 000、3 000、6 000 kN•m 能级条件下强夯加固的夯点中心距、最佳击数、停夯标准及有效加固深度等主要参数,在此基础上确定了强夯有效加固深度的估算方法。试验结果表明,离石地区深厚湿陷性黄土地基强夯处理后加固效果显著,有效加固深度范围内黄土湿陷性基本消除;离石或类似地区湿陷性黄土地基采用2 000 kN•m及其以上能级进行强夯处理后,地基承载力特征值均可达到300 kPa以上,土体变形模量大于25 MPa,强夯有效加固深度可采用修正Menard公式进行估算,修正系数可取0.35~0.37;2 000、3 000、6 000 kN•m 能级强夯最佳击数分别为11、10、10击,有效加固深度分别为5、6、9 m,夯点中心距分别为4、4、5 m,且分别可将点夯最后两击的平均夯沉量不大于5、5、10 cm作为停夯标准。试验研究成果可为同类工程的设计与施工提供参考。  相似文献   

7.
低能量强夯法加固粉质黏土地基试验研究   总被引:5,自引:1,他引:4  
周健  史旦达  贾敏才  崔积弘 《岩土力学》2007,28(11):2359-2364
结合上海某铁路集装箱中心站地基处理工程,针对其场区上部粉质黏土、下部砂质粉土的地基条件,对低能量强夯法加固此类地基的适用性进行了现场试验研究。通过对夯击过程中超静孔隙水压力随夯击次数、深度、距离的变化规律及在不同性质土层中的增长与消散规律的研究,提出了运用试验手段确定强夯夯击次数、夯点间距、有效加固深度及两遍强夯间隔时间等施工参数的方法。同时,用静力触探试验和标准贯入试验对地基加固的效果进行了检验,结果说明低能量强夯法加固粉质黏土地基的适用性,从而进一步拓宽了低能量强夯法的应用范围。  相似文献   

8.
高填土地基强夯夯击能的使用研究   总被引:3,自引:1,他引:3  
结合广东某电厂高填土地基强夯的实践,对夯击能的使用问题提出几点看法,并根据现场孔隙水压力和变形监测及夯后检测等资料。说明如何正确选用夯击能以达到更好的加固效果。  相似文献   

9.
吕秀杰  龚晓南  李建国 《岩土力学》2006,27(9):1628-1632
由强夯法加固机理出发,通过土体孔隙比、在粉土中夯点的布置形式、以及在湿陷性黄土中锤重、落距几方面的选择来探讨强夯法处理地基的效果,给出了在粉土及湿陷性黄土质中选用强夯参数时的几点建议:1.可用极限孔隙比作为夯击效果检测的标准.当极限孔隙比与夯击后土体的孔隙比接近,说明土体已被充分夯实.2.在小面积加固时,夯点采用三角形布置会取得更好的夯击效果,若加固面积较大时,在两种布置形式都能满足工程要求时,建议作经济分析后决定采用何种布置形式.3.在选择强夯法时,优先选用重锤低落距加固地基土.  相似文献   

10.
福州长乐机场浅层地基强夯施工   总被引:2,自引:0,他引:2  
周松 《岩土工程师》1996,8(4):34-42
这是一篇关于福州长乐机场用强夯加固浅层地基土的工程实录。文中详尽地介绍了强夯施工的设计工作,包括夯点布置及夯击流水,机具选用,夯锤及夯击能量的确定,以及在强夯时的地基土中孔隙压力和土体变形等的监测等。  相似文献   

11.
沿海吹填砂土地基地下水位较高、常含软土夹层,地基处理难度大。为了研究高能级强夯在这类吹填砂土地基上的加固效果,在山东沿海某吹填砂土场地开展6 000和8 000 kN·m能级强夯加固试验。试验结束后分别运用标准贯入试验、静力触探试验、平板载荷试验进行现场检测。通过对比分析了设计要求深度范围内标准贯入试验和静力触探试验,发现夯前夯后标准贯入试验击数和静力触探锥尖试验阻力均明显提升,有效消除了饱和砂土和饱和粉土的液化势;通过平板载荷试验p-s曲线及夯后静力触探锥尖阻力标准值与承载力特征值的关系式,得到夯后砂土地基承载力特征值≥120 kPa,验证了高能级强夯方案的可行性。其次,对软土夹层位置和地下水位高度展开研究,发现软土层会阻碍夯击能传递,减小强夯有效加固深度,且软土层位置不同对强夯加固效果影响程度不同,强夯影响临界范围处存在软土层时,有效加固深度为软土层顶部位置处;对砂土地基进行4 000 kN·m能级强夯试验时,发现未降水强夯后有效加固深度为5 m,降水至地面以下3 m强夯后有效加固深度达到了7 m,提高了加固效果。在高能级强夯研究基础上,对现场吹填砂土地基进行了75万m2的大面积高能级强夯施工,发现处理后地基能够满足建筑用地要求。  相似文献   

12.
文章通过四个模型的离心模拟试验,对某机场强夯加固后的高填方地基土的变形沉降问题进行了模拟研究,并结合现场试验对该机场高填方地基强夯处理效果进行了综合评价。试验结果表明,由于填方土高度过大,未经强夯法处理的高填方地基的最终沉降量满足不了工程设计要求;而经过强夯处理的地基,填方土体瞬时沉降和固结沉降在施工后都能迅速完成,变形和沉降可得到控制,这说明强夯法可用于控制丘陵山区高填方地基的不均匀沉降。  相似文献   

13.
姚仰平  张北战 《岩土力学》2016,37(9):2663-2671
通过数值模拟分析地基的强夯加固效果,把夯后地基土的体应变与工程要求的干密度联系起来,用控制体应变作为评价加固范围的标准。通过对数值模拟及试验数据的分析发现,夯击冲量越大,加固效果越好。相同夯击能可以产生不同加固效果的规律,得出了用夯击冲量替代夯击能作为施工参数的控制标准更为合理的结论。改进了夯锤尺寸影响强夯加固效果的研究方法,分析时固定夯锤厚度比固定夯锤质量更具归一性。研究表明,在土性参数相同的条件下,夯击沉降量仅与单位面积夯击冲量有关,而加固深度不仅与单位面积夯击冲量有关,还与夯锤半径有关。在以控制体应变作为加固范围的评价标准、研究各参数影响规律的基础上,采用量纲分析法得到了加固范围的计算公式,并与工程实例进行对比分析,得到了强夯作用下土的干密度分布特征。所得结论对类似工程具有一定的参考价值。  相似文献   

14.
强夯地基加固效果检测的分析   总被引:1,自引:0,他引:1  
深圳某加工厂项目场区原地形高差大,需平整场地,回填砾质粘性土采用强夯处理,夯击能为4000kN·m,并用重型动力触探检测强夯地基处理效果。重型动探检测结果显示夯点下地基土存在松弛、硬壳、衰减层等分层现象。夯点下深度与地基土动探击数为三次方函数或幂函数关系,体现了振动波振幅和加速度峰值随着深度衰减的规律,佐证了强夯地基土是通过振动波(主要是纵波)得到加固的观点。夯点间地基土则未显示显著的分层,说明强夯地基土具有复合地基的特征。  相似文献   

15.
强夯对砂类土、填土等地基的加固处理,国内外已获得较好的效果。对软土,特别是淤泥、淤泥质粘性土,具有高压缩性,低强度和弱透水性等特点,能否采用强夯法来加固?这是建筑界很关心的问题。论文以上海虹桥附近某工程地基的强夯试验材料,详细介绍了地基土夯前、夯后一月及夯后半年的强度变化情况,对不同时期的地基土进行了占探、常规土工试验,静力触探、电测十字板抗剪强度试验,标准贯入试验、占孔注水试验及现场荷载试验等,在夯击过程中又进行了孔隙水压力的测定和分层沉降及侧向变形的测量等。根据大量的  相似文献   

16.
强夯加固回填土地基的三维数值模拟   总被引:2,自引:0,他引:2  
蔡袁强  陈超  徐长节 《岩土力学》2007,28(6):1108-1112
针对回填土地基,基于ABAQUS有限元软件,采用大变形几何非线性三维有限元方法对强夯加固效果进行了数值模拟。分析中考虑每一次夯击引起的塑性变形,确定前次夯击后土体塑性区开展的形状,并调整塑性区的土性参数,以此作为下次夯击分析的基础,重复上述步骤来实现对强夯整个过程的模拟。结合工程实例分析,得到了在不同夯击能、不同夯击次数作用下土体塑性区开展的情况,有效地预测了强夯加固区在空间上的分布规律。研究结论对类似的强夯工程有一定的参考价值。  相似文献   

17.
某机场场道地基经强夯处理试验后,在道面载下对地基的地下水位,孔隙水压力,浅层沉降,分层沉降等进行了将近2.5年长期监测。针对监测结果进行分析,研究强夯加固后地基的沉降固结特征,对比采用不同强夯加固方案各小区沉降的差异。  相似文献   

18.
强夯法在城市防洪工程地基加固中的应用研究   总被引:4,自引:1,他引:3  
对宜宾城市防洪工程中粉土地基强夯加固效果进行了检测,其结果表明:采用1 600 kN ? m夯击能,其有效加固深度大于6 m,地基土的干密度得到了明显增加,平均值从天然地基的1.48 g/cm3增加到强夯后的1.57 g/cm3,增幅达到6.1 %;粉土层的孔隙比平均值从0.852减小到0.724;地基土的压缩模量平均值从5.42 MPa提高到8.27 MPa;渗透系数算术平均值降低到天然地基的1/10以下,即从2.5×10-4 cm/s降低到3.5×10-6 cm/s;天然地基标准贯入击数有32.9 %小于5击,强夯以后,击数全部大于7击。粉土地基经过强夯处理,满足了防洪堤地基的承载力和渗透稳定要求,消除了7度地震液化势。  相似文献   

19.
夯击参数比选是决定强夯地基处理经济性与加固效果的关键环节,当前主要依靠试夯结果确定停夯标准及参数调整。对此,建立了非辐射平面发射型一维强夯应力波传播模型,推导了单次夯击作用下波阵面应力沿土体深度的分布,揭示了地基压密变形、剪切波横向扩散和土体阻尼特性3种独立因素耗能作用的机制,基于应力衰减规律探讨了加固深度分层标准、应力波传播与能量耗散过程。结果表明:当静接地压力由40.8 kPa增至122.3 kPa时,地基加固深度显著增加,同等静接地压力下提高落距和增大夯锤半径对地基加固效果提升有限;采用偏重锤低落特征的夯击参数组合对应力波向土体深层传播更为有利;随着土体深度增加,应力波时程依次呈现冲击加固、振动密实与弹性振动特征,冲击加固区深度可参照5%体应变等值线包络地基范围估计;依据任意拉格朗日-欧拉法仿真结果对单次强夯理论解进行修正,得出了连续夯击地基加固深度计算流程;通过对比现场检测结果可优化夯击参数,提高施工效率及经济性。  相似文献   

20.
针对安哥拉具浸水软化和湿陷的Quelo砂,采取不同夯击能(1 000、2 000 kN·m)和不同工况(天然、最优含水率)4种组合方案进行强夯加固对比试验,分析了强夯前、后各试验场地Quelo砂干密度、孔隙比、重型动力触探击数以及湿陷系数等指标的变化规律,提出了Quelo砂地基土在不同工况下的强夯影响深度、有效加固深度建议值和修正系数a。试验结果表明,在增湿的条件下较低能级强夯时Quelo砂的物理力学指标虽然能够显著提高,但湿陷性消除不明显,夯击能足够高时湿陷性才能够进一步被消除,增湿条件下消除Quelo砂湿陷性的强夯施工存在一个夯击能阀值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号