首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
桂西地区位于扬子地块西南缘,越北地块以北。桂西巴马等地出露层状—似层状基性岩(辉绿岩和玄武岩),该地区的基性岩成因对于理解该区构造—岩浆作用具有十分重要的意义。对桂西巴马基性岩进行了岩石学和地球化学研究,对其岩石成因和岩浆源区特征进行了讨论。研究表明,桂西巴马基性岩属于碱性玄武质岩,相对富集轻稀土元素和Nb、Ti等微量元素,与峨眉山大火成岩省高Ti玄武岩相似,说明其与峨眉山地幔柱具有相关性。然而,对比峨眉山高Ti玄武岩,巴马基性岩表现出更高的Ti/Y值。不相容元素比值特征表明,桂西巴马基性岩岩浆演化呈现更高的Nb/Y值等演化趋势。结合Dy/Dy*与Dy/Yb、Ti/Y的协变关系,对桂西基性岩与峨眉山玄武岩岩浆源区中稀土元素的分异特征进行判别,揭示出桂西巴马基性岩和峨眉山高Ti玄武岩具有同源性。然而,巴马基性岩地幔熔融程度更低,可能是峨眉山大火成岩省外带的地幔柱岩浆作用延伸的结果,代表了峨眉山地幔柱高Ti玄武岩母岩浆的特征。  相似文献   

2.
华南板块西南缘、越北地块以北桂西那坡县城以西及西南一带发育一套晚二叠世基性岩,由层状、似层状次火山岩相辉绿岩、辉绿玢岩及球状岩组成。根据岩石地球化学特征,那坡基性岩可划分为高Ti(TiO_22.8%和Ti/Y500)和低Ti两部分。高Ti基性岩为碱性玄武岩,而低Ti基性岩为拉斑玄武岩。与低Ti基性岩相比,高Ti基性岩整体具有相对较低的SiO_2、MgO和较高的FeO_t、P_2O_5,轻、重稀土分馏明显,富集大离子亲石元素(LILE)和高场强元素(HFSE),显示出似OIB地球化学特征,与峨眉山高Ti玄武岩具高度亲缘性;低Ti基性岩具有相对较高的SiO_2、MgO和较低的FeO_t、P_2O_5,稀土配分曲线较平坦,富集LILE,严重亏损HFSE(Nb、Ta),与岛弧玄武岩地球化学特征类似。从微量元素比值及相关图解对岩浆源区和构造环境判别,那坡高Ti基性岩来自富集OIB地幔源区,而低Ti基性岩兼具OIB和岛弧岩浆源区的过渡特征。结合岩石地球化学特征及区域地质背景,认为那坡高Ti基性岩可能为峨眉山地幔柱岩浆作用的产物,低Ti基性岩为古特提斯俯冲与峨眉山地幔柱共同作用的产物,揭示了那坡地区晚二叠世同时受到峨眉山地幔柱和古特提斯俯冲相互作用的影响。  相似文献   

3.
<正>位于杨子地台西南缘的桂西分布着大面积的晚古生代基性侵入岩(辉绿岩和玄武岩)。众多研究表明,这些基性侵入岩介于华南、印支和思茅地块三者交界分布,呈层状或似层状小岩体产出,与峨眉山地幔柱有关。桂西基性岩的分布虽然距离峨眉山大陆溢流玄武岩主体比较远,但是它位于峨眉山大火成岩省(ELIP)东南部,表明二叠纪峨眉山大火成岩省岩浆活动已经影响到了桂西地区,故桂西地区基性岩可能是二叠纪峨眉山大火成岩省外带外侧东南端的产物(吴浩若等,1997;王忠诚等,1997;廖帅等,2013)。  相似文献   

4.
峨眉山大火成岩省岩浆型Cu-Ni-PGE矿化岩体广泛分布,构成峨眉山地幔柱成矿系统中一个非常重要的成矿系列。本文剖析了峨眉山大火成岩省该类矿床的分布及部分典型矿床的地质地球化学特征和矿化特征,揭示了成矿岩体统一的地幔柱成因,阐述了Cu-Ni-PGE成矿作用与峨眉山地幔柱岩浆活动体系的关系,探讨了由于岩浆演化过程及硫化物熔离富集过程的差异所导致的矿化类型变异。指出Cu-Ni-PGE矿床成矿岩体原始岩浆为地幔柱高程度熔融的高镁玄武岩浆,成矿岩体与峨眉山低钛玄武岩同源,矿化岩体主要产于峨眉山地幔柱活动模型的内带低钛玄武岩分布区;金宝山、朱布、力马河、杨柳坪矿床分别代表峨眉山地幔柱Cu-Ni-PGE成矿作用不同成矿机制的端员类型。  相似文献   

5.
<正>峨眉山玄武岩于260 Ma左右开始喷发,是峨眉山地幔柱上涌的产物。桂西在地理位置上处于峨眉山大火成岩省的东南端,对桂西的基性岩的研究表明他们与峨眉山玄武岩具有相似的地球化学特征及形成年龄,表明它们属于峨眉山地幔柱的产物(黄文龙等,2015)。近年来,一些研究认为滇黔桂三省交界地区的微细浸染型金矿床的形成与峨眉山地幔柱活动有关(刘希军等,2013),并且,该区域发现了一批与基性岩空间上联系密切的矿床,如桂西田林八渡、隆林马雄、滇东南老寨湾金矿等,而  相似文献   

6.
松潘-甘孜地块的丹巴二叠纪玄武岩(大石包组)具有较高的TiO2含量(>2%)和高的Ti/Y比值(平均519),显示LREE富集、HREE亏损的右倾型稀土配分型式((La/Yb)N=4.2~13.6),εNd(t)=-0.33~2.70,具有洋岛玄武岩(OIB)地球化学特征,形成于大陆板内环境。其源区来自原始地幔始于石榴子石稳定区的低程度部分熔融,岩浆上升过程中有来自地壳物质的加入,因而其不相容元素比值如Zr/Nb(4.41~13.09)、La/Nb(1.03~1.80)和Th/La(0.08~0.18)等,以及初始的87Sr/86Sr比值(0.706008~0.707257)均表现出不同程度的富集特征,岩浆演化早期经历了以辉石、橄榄石为主的分离结晶作用。该套玄武岩的元素-同位素地球化学特征和源区性质类似于峨眉山溢流玄武岩的高钛(HT)系列,因此认为其是峨眉山地幔柱活动的产物,属于峨眉山大火成岩省(ELIP)的一部分。松潘-甘孜地块和扬子西缘晚古生代以前地层的可比性以及峨眉山溢流玄武岩的分布特征显示,松潘-甘孜洋盆伴随着扬子克拉通的裂解而打开,并且可能都与峨眉山地幔柱有关,是地幔柱活动的浅部地质响应。  相似文献   

7.
为了深入探讨扬子地块西南缘的玉凤和巴马辉绿岩是否受到峨眉山地幔柱活动的影响,对其进行了主量元素、微量元素及锆石U-Pb年龄测定。结果表明,它们属于钙碱性系列和高钾钙碱性系列,具高铝低镁特征,轻稀土富集,Ti/Y500、Nb/La=0.75~0.85、Th/Ta=1.75~2.38、Ta/Hf0.1;锆石LA-ICP-MS U-Pb年龄分别为255.3±3.9 Ma和257.6±2.9Ma。初步认为,它们可能源自亏损地幔并受到少量地壳物质的混染作用,且均显示出大陆板内玄武岩的特征,应为峨眉山玄武质岩浆活动的产物。  相似文献   

8.
峨眉火成岩省位于扬子地块西部,为中二叠世末地幔柱活动产物。迄今为止,峨眉火成岩省已发现超大型V-Ti磁铁矿矿床4处,大中型岩浆硫化物型Ni-Cu-(PGE)矿床近10处。这些矿床的含矿镁铁-超镁铁岩体为260Ma±,与峨眉山玄武岩为同一地幔柱的产物。系统归纳和分析上述两类含矿镁铁-超镁铁岩体在空间分布、岩体规模、岩石组合和造岩矿物组成等方面存在明显的差异:可以分为内带和外带,内带以巨厚的峨眉山玄武岩、大型层状岩体和众多小型镁铁-超镁铁岩体、低Ti玄武岩、碱性岩体和丰富的成矿作用为标志。外带则玄武岩厚度降低,以高-Ti玄武岩为主,很少有侵入岩体。在对这两类岩浆矿床的分布及其与低Ti和高Ti玄武岩地质和地球化学联系的归纳和分析基础上,结合对杨柳坪Ni-Cu-(PGE)硫化物矿床成矿过程与峨眉山玄武岩岩浆起源和演化相互关系的研究结果,认为峨眉山火成岩省这些不同类型的矿床是地幔柱动力学过程不同阶段的产物。V-Ti磁铁矿矿床的形成于高Ti玄武岩浆有关,主要受控于岩浆的分离结晶作用;而Ni-Cu-(PGE)硫化物矿床成矿主要取决于3个因素:高程度的部分熔融,下地壳同化混染和分离结晶。Ni-Cu-(PGE)硫化物矿床是地幔柱活动早期阶段的产物,而V-Ti磁铁矿矿床则形成则晚于岩浆硫化物矿床。  相似文献   

9.
四川宝兴大石包组高钛玄武岩地球化学特征及其岩石成因   总被引:2,自引:0,他引:2  
分布于龙门山推覆构造带以西、松潘-甘孜地块上的宝兴二叠纪高钛玄武岩具有高的TiO2含量(>3%)、Ti/Y比值(平均658)和∑REE(平均237μg/g),具有LREE富集的右倾型稀土元素分布模式((La/Yb)N=5.39~13.5),富含大离子亲石元素,不相容元素比值Zr/Nb为9.18~10.1,La/Nb比值为1.19~1.34,Ba/Nb比值为6.11~20.4,8Nd(t)=0.82~2.35,(87Sr/86Sr)i=0.704837~0.706157,具有洋岛玄武岩(OIB)的地球化学特征,形成于板内环境.与典型峨眉山玄武岩对比显示,其岩相学、主元素、微量元素地球化学特征和同位素组成均类似于峨眉山大火成岩省(ELIP)上部的高钛玄武岩系列(HT),表明它们可能同时或在类似的环境下形成.基于上述认识,同时结合最新的年代学研究结果,认为宝兴大石包组高钛玄武岩是峨眉山地幔柱活动的产物,属于峨眉山大火成岩省的一部分.这为峨眉山大火成岩省分布范围从扬子克拉通向西北拓展提供了重要的地球化学证据,为更好地理解该火成岩省事件及其时空分布提供了新的直接资料.  相似文献   

10.
峨眉山火成岩省东部盐津地区玄武岩的岩石地球化学分析结果表明,盐津玄武岩w(SiO2)为47.97%~52.33%,w(Na2O+K2O)为3.35%~6.57%,Ti/Y值为496.29~567.80,w(TiO2)为3.60%~4.14%,属于钙碱性高钛玄武岩(HT)。岩石LREE/HREE值为7.34~7.88,轻稀土元素富集,分馏程度高,总体亏损Ba,K,Sr,P。高场强元素Nb/U比值为26.39,Ce/Y-Sm/Y和Th/Nb-Ce/Nb等比值均呈明显正相关系,表明盐津地区峨眉山玄武岩受到了明显地壳混染作用。Nb-Nb/Y和La-La/Sm图解中样品投点呈倾斜直线,表明盐津玄武岩岩浆受分离结晶作用影响较弱,δEu值为0.86~0.93,CaO/Al2O3与Mg#无明显相关关系,以及镜下观察均表明仅有少量斜长石、单斜辉石的分离结晶。盐津玄武岩与盐源和越西等地高钛玄武岩地球化学特征相似,具地幔柱成因特征,岩浆可能起源于富集地幔。分配系数相近的强不相容元素Ce/Sm比值为25.50,La/Yb-Sm/Yb图解中样品靠近石榴石尖晶石二辉橄榄岩区域,表明岩浆源区为石榴石尖晶石二辉橄榄岩。  相似文献   

11.
基性岩墙,与层状、环状基性杂岩体和高Ti、低Ti玄武岩共同组成了峨眉山大火成岩省岩石组合.为进一步确定大火成岩省及相关生物灭绝事件的时间联系,及更深化研究大火成岩省的成因,对分布于贵州省南部的基性岩墙进行了主、微量元素、Sr-Nd同位素测定和锆石SHRIMP U-Pb年代学研究.黔南基性岩墙∑REE=135.66×10-6~280.59×10-6,LREE/HREE为6.42~7.54,(La/Yb)N为7.94~9.85,轻重稀土分异明显,δEu为1.0~1.3,具有Ba、Sr、K等LILE富集,Nb、Ta、Zr、Hf等HFSE亏损特征,显示与峨眉山高钛玄武岩相似的地球化学特征.Th/Ta(1.80~1.94)、Nb/U(30.8~39.88)、Th/La(0.08~0.10)、Nb/Th(7.89~8.40)比值与原始地幔相似,较低的初始(87Sr/86Sr)i比值(0.705 278~0.706 052)、εNd(t)(-0.5~+1.6)、以及Th/Ta比值(< 2.13)显示岩浆无明显的地壳混染,岩浆可能形成于受地幔柱作用的富集石榴石地幔源区10%~12%的部分熔融.SHRIMP锆石206Pb/238U加权平均年龄为261.2±2.6 Ma,反映峨眉山大火成岩的喷发时间可能集中在260 Ma左右,并可能与瓜德鲁普末期的生物灭绝有关.   相似文献   

12.
峨眉山大火成岩省出露有少量酸性火山岩,它们与基性火山岩共生,表现出双峰式的特征,为研究峨眉山地幔柱晚期岩浆活动提供了重要的窗口。本文通过对双峰式火山岩主、微量元素和斑晶电子探针分析研究表明,基性火山岩属于碱性玄武岩,酸性火山岩主要由粗面岩组成;相对玄武岩,粗面岩中MgO、Fe2O3、P2O5、TiO2、CaO含量明显降低;粗面岩与玄武岩具有相互平行的REE配分模式,但粗面岩出现明显的Eu负异常,以及Sr、Ti等元素的强烈亏损;粗面岩与玄武岩具有同源的特征,通过稀土元素模拟计算表明粗面岩可以由玄武质岩浆经过80%分离结晶作用(辉石、斜长石和Fe-Ti氧化物)而形成。在峨眉山大火成岩省晚期出现双峰式火山岩,可能与地幔柱活动晚期岩浆供给少,在地壳岩浆房中停留时间长,岩浆发生强烈分离结晶作用有关。  相似文献   

13.
峨眉山大火成岩省与二叠纪晚期的峨眉山地幔柱作用有关。白马层状侵入体是峨眉山大火成岩省赋存超大型Fe-Ti-V氧化物矿床的镁铁-超镁铁质侵入体之一。白马侵入体橄榄辉长岩和橄长岩全岩Mg O与Cr、Ni的相关性表明白马母岩浆经历了较高程度的分离结晶作用。原始地幔标准化微量元素图解和球粒陨石标准化稀土元素图解总体具有显著的Sr、Eu和Ti正异常,Zr-Hf负异常;而Nb、Ta既有正异常,也有负异常,这些特征与岩石中磁铁矿、单斜辉石和斜长石等矿物的堆晶作用有关。(87Sr/86Sr)i=0.704232~0.704855,平均值为0.704706;εNd(t)=1.40~3.94,平均值为2.41。Sr-Nd同位素组成落于峨眉山苦橄岩和高钛玄武岩的范围内,混合模拟计算表明白马母岩浆经历了10%~30%硅质大理岩围岩的混染。因此,白马Fe-Ti-V氧化物矿床的形成受母岩浆的组成、分离结晶作用及大理岩围岩的混染等多种因素共同制约。  相似文献   

14.
研究区峨眉山玄武岩分布于扬子地块西缘,冈达概组分布于其邻区的中咱微陆块。峨眉山玄武岩与冈达概组下段玄武岩均具有富碱、高钛特征,大部分属于碱性玄武岩系列,峨眉山玄武岩Mg#变化范围为0.31~0.70,属于适度演化过的岩浆,冈达概组下段玄武岩Mg#=0.34~0.43。总体上,冈达概组下段玄武岩比峨眉山玄武岩更富Ti,高FeO*,低MgO,低SiO2。两组玄武岩均有轻稀土强烈富集的特征,富集大离子亲石元素和高场强元素,但部分具有Sr、Zr负异常,均属板内玄武岩,岩浆来源于富集地幔,在地幔柱作用下产生。峨眉山玄武岩Rb、Ba有明显的波动,可能是受到源区混染作用影响,其微量元素比值表现出EM1-OIB与EM2-OIB的混合特征,起源于石榴石二辉橄榄岩,熔融程度为4%~7%。冈达概组下段玄武岩元素比值较稳定,与EM1-OIB具有很大的相似性,也起源于石榴石稳定区,其形成深度比峨眉山玄武岩深,熔融程度较低,为2%~5%,可能是产生于地幔柱边缘。中咱微陆块、扬子地台西缘的二叠系玄武岩源区物质均受峨眉山地幔柱影响,具有很大的亲源性,峨眉山地幔柱的活动为板块的裂解提供了动力。  相似文献   

15.
广泛分布于中国西南川、滇、黔三省的峨眉山玄武岩是我国最早被国际认可的大火成岩省,受到了国内外学者的广泛关注。前人对大火成岩省西区玄武岩已达成多项共识,而对东区玄武岩的岩石组合、火山活动时限、岩石成因等方面还存在诸多争议。本文以峨眉山大火成岩省东区贵州普安玄武岩系为研究对象,通过解析典型剖面,明确该区玄武岩系岩石类型从底到顶总体为第1旋回的爆发相火山角砾岩、第2旋回的溢流相玄武岩以及第3旋回的火山沉积相凝灰岩。玄武岩系顶部凝灰岩锆石LA-ICP-MS U-Pb测年结果限定了大火成岩省东区火山活动时间持续上限为250 Ma。主微量元素显示该区玄武岩系以高Ti碱性玄武岩为主。玄武岩稀土元素球粒陨石标准化为轻稀土元素富集的右倾曲线模式,Rb和Sr亏损、Ba和Hf富集等特征与贵州地区玄武岩、峨眉山大火成岩省西区高Ti玄武岩以及OIB地球化学特征基本一致。微量元素显示该区玄武岩源区可能为受交代的石榴石地幔橄榄岩,由深部地幔柱上升至石榴石橄榄岩稳定区部分熔融产生熔融体,和富集交代流体的大陆岩石圈地幔混合形成,岩浆上升运移过程中发生了一定程度分离结晶作用和微弱地壳混染作用。研究表明,峨眉山大火成岩省东区普安玄武岩系形成于峨眉山地幔柱边部埋深较大、低程度部分熔融以及高压的环境。  相似文献   

16.
高Ti玄武岩成因是峨眉山大火成岩省(ELIP)研究的热点问题。由于高Ti玄武岩地球化学特征在空间上存在差异,其岩石成因尚未达成共识。本文系统收集了峨眉山大火成岩省中高Ti玄武岩地球化学数据以及锆石ID-TIMS U-Pb测年结果,并进行统一处理分析与模拟。研究结果显示,峨眉山大火成岩省形成于约259~258 Ma,高Ti玄武岩在大火成岩省全区均有出露。自西向东,岩石年龄无明显变化规律,厚度逐渐变薄。高Ti玄武岩起源于具有富集地幔特征的地幔柱源区,几乎没有遭受地壳混染,经历了低程度部分熔融作用并可能混入了少量岩石圈地幔物质,发生了以单斜辉石为主的分离结晶作用。峨眉山大火成岩省深部存在一个非对称式的地幔柱,自西向东,高Ti玄武质岩浆起源深度变浅、温度降低,熔融深度和压力随之降低,熔融程度相对增大。模拟表明,源区石榴石相和尖晶石相的熔融程度分别为0.5%~2%和5%,石榴石相熔融比例自西向东由90%减小至40%,而尖晶石相熔融比例由10%增大至60%。  相似文献   

17.
姚林波  陶琰 《矿物学报》2011,(Z1):183-184
地幔柱成矿系统中,岩浆型Cu-Ni-PGE矿床是最重要成矿作用之一。峨眉山大火成岩省岩浆型Cu-Ni-PGE矿化岩体广泛分布,构成了峨眉山地幔柱成矿系统中一个非常重要的成矿系列(陶琰等,2007)。地幔柱活动形成大火成岩省(主要由玄武岩和时空上紧密伴生的镁铁—超镁  相似文献   

18.
晚二叠世峨眉山地幔柱岩浆作用同时形成了Cu-Ni-PGE硫化物矿床和V-Ti-Fe氧化物矿床等不同类型的岩浆矿床。从硫化物矿床的PGE富集型、Cu-Ni-PGE富集型到Cu-Ni富集型,再到钒钛磁铁矿矿床,成矿基性-超基性岩体中基性岩石比例逐渐增加,PGE含量降低。铜镍铂族硫化物矿床具Nb和Ta负异常,岩浆流体组分含量较高,含有较高的H2;而钒钛磁铁矿矿床具Nb、Ta和Ti正异常,Zr和Hf负异常,岩浆流体组分含量较低,含有较高的H2O、CO2和H2。两类矿床强不相容元素和轻稀土元素(LREE)富集,Sr-Nd同位素组成与峨眉山玄武岩的演化趋势一致。Sr-Nd-Os-C-He同位素组成揭示岩浆上升过程中经历了不同程度的地壳混染,高钛玄武岩和钒钛磁铁矿矿床成矿岩体的地壳混染程度较低,部分低钛玄武岩和铜镍硫化物矿床存在明显的地壳混染。这两类岩浆矿床的形成与峨眉山地幔柱玄武岩浆有关,岩浆介质环境中H2含量较高,V-Ti-Fe 氧化物矿床的形成与分离结晶、高含量的水和氧逸度的升高有关,Cu-Ni-(PGE)硫化物矿床的形成与还原性流体介质、结晶分异和地壳混染作用有关。  相似文献   

19.
用沉积记录来估计峨眉山玄武岩喷发前的地壳抬升幅度   总被引:15,自引:4,他引:11  
玄武岩喷发前公里规模的地壳抬升是大火成岩省地幔柱成因的一个重要标志,此类地质证据的缺乏反过来被一些学者用来否定地幔柱学说。本文在厘定峨眉山大火成岩省中冲积扇沉积记录的基础上,根据茅口组顶部的剥蚀特征,估算峨眉山地幔柱上升造成的地壳抬升幅度大于1000m,这与CampbellandGriffiths的地幔柱理论模型基本吻合,从而为峨眉山大火成岩省的地幔柱形成机制,乃至激烈争议中的地幔柱学说提供了有力的佐证。  相似文献   

20.
地幔柱成矿系统:以峨眉山地幔柱为例   总被引:40,自引:3,他引:37  
地幔柱沟通了地核、地幔、地壳各个圈层之间的物质与能量交换,提供了板内构造岩浆活动及成矿作用的一种重要的动力学机制。峨眉山地幔柱是晚古生代全球最显著的地幔柱活动之一,形成了多种有重大资源经济价值的矿床类型。以峨眉山地幔柱为例,对几种典型矿床类型的产出特征及成因进行了系统分析,阐述了地幔柱成矿系统中各种成矿作用与地幔柱构造岩浆活动的关系及成矿机理。(1)通过对部分典型岩浆硫化物矿床的地质地球化学特征和矿化特征分析,揭示了峨眉山大火成岩省不同矿化特征的岩浆硫化物矿床形成于统一的地幔柱岩浆活动体系,并与峨眉山玄武岩为同源演化关系,岩浆演化过程及硫化物熔离富集过程存在的差异造成了矿化类型的变异。(2)对攀西地区4个超大型钒钛磁铁矿矿床进行了详尽的地质地球化学分析,论述了成矿岩浆的性质、与峨眉山玄武岩的关系及成岩演化过程和成矿模式,表明成矿母岩浆来自于地幔柱,但经历了较大程度的地壳混染作用,提出岩浆的多次补给混合及结晶锋面上发生的双扩散造成的液态分层导致了韵律条带矿石的形成。(3)阐述了滇黔相邻地区玄武岩型自然铜和黑铜矿铜矿化现象,指出玄武岩岩浆气液阶段的自变质作用和玄武岩构造变质热液蚀变改造作用两种方式造成铜矿化富集,岩浆气液阶段的自变质作  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号