首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
秦岭公路隧道通风竖井岩爆预测和防治措施   总被引:5,自引:1,他引:4  
秦岭公路隧道2号通风竖井,为国内乃至世界公路隧道规模最大的竖井工程。根据工程地质资料分析,岩爆是该竖井施工过程中的主要难题。为了从岩性角度评价竖井围岩的岩爆倾向性,开展了室内岩石单轴压缩变形试验和物理模型试验,根据改进脆性指数指标和模型试验的结果,表明竖井围岩有岩爆倾向性,必须加强岩爆预测和防治。根据水压致裂法的地应力测试结果和地应力分布特点,采用三维有限元回归分析反演了竖井工程区域的初始应力场。根据竖井围岩地应力场和Kirsch解得到的围岩二次应力场,结合Russenes和陶振宇岩爆判据,进行了竖井岩爆综合预测和分析,得出竖井有轻微和中等岩爆发生的结论,并提出岩爆防治措施。  相似文献   

2.
《四川地质学报》2019,(3):447-451
为分析评价斑竹林隧道地应力相关的工程问题,通过采用构造分析法、水压致裂法,分析和实测了隧区地应力特征;并采用临界深度法、强度应力比法、工程类比法对岩爆、大变形进行分级评价,表明隧区属高应力、极高应力区,岩爆等级为轻微;大变形等级为Ⅰ-Ⅱ级。  相似文献   

3.
为分析评价斑竹林隧道地应力相关的工程问题,通过采用构造分析法、水压致裂法,分析和实测了隧区地应力特征;并采用临界深度法、强度应力比法、工程类比法对岩爆、大变形进行分级评价,表明隧区属高应力、极高应力区,岩爆等级为轻微;大变形等级为Ⅰ-Ⅱ级。  相似文献   

4.
岩爆预测一直是地下工程领域中的世界性难题。本文以西南某隧道工程为例,从岩爆形成的3个条件:岩石岩爆倾向性、岩体完整性和高地应力环境3个方面着手,应用最大储存弹性应变能指标Es和岩石脆性系数B,对深埋隧道区段内可能发生岩爆的石英砂岩、灰岩岩体进行岩爆倾向性分析预测; 基于地应力测量数据资料,采用地质过程动态模拟的有限元分析方法,反演分析隧道工程区岩体地应力场,对隧道高应力区段作出判断; 根据现场所取样品试验结果综合分析隧道围岩的物理力学性质、岩石单轴抗压强度等。在分析和总结前人岩爆预测预报方法的基础上,以工程地质分析为基础,详细阐明隧道岩爆发生的条件,并以岩体力学和非线性科学理论为指导,采用地质综合分析、应力强度比法对隧道可能发生岩爆的部位及其强度进行综合预测。  相似文献   

5.
蒙伟  何川  汪波  张钧博  吴枋胤  夏舞阳 《岩土力学》2018,39(11):4191-4200
为准确获得桑珠岭隧址区初始地应力场分布规律,提出在岩爆区初始地应力场的二次反演方法。采用最小二乘法寻优准则对隧址区初始地应力场进行多元线性回归分析,利用叠加原理得到在一次反演下的初始地应力场;采用表面应力解除法测量隧道开挖后的洞壁二次应力,记录发生岩爆的部位并据此判断侧压力系数的大小,与在一次反演下相应位置的侧压力系数进行对比,如果两者都大于或者等于或者小于1,则以在一次反演下计算得到的侧压力系数为基准,以其大小不变作为约束条件对初始地应力进行修正,当采用修正后的初始地应力作为应力边界条件,计算得到隧道开挖后的洞壁二次应力与实测洞壁二次应力最接近时,以此时修正后的初始地应力和原位地应力进行回归得到在二次反演下的地应力场。结果表明:当测量原位地应力的钻孔较少且计算区域较大时,一次反演回归得到离钻孔较远位置的应力计算值与实测值存在一定的误差;二次反演在原位地应力的基础上增加实测洞壁二次应力进行修正,得到离钻孔较远位置的应力计算值与实测值吻合更好,所提出的二次反演方法可为类似工程的研究提供参考。  相似文献   

6.
岩爆是在高地应力区域中进行地下隧道建设时所面对的主要风险之一,具有突发性、高危害性等特点。实现岩爆的破坏程度定量化预测,对高地应力区域地下工程的设计与施工具有重要的指导意义。本文通过收集大量国内外典型岩爆隧道的特征参数并进行统计分析,建立了一种能够预测最大爆坑深度的岩爆风险量化预测模型,同时结合室内力学试验、岩体强度损伤准则和地应力场多元线性回归反演等理论和方法,对新建某交通线路色季拉山隧道岩爆风险进行了定量化预测,并与国内巴玉隧道岩爆风险进行相似工程案例对比分析。得出以下结论:(1)本文根据岩爆隧道应力强度比与爆坑深度之间线性统计关系所建立的岩爆预测模型,可实现岩爆风险的量化预测及评估。(2)色季拉山隧道地应力场受构造作用控制明显,同时,全线地应力普遍较高,加之隧道沿线硬岩段落占比大且岩爆倾向性高,高地应力岩爆风险突出。(3)预测色季拉山隧道中等以上等级岩爆风险段落可达12 188 m,占隧道全长的32.1%,岩爆将主要发生在弱风化花岗岩、闪长岩以及埋深较大的片麻岩段落中。(4)色季拉山隧道预测最大爆坑深度为3.42 m,小于已贯通的巴玉隧道实测最大爆坑深度(3.5 m),在合理的防控措施下可认为色季拉山隧道的岩爆风险总体可控。  相似文献   

7.
工程中预判岩爆传统方法以岩石强度为基础,但实际岩爆发生更多取决于岩体结构及岩体强度。本研究以我国西部某铁路隧道工程岩爆为背景,岩体强度使用广义Hoek-Brown准则来计算,根据岩爆发生实际情况提出了基于岩体强度-最大地应力比的岩爆预判改进方法,将实际岩爆发生情况、传统方法预判结果与改进方法预判结果进行了对比。结果表明,使用广义Hoek-Brown准则计算的岩体强度,可以很好考虑岩石类型和强度、施工情况、岩体结构特征;基于岩石强度-最大地应力比的岩爆预判结果与实际情况有较大差别,但基于岩体强度-最大地应力比的岩爆预判结果与岩爆发生实际情况基本一致;使用最大地应力和岩体强度预判岩爆时,轻微、中等、强烈、剧烈岩爆对应的岩体强度-最大地应力比范围分别为>0.15、0.07~0.15、0.02~0.07、<0.02。研究结果对高地应力区隧道工程施工、岩爆防治措施确定都具有重要的参考价值。  相似文献   

8.
隧道地应力测试及岩爆预测研究   总被引:1,自引:0,他引:1  
高地应力以及由此诱发的地质灾害(如岩爆等)是目前隧道施工中经常遇到的工程地质问题,地应力测试则是进行隧道岩爆及其其他灾害预测预报的重要内容,利用岩石声发射Kaiser效应测试地应力应用较为广泛,作者采用岩石声发射Kaiser效应法对隧道岩体初始地应力场进行了测试,结果表明,笔架山隧道应力总体状态为稳定型,岩体应力量级普遍较低。利用所测得的地应力场数据,结合国内外相关岩爆判据判定和理论分析,进一步得出笔架山隧道不会发生岩爆的结论。通过2D-σ有限元数值模拟,对笔架山隧道开挖中是否会产生岩爆等施工地质灾害做出了最终的判定,这种综合预测方法的准确性和可靠性较以前单一的岩爆预测方法大大提高,在岩爆预测理论和工程应用方面具有很好的参考价值。  相似文献   

9.
川西地区地质构造环境复杂,该区深埋隧道建设过程中经常面临岩爆风险,而地应力条件对深埋隧道的规划建设和岩爆风险预判具有重要意义。本研究利用水压致裂法在川西折多山某深埋隧道开展了原地应力测量及其工程效应分析。某钻孔196~650 m深度范围内的地应力测试结果显示,隧址区以水平构造应力为主导,测试深度范围内水平主应力随深度线性增加,且应力增加梯度高于中国大陆背景值。地应力结构整体以逆断型(SH>Sh>Sv)为主,其中389.50~560.50 m深度范围属应力释放区,地应力结构以走滑型(SH>Sv>Sh)为主。侧压系数及最大、最小水平主应力比值随深度分布基本符合中国大陆各参数变化特征。最大水平主应力方向为NWW向,与区域应力场分布及周边活动断裂反映的力学机制一致,主要受印度板块向欧亚板块持续俯冲和高原物质东南向扩散作用控制。测点现今地应力强度较高,临近断裂失稳状态,随着应力的不断积累,区内优势破裂方向或已有断裂的特殊构造部位可能发生失稳滑动。最后,基于地应力测量结果对深埋隧道围岩稳定性进行了预判分析,受隧址区高地应力影响,围岩发生中-强岩爆的可能性较大,需优化设计并重点防护。  相似文献   

10.
针对复杂地质条件下深埋隧道精细应力场准确反演以及主要地质条件对地应力场影响问题,以滇西南双江至沧源高速姜染山隧道为例开展研究。采用精细DEM数据、实测地质资料建立隧址区精细地质模型,以地应力实测数据和GPS速度场数据作为联合约束条件,开展姜染山隧道工程区精细地应力场反演计算,揭示了隧址区精细应力场特征及主要地质条件影响作用。结果表明:隧道区模拟变形速度场与GPS观测结果基本一致,模型能够较好反映工程区现今构造应力环境;隧址区地应力场存在应力水平西高东低、主应力方向局部偏转的特征,近E-W向的小黑江断裂对研究区地应力场的影响主要表现为造成主应力方向小幅偏转,未造成应力量值急剧变化,局部次级断裂和地形叠加影响作用有限;隧道沿线最大主应力在7.47~27.23 MPa之间,中间主应力在1.59~15.12 MPa之间,最小主应力在0.01~6.71 MPa之间,隧道沿线应力水平总体上未表现出明显异常特征;基于反演精细应力场数据的岩石应力强度比方法计算结果显示,现今地应力条件下,隧道岩石强度应力比结果总体在0.20~0.48之间,表明隧道围岩整体为无岩爆和轻微岩爆情况。本研究实例表明,复杂地质...  相似文献   

11.
为指导施工,提高施工的安全性和经济性,对西周岭隧道进行了钻孔水压致裂法地应力测量.测试结果表明:西周岭隧道深埋段地应力场以水平应力为主,在测试深度内最大水平主应力值为10.57~19.39MPa,具中等偏高应力水平;最大水平主应力方向为近N33°W,与隧道走向的夹角较小,即地应力对隧道围岩稳定性较为有利.基于地应力实测...  相似文献   

12.
成兰铁路位于青藏高原东部边缘高山峡谷区,由于印度板块与欧亚板块碰撞,区域内构造变形强烈,构造应力场十分复杂。为研究成兰铁路工程区地应力分布规律及断层稳定性,在铁路沿线茂县、松潘县以及宕昌县境内4个深孔水压致裂地应力测量基础上,获得了不同位置区域地应力实测值的大小和方向,并建立工程区应力参数随深度分布规律。分析表明:工程区应力随深度变化呈现出较好的线性关系,在测试深度范围内,水平应力普遍高于垂直主应力,地应力值总体上属于中—高地应力级别,在750 m深度内,最大水平主应力达25 MPa,反映出工程区构造应力占主导地位,侧压系数随深度呈缓慢衰减趋势。成兰铁路在不同构造单元上最大水平主应力方向有所不同,在东昆仑断裂以北甘南块体内,最大水平主应力为北北东向,在东昆仑断裂以南川青块体内最大水平主应力为北西向。根据实测的地应力数据并结合库伦滑动摩擦准则,对工程区内的断层稳定性进行了分析。文中取得的认识对成兰铁路工程区的构造应力场、断裂活动性的研究以及隧道工程的建设具有重要的参考意义。  相似文献   

13.
岩爆是高地应力地区影响地下工程施工的主要地质灾害,岩爆预测已成为地下工程的世界性难题之一。地层的岩性条件和地应力的大小是影响岩爆发生的两个最根本因素,对这两个因素的准确判别将直接关系到岩爆预测的成功与否。根据工程的区域地质资料,利用FLAC3D程序建立了该区域的数值计算模型,并结合工程现场实测点的主应力数据,采用径向基函数神经网络,反演了计算区域的初始地应力场。基于现场岩石力学试验和TSP203探测技术,获取了岩爆高风险区域的地层岩性条件。最后结合地应力反演数据和TSP探测结果,对掌子面前面长距离范围内的岩爆强度进行精细预测。工程实际应用表明,该方法可操作性强,岩爆预测结果与实际开挖情况较吻合。  相似文献   

14.
大茅隧道地应力测量及围岩体稳定性研究   总被引:12,自引:3,他引:9  
本文介绍了大茅隧道岩石三轴实验和地应力测量结果,分析了隧道围岩体应力作用特征。作用于该区的应力以水平应力为主,量值不大,最大主应力方向为NWW.这与该区主要断裂为压扭性的力学性质及震源机制解的结果是一致的。最后结合该区工程地质条件,对隧道施工安全措施及其稳定性进行了讨论。   相似文献   

15.
新建川藏铁路穿越鲜水河活动构造带,沿线构造应力场极其复杂,隧道围岩工程破坏问题突出。为了揭示该区构造应力场特征,为深埋隧道设计、施工提供基础参数,采用新型水压致裂地应力测量系统在川西郭达山隧道水平孔获得10段有效地应力测量数据,最大测量深度达508.10 m,创造了水平孔地应力测量最深记录。测量结果表明,在148.4~508.1 m测量深度范围,郭达山隧道水平孔截面上最大主应力值为3.59~13.72 MPa,最小主应力值为3.28~8.36 MPa。根据印模实验结果,除浅部钻孔截面上最大主应力倾角较大外,深部钻孔截面上最大主应力倾角近水平。根据地应力状态将0~280 m段划分为应力释放区,280~330 m段为应力集中区,大于330 m段为原地应力区。基于地应力测量结果对郭达山隧道水平孔围岩稳定性进行了预判分析,在孔深292.9 m、508.10 m处隧道围岩有轻微至中等程度岩爆可能,其余段无岩爆可能性。  相似文献   

16.
福建周宁水电站水压致裂地应力测量及其应用   总被引:2,自引:3,他引:2  
安其美  丁立丰  王海忠 《岩土力学》2004,25(10):1672-1676
周宁水电站在交通洞开挖过程中局部洞段发生了较强烈的岩爆。地下洞室和高压岔管、输水隧道设计及选择衬砌方式,需要查明原地应力状态。为此,采用水压致裂法在3个深钻孔中和岩爆部位进行了原位应力测量。结果表明,平面应力值随孔深增加呈线性增大;在岩爆和地下洞室附近,原位应力最大值为13~15 MPa,以水平挤压应力为主导,最大水平主应力方向为NW向。根据地应力测量资料和相关理论、判据分析认为:地下厂房长轴为NW向有利于围岩稳定;高压岔管和输水隧洞选用钢筋混凝土衬砌是可行的;发生局部岩爆,主要是由于隧道开挖围岩应力重新调整,在掌子面附近应力集中所致。  相似文献   

17.
深埋特长隧道工程区地应力场的预测一直是工程技术人员面临的难题,而工程地质综合分析法则可为工程区地应力场的分析提供较为全面准确的结论。因此,本文以滇东北典型深埋特长隧道——乐红隧道为例,采用综合分析法来研究工程区的地应力场特征。首先基于中国大陆应力分区,利用Anderson断层力学理论、震源机制解及实测地应力统计数据来获取研究区主应力方向。其次,基于工程地质勘察成果,利用Hoek-Brown强度准则对工程区的岩体强度进行了初步估算。在此基础上,利用修正Sheorey模型对工程区地应力量值水平进行了预测。分析结果表明,工程区以先进构造应力为主导。其中:水平最大主应力优势方位为N20°~60°W,应力场方向较为稳定。地应力量值水平预测结果表明,工程区在埋深500 m左右时,最大、最小水平主应力量值范围分别为11.2~20.5 MPa、6.6~12.2 MPa;埋深在1000 m左右时的最大、最小水平主应力量值范围分别为25.9~28.2 MPa、15.4~17.1 MPa。工程区在埋深超过500 m时的高地应力情况下,可能存在岩爆风险,而围岩大变形的问题几乎不存在。综合分析法的预测结果与现场实测数据较为吻合,表明该方法在线状公路隧道地应力状态的预测分析中,具有良好的应用效果。  相似文献   

18.
滇藏铁路香格里拉—邦达段沿线断层发育,构造运动强烈,为提高沿线工程的稳定性,基于构造形迹、震源机制解和实测数据的多元综合分析法,对研究区主应力方向进行了分析;基于Hoek-Brown强度准则和修正的Sheorey理论,结合实测数据,对研究区岩体强度参数和主应力量值进行了估算和预测,最后对研究区的地应力场特征及其工程效应进行了分析。结果表明:香格里拉-德钦应力区的水平最大主应力方向N0°W~N40°W;芒康-邦达应力区的水平最大主应力方向为N60°E~N80°E;铁路沿线埋深1000 m处,水平最大主应力范围为24.23~37.30 MPa;埋深2000 m处,水平最大主应力范围为47.29~66.69 MPa;香格里拉-德钦应力区隧道轴线设置为N80°W~N40°E有利于围岩稳定,芒康-邦达应力区隧道轴线走向设置为N10°E~N130°E有利于围岩稳定;铁路沿线高地应力显著,埋深超过400 m就可能处于高地应力状态,硬质岩埋深超过700 m会有岩爆风险,软质岩埋深超过1400 m会有大变形风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号