首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 184 毫秒
1.
Petrology of high-pressure granulites from the eastern Himalayan syntaxis   总被引:36,自引:0,他引:36  
The eastern Himalayan syntaxis, situated at the eastern terminus of the Himalayas, is the least-known segment of the Himalayas. Recent research in this area has revealed that the syntaxis consists of the Gangdise, the Yarlung Zangbo, and the Himalayan units, each of which is bounded by faults. The Himalayan unit, the northernmost exposed part of the Indian plate, mainly contains amphibolite facies rocks, marked by the assemblages staurolite+kyanite+plagioclase+biotite+muscovite±sillimanite and garnet+amphibole+plagioclase, in the south; to the north, low- to medium-pressure granulite grade pelitic gneisses and marbles are present and are characterized by the assemblages garnet+sillimanite+K-feldspar+plagioclase or antiperthite+biotite+quartz±spinel±cordierite±orthopyroxene in gneisses, and anorthite+diopside±wollastonite and plagioclase+diopside+quartz+phlogopite+calcite in marbles. Within this unit, the Namula thrust system is a series of moderately north-dipping structures that displaced the granulite facies rocks southwards over the amphibolite facies rocks. High-pressure granulites occur as relics within these granulite facies rocks and contain garnet–kyanite granulite and garnet clinopyroxenite. The peak assemblage of the garnet–kyanite granulite includes garnet (core part)+kyanite+ternary feldspar+quartz+rutile. Sillimanite+garnet (rim part)+K-feldspar+ oligoclase+ilmenite+biotite and spinel+albite+biotite or spinel+cordierite±orthopyroxene, which are coronas around sillimanite and garnet, are retrograde products of this peak assemblage. Another peak assemblage includes very-high-Ca garnet (CaO 32–34 wt%, Alm10±Grs>80) and diopside (CaO 22–24 wt%), scapolite, meionite, quartz, and accessory Al-bearing titanite (Al2O3 4–4.5 wt%). The diopside has kink bands. Partial or complete breakdown of Ca-rich garnet during post-peak metamorphism produced pseudomorphs and coronas consisting of fine-grained symplectic intergrowths of hedenbergite and anorthite. Thermobarometric estimates in combination with reaction textures, mineral compositions, and recent experimental studies indicate that these peak assemblages were formed at P=c. 1.7–1.8 GPa, T =c. 890 °C, and the retrograde assemblages experienced near-isothermal decompression to P=0.5±0.1 GPa, T =850±50 °C. The whole-rock compositions indicate that marble and pelite are plausible candidates for the protoliths. These facts suggest the following (1) sedimentary rocks were transported to upper-mantle depths and equilibrated at those conditions to form these high-pressure granulites, which were then emplaced into the crust quickly. During the rapid exhumation of these rocks, the earlier high-pressure assemblages were overprinted by the later low- to medium-pressure assemblages, that is, the high-pressure granulite belt formed in the syntaxis. (2) The Namula thrust system is an important tectonic boundary in the syntaxis, or even in the Higher Himalaya more generally.  相似文献   

2.
Low-pressure granulite facies metasedimentary gneisses exposed in MacRobertson Land, east Antarctica, include hercynitic spinel-bearing metapelitic gneisses. Peak metamorphic mineral assemblages include spinel + rutile + ilmenite + sillimanite + garnet, spinel + ilmenite + sillimanite + garnet + cordierite, ortho-pyroxene + magnetite + ilmenite + garnet, spinel + cordierite + biotite + ilmenite and orthopyroxene + cordierite + biotite, each with quartz, K-feldspar and melt. The presence of garnet + biotite- and cordierite + orthopyroxene-bearing assemblages implies crossing tie-lines in AFM projection for the K2O-FeO-MgO-Al2O3-SiO2-H2O (KFMASH) system. This apparent contradiction, and the presence of spinel, rutile and ilmenite in the assemblages, is acounted for by using the KFMASH-TiO2-O2 system, i.e. AFM + TiO2+ Fe2O3. We derive a petrogenetic grid for this system, applicable to low-pressure granulite facies metamorphic conditions. Retrograde assemblages are interpreted from corona textures on hercynitic spinel and Fe-Ti oxides. The relative positions of the peak and retrograde metamorphic assemblages on the petrogenetic grid suggest that corona development occurred during essentially isobaric cooling.  相似文献   

3.
在一些典型碰撞造山带中,高压麻粒岩与榴辉岩在空间和时间上密切相关,它们之间的关系对揭示碰撞造山带的造山过程和造山机制具有重要意义.本文以中国西部的南阿尔金、柴北缘及中部的北秦岭造山带为例,详细陈述了这3个地区榴辉岩和相关的高压麻粒岩的野外关系、变质演化和形成时代,目的是要建立大陆碰撞造山带中榴辉岩和相关高压麻粒岩形成的地球动力学背景模式.南阿尔金榴辉岩呈近东西向分布在江尕勒萨依,玉石矿沟一带,与含夕线石副片麻岩、花岗质片麻岩和少量大理岩构成榴辉岩一片麻岩单元,榴辉岩中含有柯石英假象,其峰期变质条件为P=2.8~3.0GPa,T=730~850℃,并在抬升过程中经历了角闪岩-麻粒岩相的叠加;大量年代学研究显示其峰期变质时代为485~500Ma.南阿尔金高压麻粒岩分布在巴什瓦克地区,包括高压基性麻粒岩和高压长英质麻粒岩,它们与超基性岩构成了一个大约5km宽的构造岩石单元,与周围角闪岩相的片麻岩为韧性剪切带接触.长英质麻粒岩和基性麻粒岩的峰期组合均具有蓝晶石和三元长石(已变成条纹长石),形成的温压条件为T=930~1020℃,P=1.8~2.5GPa,并在退变质过程中经历了中压麻粒岩相变质作用叠加.锆石SHRIMP测定显示巴什瓦克高压麻粒岩的峰期变质时代为493~497Ma.都兰地区的榴辉岩分布柴北缘HP-UHP变质带的东端,在榴辉岩和围岩副片麻岩中均发现有柯石英保存,形成的峰期温压条件为T=670~730℃和P=2.7~3.25GPa,退变质阶段经过了角闪岩相的叠加;榴辉岩相变质时代为420~450Mao都兰地区的高压麻粒岩分布在阿尔茨托山西部,高压麻粒岩包括基性麻粒岩长英质麻粒岩,基性麻粒岩的峰期矿物组合为Grt+Cpx+Pl±Ky±Zo+Rt±Qtz,长英质麻粒岩的峰期矿物组合为:Grt+Kf+Ky+Pl+Qtz.峰期变质条件为T=800~925℃,P=1.4~1.85GPa,退变质阶段经历了角闪岩-绿片岩的改造,高压麻粒岩的变质时代为420~450Ma.北秦岭榴辉岩分布在官坡-双槐树一带,榴辉岩的峰期变质组合为Grt+Omp±Phe+Qtz+Rt,所计算的峰期温压条件为T=680~770℃和P=2.25~2.65GPa,年代学数据显示榴辉岩的变质时代为500Ma左右.北秦岭高压麻粒岩分布在含榴辉岩单元的南侧松树沟一带,包括高压基性麻粒岩和高压长英质麻粒岩,与超基性岩在空间上密切伴生,高压麻粒岩的峰期温压条件为T=850~925℃,P=1.45~1.80GPa,锆石U-Pb年代学研究显示其峰期变质时代为485~507Ma.以上三个实例显示,出现在同一造山带、在空间上伴生的高压麻粒岩和榴辉岩有各自不同的变质演化历史,但榴辉岩中的榴辉岩相变质时代和相邻的高压麻粒岩中的高压麻粒岩相变质作用时代相同或相近,这种成对出现的榴辉岩和高压麻粒岩代表了它们同时形成在造山带中不同的构造环境中,即榴辉岩的形成于大陆俯冲带中,而高压麻粒岩可能形成在俯冲带之上增厚的大陆地壳根部.  相似文献   

4.
采用激光拉曼技术,确认内蒙古中南部孔兹岩系锆石中保存进变质阶段矿物组合蓝晶石 钾长石 石英 磷灰石,蓝晶石 石榴石 钾长石 石英;峰期阶段矿物组合夕线石 石榴石 钾长石 石英,夕线石 石榴石 钾长石 石英 磷灰石。表明孔兹岩系在变质过程中矿物组合及相应的PT轨迹经历了自蓝晶石稳定区向夕线石稳定区的转变。  相似文献   

5.
吉南新太古代泥质片麻岩出露于龙岗岩群四道砬子河岩组中,本文通过系统的岩相学、矿物化学、激光拉曼和锆石U Pb同位素年代学等分析,研究其变质演化特点、变质作用时代及构造意义.结果表明:龙岗岩群四道砬子河岩组泥质片麻岩记录了3个变质演化阶段,其中峰前期进变质阶段(M1)的矿物组合为石榴石+黑云母+斜长石+石英+白云母;峰期变质阶段(M2)的矿物组合为石榴石+矽线石+钾长石+黑云母+斜长石+石英,达到麻粒岩相;峰后期退变质阶段(M3)以矽线石转变为蓝晶石为特征标 志,矿物组合为蓝晶石+石榴石+黑云母+斜长石+石英+白云母.变质矿物地质温压计限定其变质作用,峰前期(M1)T 为468~515 ℃,p 为(3.8~4.3)×105 kPa;峰期(M2)T 为703~760 ℃,p 为(6.6~7.1)×105kPa;峰后期(M3)T 为552~591℃,p 为(5.5~6.0)×105kPa;具有典型的近等压冷却型逆时针变质作用p T 演化轨迹特征,可能是在地幔柱与岩石圈相互作用的环境中变质作用与大量的幔源岩浆底侵作用有关.LA ICP MS锆石U Pb定年结果显示麻粒岩相变质作用时代为2495~2442Ma,属于新太古代变质热事件产物.  相似文献   

6.
柴北缘都兰高压麻粒岩的锆石U-Pb定年及其地质意义   总被引:3,自引:0,他引:3  
在柴北缘高压-超高压变质带的东端都兰地区,高压麻粒岩以透镜体的形式存在于石榴白云母片岩、花岗质片麻岩以及斜长角闪岩中。高压麻粒岩的主体为基性麻粒岩,并含少量中酸性麻粒岩。基性麻粒岩主要由石榴子石、单斜辉石、斜长石和石英等组成,而中酸性麻粒岩峰期矿物组合为:石榴子石+斜长石+钾长石+蓝晶石+石英±单斜辉石。根据显微构造和反应结构特征,主要识别出3期变质作用:①峰期高压麻粒岩相阶段(M1);②退变质高角闪岩相阶段(M2);③绿片岩相/低角闪岩相阶段(M3)。选取典型的中酸性麻粒岩样品进行了锆石LA-ICP-MSU-Pb原位定年分析,获得加权平均年龄为446.9±6.5Ma,且CL图像显示锆石内部发育石榴子石、单斜辉石、斜长石等矿物包体,反映锆石可能形成在峰期高压麻粒岩相变质条件下。岩石学和年代学结果显示都兰高压麻粒岩和邻近的榴辉岩同时形成于同一俯冲带的不同热构造环境,高压麻粒岩并非榴辉岩热松弛作用形成的,两者具有各自独立的变质演化历史。  相似文献   

7.
The Leverburgh Belt and South Harris Igneous Complex in South Harris (northwest Scotland) experienced high-pressure granulite facies metamorphism during the Palaeoproterozoic. The metamorphic history has been determined from the following mineral textures and compositions observed in samples of pelitic, quartzofeldspathic and mafic gneisses, especially in pelitic gneisses from the Leverburgh Belt: (1) some coarse-grained garnet in the pelitic gneiss includes biotite and quartz in the inner core, sillimanite in the outer core, and is overgrown by kyanite at the rims; (2) garnet in the pelitic gneiss shows a progressive increase in grossular content from outer core to rims; (3) the AlVI/AlIV ratio of clinopyroxene from mafic gneiss increases from core to rim; (4) retrograde reaction coronas of cordierite and hercynite+cordierite are formed between garnet and kyanite, and orthopyroxene+cordierite and orthopyroxene+plagioclase reaction coronas develop between garnet and quartz; (5) a P–T path is deduced from inclusion assemblages in garnet and from staurolite breakdown reactions to produce garnet+sillimanite and garnet+sillimanite+hercynite with increasing temperature; and (6) in sheared and foliated rocks, hydrous minerals such as biotite, muscovite and hornblende form a foliation, modifying pre-existing textures. The inferred metamorphic history of the Leverburgh Belt is divided into four stages, as follows: (M1) prograde metamorphism with increasing temperature; (M2) prograde metamorphism with increasing pressure; (M3) retrograde decompressional metamorphism with decreasing pressure and temperature; and (M4) retrograde metamorphism accompanied by shearing. Peak P–T conditions of the M2 stage are 800±30 °C, 13–14 kbar. Pressure increasing from M1 to M2 suggests thrusting of continental crust over the South Harris belt during continent–continent collision. The inferred P–T path and tectonic history of the South Harris belt are different from those of the Lewisian of the mainland.  相似文献   

8.
柴北缘都兰高压麻粒岩的变质演化及形成的动力学背景   总被引:7,自引:5,他引:2  
于胜尧  张建新  李金平 《岩石学报》2009,25(9):2224-2234
在柴北缘-阿尔金HP/UHP变质带东端,新识别出一个高压麻粒岩单元.高压基性麻粒岩是高压麻粒岩单元的主体,还包括少量高压中酸性麻粒岩.高压基性麻粒岩主要由平衡共生的石榴子石、单斜辉石、斜长石组成,还含有不等量的蓝晶石、角闪石、石英、金红石、黝帘石/斜黝帘石、钛铁矿、方柱石等矿物.高压长英质麻粒岩主要包括石榴子石、蓝晶石、钾长石、斜长石、石英等矿物,并具有少量的单斜辉石和角闪石.岩石学和矿物学数据显示高压麻粒岩经历了多阶段的变质演化,温压计算获得峰期高压麻粒岩相的变质条件为1.40~1.85GPa和800~925℃.退变质高角闪岩相的变质条件为P=0.80~1.05GPa和T=580~695℃:进一步的退变质作用发生在低角闪岩相/绿片岩相条件下(<0.8GPa和<550℃).岩石学、矿物学及年代学资料研究表明都兰地区的高压麻粒岩具有与相邻榴辉岩不同的变质演化历史,而不是榴辉岩在抬升过程中热松弛作用所致.高压麻粒岩可能形成于与陆壳俯冲相关的造山带增厚的陆壳根部环境,形成的深度为50~70km.  相似文献   

9.
Summary The type-locality granulites from the Granulitgebirge of Saxony, Germany, are rocks of broadly granitic composition containing minor garnet and kyanite within a commonly mylonitised matrix of feldspars and quartz. Petrographic evidence indicates a primary assemblage of ternary feldspar + quartz + garnet + kyanite + rutile, most likely resulting from partial melting of a granitic protolith, for which equilibrium temperature and pressure conditions of >1000 °C and >1.5 GPa have been deduced. These extreme (for crustal rocks) conditions, and the inferred peak assemblage, are supported by the newly-developed Zr-in-rutile geothermometer and experimental studies on the same bulk composition, respectively. As these conditions lie above those required for plagioclase stability in quartz tholeiites, they are thus in the eclogite facies. Widespread modification of the peak assemblage, for example mesoperthite formation after ternary feldspar, deformation-induced recrystallisation of perthites to two-feldspar + quartz aggregates, biotite replacing garnet, Ca-loss at garnet rims, sillimanite replacing kyanite or secondary garnet growth, makes reliable interpretation of equilibrium assemblages and compositions very difficult and explains the spread of published pressure-temperature values and consequent confusion about formation depths and the validity of tectonometamorphic models. Such extreme metamorphic conditions in rock compositions typical for the upper continental crust, reflecting a hot subduction environment, has important consequences for understanding some collisional orogens.  相似文献   

10.
东喜马拉雅地区高压麻粒岩岩石学研究及构造意义   总被引:5,自引:0,他引:5       下载免费PDF全文
刘焰 《地质科学》1998,33(3):267-281
将该区内的高喜马拉雅结晶岩划分为南部的角闪岩相岩石和北部的中低压麻粒岩相岩石,后者沿那木拉逆冲断层向南推覆于前者之上。高压麻粒岩相岩石仅以残余产出于后者,主要包括石榴石蓝晶石片麻岩和石榴石透辉石岩。前者的峰期矿物组合为石榴石+蓝晶石+三元长石+石英+金红石;后者的峰期组合为石榴石(铁铝榴石10±钙铝榴石>80)+透辉石+石英+方柱石+榍石(Al2O3为4%-4.5%).变质温压估计结果表明高压麻粒岩相岩石形成于大约1.7-1.8GPa,890℃,然后经历了近等温降压变质作用至0.5±0.1GPa,850±50℃。它们的原岩可能是大理岩及泥质岩。这表明在区内曾存在一高压麻粒岩带,那木拉冲断层可能是高喜马拉雅结晶岩内的一条重要的构造界线。  相似文献   

11.
哀牢山构造带泥质高压麻粒岩主要由石榴石、夕线石、钾长石和斜长石变斑晶及尖晶石、铁假蓝宝石、蓝晶石、石英、金红石和钛铁矿包裹体组成,为确定印支地块和华南地块的边界提供了关键性标志。石榴石-黑云母-斜长石-石英地质温压计(GBPQ)计算结果及标志性高温矿物组合(Spl+Qz)表明泥质高压麻粒岩的形成和演化经历了高压/高温进变质到中温/低压退变质的顺时针P-T演化过程。其中:1)高压/高温进变质阶段的矿物组合为Ky+Sil+Grt1+Kf1+Pl1+Spr+Ter(Kf+Pl)+Bt1+Spl+Qtz+Ilm1+Rut1,形成于850~919℃,≥10.4kbar;2)中温/低压退变质阶段的矿物组合为Grt2+Bt2+Pl2+Ms+Qtz+Ilm2+Rut2,早期和晚期的温压条件分别为664~754℃,4.9~6.5kbar和572~576℃,3.5~3.9kbar。反映陆壳物质在碰撞过程中俯冲到地下深处(≥30km)经高压高温变质后快速折返到中上地壳的动力学演变轨迹。  相似文献   

12.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   

13.
Granulite facies magnesian metapelites commonly preserve a wide array of mineral assemblages and reaction textures that are useful for deciphering the metamorphic evolution of a terrane. Quantitative pressure, temperature and bulk composition constraints on the development and preservation of characteristic peak granulite facies mineral assemblages such as orthopyroxene + sillimanite + quartz are assessed with reference to calculated phase diagrams. In NCKFMASH and its chemical subsystems, peak assemblages form mainly in high‐variance fields, and most mineral assemblage changes reflect multivariant equilibria. The rarity of orthopyroxene–sillimanite–quartz‐bearing assemblages in granulite facies rocks reflects the need for bulk rock XMg of greater than approximately 0.60–0.65, with pressures and temperatures exceeding c. 8 kbar and 850 °C, respectively. Cordierite coronas mantling peak minerals such as orthopyroxene, sillimanite and quartz have historically been used to infer isothermal decompression P–T paths in ultrahigh‐temperature granulite facies terranes. However, a potentially wide range of P–T paths from a given peak metamorphic condition facilitate retrograde cordierite growth after orthopyroxene + sillimanite + quartz, indicating that an individual mineral reaction texture is unable to uniquely define a P–T vector. Therefore, the interpretation of P–T paths in high‐grade rocks as isothermal decompression or isobaric cooling may be overly simplistic. Integration of quantitative data from different mineral reaction textures in rocks with varying bulk composition will provide the strongest constraints on a P–T path, and in turn on tectonic models derived from these paths.  相似文献   

14.
曲军峰  张立飞  张进  张波 《岩石学报》2021,37(2):563-574
西昆仑的深变质岩类主要发育于布伦阔勒岩群之中,其中的高压麻粒岩是西昆仑造山带中目前已知的变质程度最高的岩石。本文以其中的泥质高压麻粒岩为研究对象,结合岩相学、相平衡模拟以及锆石年代学分析等方法进行研究。结果显示其峰期变质矿物组合蓝晶石+石榴石+钾长石,是典型的泥质高压麻粒岩岩石组合。根据相平衡模拟估算,高压麻粒岩相峰期变质的温压条件高于850℃及1.4GPa,退变质的温压条件约为650℃和0.6GPa。SHRIMP U-Pb锆石定年结果显示泥质高压麻粒岩记录了两期变质,第一期暗色变质锆石年龄为ca.185Ma,代表岩石从高压麻粒岩相峰期变质退变至近固相线阶段的年龄;第二期亮色变质增生边年龄为ca.166Ma,代表后期退变质年龄;而高压麻粒岩相峰期变质时代应在200~185Ma之间。高压麻粒岩的变质条件、顺时针的P-T轨迹及锆石年代学的结果指示了晚三叠世-早侏罗世的碰撞造山事件(ca.200~166Ma)。结合区域地质资料,推断在西昆仑山内存在一条中生代的中-高压变质带,这条变质带代表了古特提斯洋关闭塔里木与羌塘地块碰撞拼合的位置。  相似文献   

15.
东喜马拉雅地区高压麻粒岩岩石学研究及构造意义   总被引:17,自引:2,他引:15       下载免费PDF全文
 将该区内的高喜马拉雅结晶岩划分为南部的角闪岩相岩石和北部的中低压麻粒岩相岩石,后者沿那木拉逆冲断层向南推覆于前者之上。高压麻粒岩相岩石仅以残余产出于后者,主要包括石榴石蓝晶石片麻岩和石榴石透辉石岩。前者的峰期矿物组合为石榴石+蓝晶石+三元长石+石英+金红石;后者的峰期组合为石榴石(铁铝榴石10±钙铝榴石>80)+透辉石+石英+方柱石+榍石(Al2O3为4%-4.5%).变质温压估计结果表明高压麻粒岩相岩石形成于大约1.7-1.8GPa,890℃,然后经历了近等温降压变质作用至0.5±0.1GPa,850±50℃。它们的原岩可能是大理岩及泥质岩。这表明在区内曾存在一高压麻粒岩带,那木拉冲断层可能是高喜马拉雅结晶岩内的一条重要的构造界线。  相似文献   

16.
Ailaoshan orogenic belt located at the northeastern margin of the Indochina block, southeastern Tibet, was formed by subduction and collision between the Indochina and South China blocks in Triassic and slip shearing resulted from the extrusion of the Indochina block in Cenozoic. The high‐pressure pelitic granulite is located at the southeastern margin of the Ailaoshan metamorphic belt, occurs as a slice of about 500~700m in thickness, consists of garnet, sillimanite, feldspar, biotite and quartz with accessory of kyanite, sapphirine, spinel, rutile, ilmenite, zircon and apatite. The petrography and mineral chemistry show that the high‐pressure pelitic granulite had suffered three stages of metamorphism: 1) the prograde metamorphism recorded by the mineral assemblage of garnet, kyanite, feldspar, biotite and rutile; 2) the peak metamorphism shown by the mineral assemblage of garnet, sillimanite, sapphirine, ternary feldspar, K‐feldspar, plagioclase, biotite, spinel, quartz, rutile and zircon mantle; 3) the retrograde metamorphism recorded by the mineral assemblage of biotite, muscovite, plagioclase, quartz and zircon rim. Zircon SHRIMP U‐Pb dating indicates that the protolith of the pelite granulite was deposited before 336 Ma, the prograde to peak metamorphism occurred at P‐T conditions of ≥10.4 kbar at 850~919 °C in 235 Ma, and the retrograde metamorphism occurred at the P‐T condition of 3.5~3.9 kbar at 572~576 °C until to 33 Ma. They are consistent with the times of Indochina separated from Gondwanaland during late Paleozoic, the amalgamation of the south China and Indochina blocks during the Triassic, and the sinistral slip‐shearing since the Early Cenozoic respectively. It is inferred that that the sedimentary rock was subducted to the lower continental crust (30 km) and suffered granulite‐facies metamorphism due to the collision during Indosinian, then exhumed quickly to middle‐upper crust (10–12km) and superimposed retrograde metamorphism since the Cenozoic.  相似文献   

17.
New data on the metamorphic petrology and zircon geochronology of high‐grade rocks in the central Mozambique Belt (MB) of Tanzania show that this part of the orogen consists of Archean and Palaeoproterozoic material that was structurally reworked during the Pan‐African event. The metamorphic rocks are characterized by a clockwise P–T path, followed by strong decompression, and the time of peak granulite facies metamorphism is similar to other granulite terranes in Tanzania. The predominant rock types are mafic to intermediate granulites, migmatites, granitoid orthogneisses and kyanite/sillimanite‐bearing metapelites. The meta‐granitoid rocks are of calc‐alkaline composition, range in age from late Archean to Neoproterozoic, and their protoliths were probably derived from magmatic arcs during collisional processes. Mafic to intermediate granulites consist of the mineral assemblage garnet–clinopyroxene–plagioclase–quartz–biotite–amphibole ± K‐feldspar ± orthopyroxene ± oxides. Metapelites are composed of garnet‐biotite‐plagioclase ± K‐feldspar ± kyanite/sillimanite ± oxides. Estimated values for peak granulite facies metamorphism are 12–13 kbar and 750–800 °C. Pressures of 5–8 kbar and temperatures of 550–700 °C characterize subsequent retrogression to amphibolite facies conditions. Evidence for a clockwise P–T path is provided by late growth of sillimanite after kyanite in metapelites. Zircon ages indicate that most of the central part of the MB in Tanzania consists of reworked ancient crust as shown by Archean (c. 2970–2500 Ma) and Palaeoproterozoic (c. 2124–1837 Ma) protolith ages. Metamorphic zircon from metapelites and granitoid orthogneisses yielded ages of c. 640 Ma which are considered to date peak regional granulite facies metamorphism during the Pan‐African orogenic event. However, the available zircon ages for the entire MB in East Africa and Madagascar also document that peak metamorphic conditions were reached at different times in different places. Large parts of the MB in central Tanzania consist of Archean and Palaeoproterozoic material that was reworked during the Pan‐African event and that may have been part of the Tanzania Craton and Usagaran domain farther to the west.  相似文献   

18.
浙西南八都杂岩早中生代泥质麻粒岩变质作用及构造意义   总被引:1,自引:0,他引:1  
遂昌-大柘泥质麻粒岩出露于华夏地块东北部的浙西南八都杂岩中,该岩石保留了典型的减压反应结构.但其变质演化特点、变质作用时代及构造意义目前尚不明确.通过系统的岩相学、矿物化学和同位素年代学分析,结果表明遂昌-大柘泥质麻粒岩记录了4个阶段的变质矿物组合,其中早期进变质阶段M1的矿物组合为石榴石+黑云母+石英;压力峰期变质阶段M2的矿物组合为石榴石+铝绿泥石+金红石+蓝晶石+刚玉+黑云母+石英±十字石,该矿物组合可能预示着岩石曾经历了超高压变质作用过程;峰期变质阶段M3的矿物组合为石榴石+黑云母+夕线石+石英±钾长石±斜长石±钛铁矿;峰后近等温降压M4-1阶段的矿物组合为石榴石+黑云母+夕线石+堇青石+石英+钛铁矿±尖晶石±斜长石±钾长石;M4-2阶段的矿物组合为石榴石+堇青石+夕线石+斜长石+黑云母+石英±钾长石.相平衡模拟结合传统地质温压计限定其峰期变质阶段的温压条件为T=780~810 ℃、P=8.0~9.2 kbar;峰期后近等温降压的M4-1阶段的温压条件为T=780~860 ℃和P=5.7~6.0 kbar,M4-2阶段的温压条件为T=~700 ℃和P=~4.4 kbar,具有典型的顺时针近等温减压型P-T轨迹特征.LA-ICP-MS U-Pb定年结果表明其麻粒岩相变质作用时代为233.5~238.9 Ma.变质作用历史说明浙西南地体可能卷入了古特提斯洋域内印支-华南-华北板块之间的俯冲-碰撞过程,并经历了早中生代的麻粒岩相变质作用后快速折返至地表.   相似文献   

19.
During Hercynian low-pressure/high-temperature metamorphism of Palaeozoic metasediments of the southern Aspromonte (Calabria), a sequence of metamorphic zones at chlorite, biotite, garnet, staurolite–andalusite and sillimanite–muscovite grade was developed. These metasediments represent the upper part of an exposed tilted cross-section through the Hercynian continental crust. P–T information on their metamorphism supplements that already known for the granulite facies lower crust of the section and allows reconstruction of the thermal conditions in the Calabrian crust during the late Hercynian orogenic event. Three foliations formed during deformation of the metasediments. The peak metamorphic assemblages grew mainly syntectonically (S2) during regional metamorphism, but mineral growth outlasted the deformation. This is in accordance with the textural relationships found in the lower part of the same crustal section exposed in the northern Serre. Pressure conditions recorded for the base of the upper crustal metasediments are c. 2.5 kbar and estimated temperatures range from <350 °C in the chlorite zone, increasing to 500 °C in the lower garnet zone, and reaching 620 °C in the sillimanite–muscovite zone. Geothermal gradients for the peak of metamorphism indicate a much higher value for the upper crust (c. 60 °C km?1) than for the granulite facies lower crust (30–35 °C km?1). The small temperature difference between the base of the upper crust (620 °C at c. 2.5 kbar) and the top of the lower crust (690 °C at 5.5 kbar) can be explained by intrusions of granitoids into the middle crust, which, in this crustal section, took place synchronously with the regional metamorphism at c. 310– 295 Ma. It is concluded that the thermal structure of the Calabrian crust during the Hercynian orogeny – as it is reflected by peak metamorphic assemblages – was mainly controlled by advective heat input through magmatic intrusions into all levels of the crust.  相似文献   

20.
浙西南遂昌-大柘地区八都岩群在印支期变质事件影响下发生变质变形,通过详细野外调查和岩相学研究,可将其划分为3期变质变形序列:S1变形期,NW向片麻理记录的残留紧闭褶皱,共生矿物组合为石榴子石变斑晶及其内部定向分布的包裹体矿物,石榴子石+黑云母+石英(泥质)和石榴子石+角闪石+斜长石+石英(长英质);S2变形期,区域性宽缓褶皱及NE向缓倾透入性片麻理,共生矿物组合为石榴子石变斑晶及定向分布的基质矿物,矽线石+石榴子石+黑云母+石英+斜长石±钾长石(泥质)和石榴子石+钾长石+斜长石+黑云母+石英(长英质);S3变形期,NE向陡倾透入性片麻理及韧脆性断裂大部分被花岗斑岩脉填充,共生矿物组合为石榴子石变斑晶及其周围退变矿物,石榴子石+矽线石+堇青石+斜长石+黑云母+石英±钾长石(泥质)和角闪石+斜长石+黑云母+钛铁矿(长英质)。结合前人研究成果,八都岩群印支期变质事件峰期变质程度达到麻粒岩相,显示顺时针近等温降压(ITD)型的p-T演化轨迹,S1-S3变质变形反映出从俯冲碰撞到快速折返冷却的演化过程,伴随S3同期侵位的花岗斑岩锆石U-Pb定年结果,将该演化过程完成时间约束在229.7 Ma,可能是浙西南地区对印支期古特提斯洋域内印支-华南-华北板块之间俯冲-碰撞过程的响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号