首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
蛇绿岩型金刚石和铬铁矿深部成因   总被引:5,自引:0,他引:5  
地球上的原生金刚石主要有3种产出类型,分别来自大陆克拉通下的深部地幔金伯利岩型金刚石、板块边界深俯冲变质岩中超高压变质型金刚石,和陨石坑中的陨石撞击型金刚石。在全球5个造山带的10处蛇绿岩的地幔橄榄岩或铬铁矿中均发现金刚石和其他超高压矿物的基础上,我们提出地球上一种新的天然金刚石产出类型,命名为蛇绿岩型金刚石。认为蛇绿岩型金刚石普遍存在于大洋岩石圈的地幔橄榄岩中,并提出蛇绿岩型金刚石和铬铁矿的深部成因模式。认为早期俯冲的地壳物质到达地幔过渡带(410~660 km深度)后被肢解,加入到周围的强还原流体和熔体中,当熔融物质向上运移到地幔过渡带顶部,铬铁矿和周围的地幔岩石以及流体中的金刚石等深部矿物一并结晶,之后,携带金刚石的铬铁矿和地幔岩石被上涌的地幔柱带至浅部,经历了洋盆的拉张和俯冲阶段,最终在板块边缘就位。  相似文献   

2.
金刚石是地球上最坚硬、对形成环境要求最苛刻的矿物之一。金刚石的矿物学特征、包裹体特征及碳稳定同位素组成记录了金刚石生长、熔蚀、搬运等地质过程中的温度、压力及物质成分等信息,是探索金刚石物质来源、形成过程和地球深部物理化学环境的重要研究对象。总结了国内外金刚石矿物学特征、包裹体特征和碳稳定同位素组成的相关研究成果,发现金刚石晶形和组合及其颜色可大致区分金刚石来源; 金刚石表面特征是区分原生金刚石与砂矿金刚石的重要鉴别特征; 金刚石包裹体类型及组合、包裹体年代学及金刚石碳稳定同位素研究,可分析金刚石物质来源和地球深部物理化学环境,确定金刚石形成时代,为研究金刚石成因、地幔岩石圈深部作用过程以及壳幔相互作用提供重要依据。  相似文献   

3.
金刚石是地球上最坚硬、对形成环境要求最苛刻的矿物之一。金刚石的矿物学特征、包裹体特征及碳稳定同位素组成记录了金刚石生长、熔蚀、搬运等地质过程中的温度、压力及物质成分等信息,是探索金刚石物质来源、形成过程和地球深部物理化学环境的重要研究对象。总结了国内外金刚石矿物学特征、包裹体特征和碳稳定同位素组成的相关研究成果,发现金刚石晶形和组合及其颜色可大致区分金刚石来源; 金刚石表面特征是区分原生金刚石与砂矿金刚石的重要鉴别特征; 金刚石包裹体类型及组合、包裹体年代学及金刚石碳稳定同位素研究,可分析金刚石物质来源和地球深部物理化学环境,确定金刚石形成时代,为研究金刚石成因、地幔岩石圈深部作用过程以及壳幔相互作用提供重要依据。  相似文献   

4.
全球多地蛇绿岩型地幔橄榄岩和铬铁矿中发现微粒金刚石,并在中国西藏南部和俄罗斯乌拉尔北部的蛇绿岩铬铁矿中发现原位产出的金刚石,认为是地球上金刚石的一种新的产出类型,不同于金伯利岩型金刚石和超高压变质型金刚石。它们与呈斯石英假象的柯石英、高压相的铬铁矿和青松矿等高压矿物以及碳硅石和单质矿物等强还原矿物伴生,指示蛇绿岩中的这些矿物组合形成于深度150~300 km或者更深的地幔。金刚石具有很轻的C同位素组成(δ13C-18‰~-28‰),并出现多种含Mn矿物和壳源成分包裹体。研究认为它们曾是早期深俯冲的地壳物质,达到>300 km深部地幔或地幔过渡带后,经历了熔融并产生新的流体,后者在上升过程中结晶成新的超高压、强还原矿物组合,通过地幔对流或地幔柱作用被带回到浅部地幔,由此建立了一个俯冲物质深地幔再循环的新模式。蛇绿岩型地幔橄榄岩和铬铁矿中发现金刚石等深部矿物,质疑了蛇绿岩铬铁矿形成于浅部地幔的已有认识,引发了一系列新的科学问题,提出了新的研究方向。   相似文献   

5.
蛇绿岩型金刚石产在地幔橄榄岩和铬铁矿中,是新建立的金刚石产出类型,不同于产在金伯利岩和超高压变质岩中的金刚石。全球已在21个蛇绿岩中发现了该类金刚石,含金刚石的蛇绿岩主要分布在特提斯造山带、乌拉尔- 中亚造山带、日高变质岩带和北美克拉马斯- 阿卡特兰造山带。本文梳理了含金刚石蛇绿岩的全球分布和地质背景以及蛇绿岩中超高压-强还原矿物与其它壳幔矿物组合的特征,讨论了已有的含金刚石铬铁矿和地幔橄榄岩的四种成因机制。金刚石和伴生的超高压-强还原矿物组合产在不同时代的造山带蛇绿岩中,不仅仅揭示了金刚石在蛇绿岩中普遍存在,需要重新思考蛇绿岩和铬铁矿的成因以及它们形成的地质构造背景,还证实了蛇绿岩地幔橄榄岩和铬铁矿是地球深部矿物重要的储存库,为认识地球深部的物质组成和物理化学环境,以及深部物质运移的轨迹和动力学过程等提供了天然样品。  相似文献   

6.
中国原生金刚石的碳同位素组成及其来源   总被引:2,自引:0,他引:2  
中国两大主要的原生金刚石产地--山东蒙阴和辽宁复县产出有大量的高质量金刚石.通过对这些纯净金刚石碳同位索组成的激光消熔质谱分析,发现这些地区单颗粒金刚石普遍存在碳同位素组成环带,而且含固态矿物包裹体的金刚石比不含包裹体的金刚石的环带结构更为明显;同时揭示了形成这些金刚石的碳来源于地幔深部,即幔源碳,而无来自地表的由重循环作用形成的壳源碳.  相似文献   

7.
蛇绿岩型金刚石的特征   总被引:6,自引:2,他引:4  
蛇绿岩型金刚石产在蛇绿岩地幔橄榄岩和铬铁矿中,不同于产在大陆克拉通的金伯利岩型金刚石,也不同于产在板块俯冲带中的超高压变质型金刚石和陨石撞击成因的金刚石。蛇绿岩型金刚石的主要特征是粒度普遍较小,多数在200~500μm之间,C同位素显示极低的δ13CVPDB值(-28‰~-18‰),金刚石中包裹体以含富Mn的矿物为特征,金刚石产在蛇绿岩大洋地幔橄榄岩中,其构造背景为板块缝合带。金伯利岩型金刚石粒度可达厘米级,是大颗粒宝石级金刚石的主要来源,其C同位素显示轻微低的δ13CVPDB值(-10‰~-5‰),包裹体矿物多为富Mg的矿物组合,金刚石产在克拉通和大陆岩石圈构造背景。超高压变质带中的金刚石颗粒十分细小,由数微米至100μm,C同位素为中等低的δ13CVPDB值(-15‰~-7‰),金刚石通常与碳酸岩和地壳成因矿物伴生,含有金刚石的超高压变质岩石形成的构造背景为板块深俯冲边界。形成于陨石撞击的金刚石产出和研究均较少,金刚石通常也是微米级,产出在陨石撞击形成的变质岩中,伴生矿物的成分与与撞击变质的原岩有关。以上四类金刚石无论野外和室内区分显著,由此,可以将蛇绿岩型金刚石归为地球上一种新的金刚石产出类型。  相似文献   

8.
岩石圈地幔中的金刚石及其矿物包裹体的研究进展   总被引:1,自引:1,他引:0  
金刚石及封存于其中的矿物包裹体对于研究金刚石的成因以及古老岩石圈地幔、超深地幔的性质和地幔过程具有重要的研究意义,是国内外地质学家们的研究热点。大多数金刚石来源于岩石圈地幔,根据包裹体相对于寄主金刚石形成的时间可分为先成包裹体、同生包裹体和后生包裹体,包裹体属于哪种类型直接关系到数据所代表的意义,根据包裹体源区的岩石类型,通常将包裹体分为P/U型和E型,介绍了2种类型包裹体包含的矿物种类,并对出现较多的橄榄石、单斜辉石、斜方辉石、石榴石、铬铁矿和硫化物包裹体的矿物学特征进行了详细描述,归纳了金刚石及其矿物包裹体的主要研究方向:包裹体矿物的化学成分、金刚石的碳同位素组成、金刚石形成的温度、压力及年龄,综述了克拉通岩石圈地幔金刚石及其矿物包裹体的成因,总结了我国金刚石中包裹体的研究成果,分析了国内研究工作与国际上的差距。  相似文献   

9.
西藏罗布莎蛇绿岩的地幔橄榄岩和铬铁矿中发现金刚石和特殊矿物群引发了新的问题,罗布莎地幔橄榄岩含特殊地幔矿物是不是一个孤立的特殊现象,或这是一个普遍存在的规律?显然,这是一个至关重要的问题.本文报道在雅鲁藏布江缝合带西段,距离罗布莎1000km以远的普兰蛇绿岩的地幔橄榄岩中发现与罗布莎类似的金刚石和特殊地幔矿物群.普兰的地幔橄榄岩体主体为方辉橄榄岩,含少量的纯橄岩和二辉橄榄岩,研究表明,属典型MOR型亏损地幔橄榄岩.通过分选,在657kg的地幔橄榄岩大样中发现了金刚石和碳硅石等30余种矿物的特殊矿物群,包括自然铬、自然铁和自然锌等强还原条件下形成的单质元素矿物.该矿物群与罗布莎地幔橄榄岩和铬铁矿中发现的特殊矿物群十分相似,表明罗布莎的地幔橄榄岩不是雅鲁藏布江缝合带中的一个特例.结合在俄罗斯乌拉尔Ray-Iz铬铁矿中发现类似的矿物群,以及世界其他地区的有关阿尔卑斯型地幔橄榄岩中金刚石的报道,认为蛇绿岩地幔橄榄岩中可能普遍含有金刚石,并将蛇绿岩地幔橄榄岩中产出的金刚石归为一种新的金刚石产出类型,即蛇绿岩型金刚石,不同于金伯利岩型金刚石和超高压变质带中产出的变质金刚石类型.  相似文献   

10.
金刚石是地球上最坚硬、对形成环境要求最苛刻的矿物之一。金刚石的矿物学特征、包裹体特征及碳稳定同位素组成记录了金刚石生长、熔蚀、搬运等地质过程中的温度、压力及物质成分等信息,是探索金刚石物质来源、形成过程和地球深部物理化学环境的重要研究对象。总结了国内外金刚石矿物学特征、包裹体特征和碳稳定同位素组成的相关研究成果,发现金刚石晶形和组合及其颜色可大致区分金刚石来源;金刚石表面特征是区分原生金刚石与砂矿金刚石的重要鉴别特征;金刚石包裹体类型及组合、包裹体年代学及金刚石碳稳定同位素研究,可分析金刚石物质来源和地球深部物理化学环境,确定金刚石形成时代,为研究金刚石成因、地幔岩石圈深部作用过程以及壳幔相互作用提供重要依据。  相似文献   

11.
Diamonds and their mineral inclusions are valuable for studying the genesis of diamonds, the characteristics and processes of ancient lithospheric mantle and deeper mantle. This has been paid lots of attentions by geologists both at home and abroad. Most diamonds come from lithospheric mantle. According to their formation preceded, accompanied or followed crystallization of their host diamonds, mineral inclusions in diamonds are divided into three groups: protogenetic, syngenetic and epigenetic. To determine which group the mineral inclusions belong to is very important because it is vital for understanding the data’s meaning. According to the type of mantle source rocks, mineral inclusions in diamonds are usually divided into peridotitic (or ultramafic) suite and eclogitic suite. The mineral species of each suite are described and mineralogical characteristics of most common inclusions in diamonds, such as olivine, clinopyroxene, orthopyroxene, garnet, chromite and sulfide are reviewed in detail. In this paper, the main research fields and findings of diamonds and their inclusions were described: ①getting knowledge of mineralogical and petrologic characteristics of diamond source areas, characteristics of mantle fluids and mantle dynamics processes by studying the major element and trace element compositions of mineral inclusions; ②discussing deep carbon cycle by studying carbon isotopic composition of diamonds; ③determining forming temperature and pressure of diamonds by using appropriate assemblages of mineral inclusions or single mineral inclusion as geothermobarometry, by using the abundance and aggregation of nitrogen impurities in diamonds and by measuring the residual stress that an inclusion remains under within a diamond ; ④estimating the crystallization ages of diamonds by using the aggregation of nitrogen impurities in diamonds and by determine the radiometric ages of syngenetic mineral inclusions in diamonds. Genetic model of craton lithospheric diamonds and their mineral inclusion were also introduced. In the end, the research progress on diamonds and their inclusions in China and the gap between domestic and international research are discussed.  相似文献   

12.
The internal structures of 78 diamond crystals from the Karpinsky-1 pipe in the Arkhangelsk Province and the distributions of structural impurities in them were examined by the methods of cathode luminescence and IR spectroscopy. Three generations of diamonds were found in the pipe. Diamonds of the first and second generations presumably originated in an ultramafic and eclogite mantle medium. Diamonds of the third generation, which are very common in the pipe, show a fibrous internal structure and anomalously high concentrations of nitrogen and hydrogen; they originated under disequilibrium conditions. The third-generation diamonds differ by the set of their typomorphic features from diamonds of kimberlite origin and show some similarity with diamonds from metamorphic rocks. We hypothesize that the third-generation diamonds from Katpinsky-1 pipe could originate in a proto-kimberlitic melt.  相似文献   

13.
Diamonds have been discovered in mantle peridotites and chromitites of six ophiolitic massifs along the 1300 km‐long Yarlung‐Zangbo suture (Bai et al., 1993; Yang et al., 2014; Xu et al., 2015), and in the Dongqiao and Dingqing mantle peridotites of the Bangong‐Nujiang suture in the eastern Tethyan zone (Robinson et al., 2004; Xiong et al., 2018). Recently, in‐situ diamond, coesite and other UHP mineral have also been reported in the Nidar ophiolite of the western Yarlung‐Zangbo suture (Das et al., 2015, 2017). The above‐mentioned diamond‐bearing ophiolites represent remnants of the eastern Mesozoic Tethyan oceanic lithosphere. New publications show that diamonds also occur in chromitites in the Pozanti‐Karsanti ophiolite of Turkey, and in the Mirdita ophiolite of Albania in the western Tethyan zone (Lian et al., 2017; Xiong et al., 2017; Wu et al., 2018). Similar diamonds and associated minerals have also reported from Paleozoic ophiolitic chromitites of Central Asian Orogenic Belt of China and the Ray‐Iz ophiolite in the Polar Urals, Russia (Yang et al., 2015a, b; Tian et al., 2015; Huang et al, 2015). Importantly, in‐situ diamonds have been recovered in chromitites of both the Luobusa ophiolite in Tbet and the Ray‐Iz ophiolite in Russia (Yang et al., 2014, 2015a). The extensive occurrences of such ultra‐high pressure (UHP) minerals in many ophiolites suggest formation by similar geological events in different oceans and orogenic belts of different ages. Compared to diamonds from kimberlites and UHP metamorphic belts, micro‐diamonds from ophiolites present a new occurrence of diamond that requires significantly different physical and chemical conditions of formation in Earth's mantle. The forms of chromite and qingsongites (BN) indicate that ophiolitic chromitite may form at depths of >150‐380 km or even deeper in the mantle (Yang et al., 2007; Dobrthinetskaya et al., 2009). The very light C isotope composition (δ13C ‐18 to ‐28‰) of these ophiolitic diamonds and their Mn‐bearing mineral inclusions, as well as coesite and clinopyroxene lamallae in chromite grains all indicate recycling of ancient continental or oceanic crustal materials into the deep mantle (>300 km) or down to the mantle transition zone via subduction (Yang et al., 2014, 2015a; Robinson et al., 2015; Moe et al., 2018). These new observations and new data strongly suggest that micro‐diamonds and their host podiform chromitite may have formed near the transition zone in the deep mantle, and that they were then transported upward into shallow mantle depths by convection processes. The in‐situ occurrence of micro‐diamonds has been well‐demonstrated by different groups of international researchers, along with other UHP minerals in podiform chromitites and ophiolitic peridotites clearly indicate their deep mantle origin and effectively address questions of possible contamination during sample processing and analytical work. The widespread occurrence of ophiolite‐hosted diamonds and associated UHP mineral groups suggests that they may be a common feature of in‐situ oceanic mantle. The fundamental scientific question to address here is how and where these micro‐diamonds and UHP minerals first crystallized, how they were incorporated into ophiolitic chromitites and peridotites and how they were preserved during transport to the surface. Thus, diamonds and UHP minerals in ophiolites have raised new scientific problems and opened a new window for geologists to study recycling from crust to deep mantle and back to the surface.  相似文献   

14.
Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions ('13C: peridotitic -5.4 to -2.2‰; eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side ('13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (̿,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards isotopic heavier compositions suggests a common carbon source, which may have inherited an isotopic heavy composition from a component consisting of subducted carbonates.  相似文献   

15.
Diamond from metaultramafic rocks of the Mesoarchean (2.96–3.0 Ga) Olondo greenstone belt, located in the western Aldan–Stanovoy shield, has been studied. Diamonds occur in lenses of olivine–serpentine–talc rocks within metaultramafic rocks of intrusive habit, whose composition corresponds to peridotite komatiites. All diamonds from the metaultramafic rocks are crystal fragments 0.3 to 0.5 mm in size. Morphological examination has revealed laminar octahedra, their transitional forms to dodecahedroids, crystals with polycentric faces, and spinel twins. The crystals vary in photoluminescence color: dark blue, green, yellow, red, or albescent. Characteristic absorption bands in crystals point to nitrogen impurities in the form of A and B1 defects and tabular B2 defects. The crystals studied belong to the IaA/B type, common among natural diamonds. The overall nitrogen content varies from < 100 to 3800 ppm. The relative content of nitrogen in B1 centers varies from 0 to 94%, pointing to long stay in the mantle. The carbon isotope ratio in the diamonds, 13C = ? 26‰, is indicative of involvement of subducted crust matter in diamond formation in the Archean.  相似文献   

16.
Analyses of mineral inclusions, carbon isotopes, nitrogen contents and nitrogen aggregation states in 29 diamonds from two Buffalo Hills kimberlites in northern Alberta, Canada were conducted. From 25 inclusion bearing diamonds, the following paragenetic abundances were found: peridotitic (48%), eclogitic (32%), eclogitic/websteritic (8%), websteritic (4%), ultradeep? (4%) and unknown (4%). Diamonds containing mineral inclusions of ferropericlase, and mixed eclogitic-asthenospheric-websteritic and eclogitic-websteritic mineral associations suggests the possibility of diamond growth over a range of depths and in a variety of mantle environments (lithosphere, asthenosphere and possibly lower mantle).

Eclogitic diamonds have a broad range of C-isotopic composition (δ13C=−21‰ to −5‰). Peridotitic, websteritic and ultradeep diamonds have typical mantle C-isotope values (δ13C=−4.9‰ av.), except for two 13C-depleted peridotitic (δ13C=−11.8‰, −14.6‰) and one 13C-depleted websteritic diamond (δ13C=−11.9‰). Infrared spectra from 29 diamonds identified two diamond groups: 75% are nitrogen-free (Type II) or have fully aggregated nitrogen defects (Type IaB) with platelet degradation and low to moderate nitrogen contents (av. 330 ppm-N); 25% have lower nitrogen aggregation states and higher nitrogen contents (30% IaB; <1600 ppm-N).

The combined evidence suggests two generations of diamond growth. Type II and Type IaB diamonds with ultradeep, peridotitic, eclogitic and websteritic inclusions crystallised from eclogitic and peridotitic rocks while moving in a dynamic environment from the asthenosphere and possibly the lower mantle to the base of the lithosphere. Mechanisms for diamond movement through the mantle could be by mantle convection, or an ascending plume. The interaction of partial melts with eclogitic and peridotitic lithologies may have produced the intermediate websteritic inclusion compositions, and can explain diamonds of mixed parageneses, and the overlap in C-isotope values between parageneses. Strong deformation and extremely high nitrogen aggregation states in some diamonds may indicate high mantle storage temperatures and strain in the diamond growth environment. A second diamond group, with Type IaA–IaB nitrogen aggregation and peridotitic inclusions, crystallised at the base of the cratonic lithosphere. All diamonds were subsequently sampled by kimberlites and transported to the Earth's surface.  相似文献   


17.
A mineral inclusion, carbon isotope, nitrogen content, nitrogen aggregation state and morphological study of 576 microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, was conducted. Mineral inclusion data show the diamonds are largely eclogitic (64%), followed by peridotitic (25%) and ultradeep (11%). The paragenetic abundances are similar to macrodiamonds from the DO27 kimberlite (Davies, R.M., Griffin, W.L., O'Reilly, S.Y., 1999. Diamonds from the deep: pipe DO27, Slave craton, Canada. In: Gurney, J.J., Gurney, J.L., Pascoe, M.D., Richardson, S.H. (Eds.), The J. B. Dawson Vol., Proc. 7th Internat. Kimberlite Conf., Red Roof Designs, Cape Town, pp. 148–155) but differ to diamonds from nearby kimberlites at Ekati (e.g., Lithos (2004); Tappert, R., Stachel, T., Harris, J.W., Brey, G.P., 2004. Mineral Inclusions in Diamonds from the Panda Kimberlite, S. P., Canada. 8th International Kimberlite Conference, extended abstracts) and Snap Lake to the south (Dokl. Earth Sci. 380 (7) (2001) 806), that are dominated by peridotitic stones.

Eclogitic diamonds with variable inclusion compositions and temperatures of formation (1040–1300 °C) crystallised at variable lithospheric depths sometimes in changing chemical environments. A large range to very 13C-depleted C-isotope compositions (δ13C=−35.8‰ to −2.2‰) and an NMORB bulk composition, calculated from trace elements in garnet and clinopyroxene inclusions, are consistent with an origin from subducted oceanic crust and sediments. Carbon isotopes in the peridotitic diamonds have mantle compositions (δ13C mode −4.0‰). Mineral inclusion compositions are largely harzburgitic. Variable temperatures of formation (garnet TNi=800–1300 °C) suggest the peridotitic diamonds originate from the shallow ultra-depleted and deeper less depleted layers of the central Slave lithosphere. Carbon isotopes (δ13C av.=−5.1‰) and mineral inclusions in the ultradeep diamonds suggest they formed in peridotitic mantle (670 km). The diamonds may have been entrained in a plume and subcreted to the base of the central Slave lithosphere.

Poorly aggregated nitrogen (IaA without platelets) in a large number of eclogitic (67%) and peridotitic (32%) diamonds, with similar nitrogen contents, indicates the diamonds were stored in the mantle at low temperatures (1060–<1100 °C) following crystallisation in the Archean. Type IaA diamonds have largely cubo-octahedral growth forms, and Type II and Type IaAB diamonds, with higher nitrogen aggregation states, mostly have octahedral morphologies. However, no correlation between these groups and their mineral inclusion compositions, C-isotopes, and N-contents rules out the possibility of unique source origins and suggests eclogitic and peridotitic diamonds experienced variable mantle thermal states. Variation in mineral inclusion chemistries in single diamonds, possible overgrowths of 13C-depleted eclogitic diamond on diamonds with peridotitic and ultradeep inclusions, and Type I ultradeep diamond with low N-aggregation is consistent with diamond growth over time in changing chemical environments.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号