首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 931 毫秒
1.
We combine geological and geophysical data to develop a generalized model for the lithospheric evolution of the central Andean plateau between 18° and 20° S from Late Cretaceous to present. By integrating geophysical results of upper mantle structure, crustal thickness, and composition with recently published structural, stratigraphic, and thermochronologic data, we emphasize the importance of both the crust and upper mantle in the evolution of the central Andean plateau. Four key steps in the evolution of the Andean plateau are as follows. 1) Initiation of mountain building by 70 Ma suggested by the associated foreland basin depositional history. 2) Eastward jump of a narrow, early fold–thrust belt at 40 Ma through the eastward propagation of a 200–400-km-long basement thrust sheet. 3) Continued shortening within the Eastern Cordillera from 40 to 15 Ma, which thickened the crust and mantle and established the eastern boundary of the modern central Andean plateau. Removal of excess mantle through lithospheric delamination at the Eastern Cordillera–Altiplano boundary during the early Miocene appears necessary to accommodate underthrusting of the Brazilian shield. Replacement of mantle lithosphere by hot asthenosphere may have provided the heat source for a pulse of mafic volcanism in the Eastern Cordillera and Altiplano at 24–23 Ma, and further volcanism recorded by 12–7 Ma crustal ignimbrites. 4) After 20 Ma, deformation waned in the Eastern Cordillera and Interandean zone and began to be transferred into the Subandean zone. Long-term rates of shortening in the fold–thrust belt indicate that the average shortening rate has remained fairly constant (8–10 mm/year) through time with possible slowing (5–7 mm/year) in the last 15–20 myr. We suggest that Cenozoic deformation within the mantle lithosphere has been focused at the Eastern Cordillera–Altiplano boundary where the mantle most likely continues to be removed through piecemeal delamination.  相似文献   

2.
Arrival-times of local events recorded in northern Chile and southern Bolivia were used to determine the P velocity structure above the subducted Nazca plate. The data were recorded between June and November 1994 by the French “Lithoscope” network: 41 vertical and 14 three-component short-period seismic stations were installed along a 700 km long profile crossing the main structures of the Andean chain, from the Coastal Cordillera to the Subandean Zone. The inversion method used is a modified version of Thurber’s 3D iterative simultaneous inversion code. The results were compared with a model obtained from previous German nearby refraction seismic studies and supplemented by field geological observations.The relocated seismicity is consistent with an ∼30° dipping slab between 0 and 170 km depth. We found a variation of about 30 km of the Moho depth along the profile. The crustal thickness is about 47 km under the Coastal Cordillera, 70 km under the Western Cordillera and the western part of the Eastern Cordillera, and 60–65 km beneath the Altiplano. Close to the surface, a good agreement between the velocity model and the geological structures is observed. Generally, in the upper crust, high velocities coincide with zones where basement is present near the surface. Low velocities are well correlated with the presence of very thick sedimentary basins or volcanic material. At greater depth, the trend of the velocity model is consistent with the existence of asymmetrical west-dipping imbricated blocks, overthrusting toward the east, which explain the asymmetrical pattern of the sedimentary basins. Beneath the Western Cordillera, the active volcanic arc, a large zone of low velocity is observed and interpreted to be due to partially molten material. A clear velocity contrast appears between the western and eastern parts of the upper mantle beneath the Andes; this geometry suggests the existence of a low velocity wedge in the mantle above the slab and the presence of a thick old lithosphere in the eastern part of the Andes.  相似文献   

3.
Geologic mapping in the Bolivian Andes and balanced cross-section construction permit the determination of bounds on the amount of crustal shortening that has occurred in the mountain belt. Assumptions are carefully selected in the cross-section interpretations so that a precise minimum is calculated, as well as larger, more plausible estimates. The minimum bound on crustal shortening within the Cordillera Oriental and Subandean Zone is 210 km. Relaxation of specific assumptions yields estimates of 325 and 670 km; independent estimates cluster in the range of 300 to 350 km. The estimates are used to evaluate the contribution of crustal shortening to the present crustal thickness in the central Andes, and, by inference, that of magmatic addition. The minimum estimate of crustal shortening accounts for at least two-thirds of the present cross-sectional area, whether the entire crust across the width of the mountain belt is considered, or just the sedimentary wedge within the Cordillera Oriental and Subandean Zone. Magmatic addition is volumetrically less important in thickening the crust. Consideration of the deformation in the Altiplano indicates that crustal shortening has been an important process there as well. The balance between magmatic and crustal shortening in creating the thickened crust also may be affected by other processes. Tectonic erosion may augment the thickening, suggesting that magmatic addition would make an even smaller volumetric contribution. Strike-slip faulting or delamination (for shortening estimates greater than 300 km) may thin the crust laterally or vertically, respectively; these processes either allow greater amounts of magmatic addition or accommodate larger amounts of shortening. The shortening that has occurred across the mountain belt has been driven neither by magmatic intrusion nor by continental collision; it has occurred in response to subduction of only oceanic lithosphere.  相似文献   

4.
What Happened in the Trans-North China Orogen in the Period 2560-1850 Ma?   总被引:5,自引:0,他引:5  
The Trans-North China Orogen (TNCO) was a Paleoproterozic continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form a coherent North China Craton (NCC). Recent geological, structural, geochemical and isotopic data show that the orogen was a continental margin or Japan-type arc along the western margin of the Eastern Block, which was separated from the Western Block by an old ocean, with eastward-directed subduction of the oceanic lithosphere beneath the western margin of the Eastern Block. At 2550-2520 Ma, the deep subduction caused partial melting of the medium-lower crust, producing copious granitoid magma that was intruded into the upper levels of the crust to form granitoid plutons in the low- to medium-grade granite-greeustone terranes. At 2530-2520 Ma, subduction of the oceanic lithosphere caused partial melting of the mantle wedge, which led to underplating of mafic magma in the lower crust and widespread mafic and minor felsic volcanism in the arc, forming part of the greenstone assemblages. Extension driven by widespread mafic to felsic volcanism led to the development of back-arc and/or intra-arc basins in the orogen. At 2520-2475 Ma, the subduction caused further partial melting of the lower crust to form large amounts of tonalitic-trondhjemitic-granodioritic (TTG) magmatism. At this time following further extension of back-arc basins, episodic granitoid magmatism occurred, resulting in the emplacement of 2360 Ma, -2250 Ma 2110-21760 Ma and -2050 Ma granites in the orogen. Contemporary volcano-sedimentary rocks developed in the back-arc or intra-are basins. At 2150-1920 Ma, the orogen underwent several extensional events, possibly due to subduction of an oceanic ridge, leading to emplacement of mafic dykes that were subsequently metamorphosed to amphibolites and medium- to high-pressure mafic granulites. At 1880-1820 Ma, the ocean between the Eastern and Western Blocks was completely consumed by subduction, and the dosing of the ocean led to the continent-arc-continent collision, which caused large-scale thrusting and isoclinal folds and transported some of the rocks into the lower crustal levels or upper mantle to form granulites or eclogites. Peak metamorphism was followed by exhumation/uplift, resulting in widespread development of asymmetric folds and symplectic textures in the rocks.  相似文献   

5.
长江中下游深部构造及其中生代成矿动力学模式   总被引:1,自引:0,他引:1  
长江中下游地区是中国重要的成矿带之一。本文利用地震、大地电磁数据以及野外地质调查,并结合前人研究的地球物理和岩石地球化学资料,明确了长江中下游地区现今深部构造,系统分析了其成矿动力学演化机制。本区发育有三大断裂体系:大别-苏鲁前陆断裂系、江南-雪峰断裂系和中国东部NE-NNE向走滑断裂系。大别-苏鲁前陆断裂系为一自北向南的叠瓦式逆冲推覆构造,而江南-雪峰断裂系为一自南向北的多级逆冲推滑构造,它们沿来安-望江-阳新-天门一线形成强烈的挤压对冲构造样式。中国东部NE-NNE向走滑断裂系早期主要表现为左行平移走滑并侧向挤压,参与了对冲构造形成过程,只是部分切割其它两个逆冲体系。这三大断裂体系均经历了印支-燕山期穿时递进的构造变形。152~135Ma,古太平洋板块向欧亚大陆俯冲时,板片可能沿着转换断层撕裂并产生底侵体。下地壳在底侵体的烘烤作用下熔融并受到混染,其岩浆在多级逆冲推覆和滑脱构造背景下充分结晶分异形成低镁埃达克岩,于断隆或隆坳过渡带生成铜矿。135~127Ma,长江中下游成矿带深部地幔开始上隆,诱发加厚岩石圈沿着郯庐断裂带局部拆沉,并引发富集地幔上升流。其与残留地壳交代反应,在郯庐断裂带两侧形成高镁埃达克岩。古太平洋板块继续向南西俯冲并发生逆时针旋转,长江中下游地区大多数NNE向断裂已转变为右行走滑,形成右行右阶的走滑拉分盆地。上隆地幔的基性岩浆沿着深切地壳的走滑断裂上升到盆地中,快速冷却形成橄榄玄粗岩岩系,从而在接触带或潜火山岩体顶部分异产生铁矿。  相似文献   

6.
A review of available stratigraphic, structural, and magmatic evolution in northernmost Chile, and adjacent Peru and Bolivia shows that in this region: (1) compression on the Paleogene intra-arc during the middle Eocene Incaic phase formed the NNE-SSW-oriented Incaic range along the present-day Precordillera and Western Cordillera, and (2) post-Incaic tectonic conditions remained compressive until present, contrasting with other regions of the Andes, where extensional episodes occurred during part of this time lapse. A late Oligocene–early Miocene peak of deformation caused further uplift. The Incaic range formed a pop-up structure bounded by two thrusts systems of diverging vergencies; it represented a major paleogeographic feature that separated two domains with different tectonic and paleogeographic evolutions, and probably formed the Andean water divide. This range has been affected by intense erosion and was symmetrically flanked by two major basins, the Pampa del Tamarugal and the Altiplano. Magmatic activity remained located along the previous Late Cretaceous–early Eocene arc with slight eastward shift. Further compression caused westvergent thrusting and uplift along the western Eastern Cordillera bounding the Altiplano basin to the east by another pop-up shaped ridge. Eastward progression of deformation caused eastvergent thrusting of the Eastern Cordillera and Subandean zone.  相似文献   

7.
This work integrates stress data from Global Positioning System measurements and earthquake focal mechanism solutions, with new borehole breakout and natural fracture system data to better understand the complex interactions between the major tectonic plates in northwestern South America and to examine how the stress regime in the Eastern Cordillera and the Llanos foothills in Colombia has evolved through time. The dataset was used to generate an integrated stress map of the northern Andes and to propose a model for stress evolution in the Eastern Cordillera. In the Cordillera, the primary present-day maximum principal stress direction is WNW–ESE to NW–SE, and is in the direction of maximum shortening in the mountain range. There is also a secondary maximum principal stress direction that is E–W to ENE–WSW, which is associated with the northeastward “escape” of the North Andean block, relative to stable South America. In the Cupiagua hydrocarbon field, located in the Llanos foothills, the dominant NNE–SSW fractures are produced by the Panama arc–North Andes collision and range-normal compression. However, less well developed asymmetrical fractures oriented E–W to WSW–ENE and NNW–SSE are also present, and may be related to pre-folding stresses in the foreland basin of the Central Cordillera or to present-day shear associated with the northeastward “escape” of the north Andean block. Our study results suggest that an important driver for orogenic deformation and changes in the stress field at obliquely convergent subduction zone boundaries is the arrival of thickened crust, such as island arcs and aseismic ridges, at the trench.  相似文献   

8.
M. G. Lomize 《Geotectonics》2008,42(3):206-224
Formation conditions of the peripheral orogen are expressed most fully in the Central Andes, a mountain system almost not yielding in height to the Himalayan-Tibetan system but formed at the margin of ocean without any relations to intercontinental collision. The marine transgression and rejuvenation of subduction in the Early Jurassic during the origination of foldbelt at the margin of Pangea marked the transition to a new supercontinental cycle, and the overall further evolution began and continues now in the frame of the first half of this cycle. The marginal position of this belt above the subduction zone, the rate and orientation of convergence of the lithospheric plates, the age of “absolute” movement of the continental plate, variation in slab velocity, and subduction of heterogeneities of the oceanic crust were the crucial factors that controlled the evolution of the marginal foldbelt. At the stage of initial subsidence (Jurassic-Mid-Cretaceous), during extension of the crust having a moderate thickness (30–35 km), the Andean continental margin comprises the full structural elements of an ensialic island arc that resembled the present-day Sunda system. These conditions changed with the separation and onset of the western drift of the South American continent. Being anchored in the mantle and relatively young, the slab of the Andean subduction zone served as a stop that brought about compression that controlled the subsequent evolution. Due to the contribution of deep magma sources along with marine sediments and products of tectonic erosion removed to a depth, the growth of crust above the subduction zone was favorable for heating of the crust. By the middle Eocene, when compression enhanced owing to the acceleration of subduction, the thermal evolution of the crust had already prepared the transition to the orogenic stage of evolution, i.e., to the progressive viscoplastic shortening and swelling of the mechanically weakened lower crust and the concomitant reverse faulting and thrusting of the upper crust. The general compression of the Central Andes by more than 250 km relative to the stop created by the oceanic slab accommodated up to 40% of the western continental drift over this time and increased the thickness of the crust up to 65–75 km. It is suggested that the onset of fast uplift and growth of the mountain edifice 12–10 Ma ago was predetermined by the approach of the submarine Juan Fernandez Ridge in the south and the Nazca Ridge in the north toward the continental margin and their involvement in subduction. As a result, the Central Andes were transformed into a region of advanced shortening and vigorous orogeny.  相似文献   

9.
An intrinsic feature of Cordillera-style orogenic systems is a spatial trend in the radiogenic isotopic composition of subduction-related magmatism. Magmatism is most isotopically juvenile near the trench and becomes increasingly evolved landward. A compilation of radiogenic isotopic data from the central Andes, U.S. Cordillera, and Tibet (the most well-studied examples of modern and ancient Cordilleran systems) demonstrate such spatial trends are long-lived and persist throughout the life of these continental subduction margins. The consistency of the isotopic trend through time in magmatic products is surprising considering the plethora of orogenic processes that might be expected to alter them. In addition to longevity, spatial isotopic trends encompass a broad spectrum of geochemical compositions that represent diverse petrogenetic and geodynamic processes. The two end-members of the spatial isotopic trends are represented by melts sourced within isotopically juvenile asthenospheric mantle and melts sourced from isotopically evolved continental lithospheric mantle and/or lower crust. Mantle lithosphere generally thins toward the magmatic arc and trench in Cordilleran orogens because sub-lithospheric processes such as delamination, subduction erosion, and subduction ablation, operate to thin or remove the continental mantle lithosphere. With time, magmatic additions may impart the isotopic composition of the mantle source on the lower crust, giving rise to an isotopically homogenous deep lithosphere. The results of this analysis have significant implications for interpreting temporal and spatial shifts in isotopic composition within Cordilleran orogens and suggest that the continental mantle lithosphere may be a significant source of magmatism in orogenic interiors.  相似文献   

10.
安第斯埃达克岩 :三种成因模式   总被引:37,自引:31,他引:37  
在安第斯埃达克岩是常见的。由这种岩石的痕量元素特征揭示的高压组成矿物 ,表明其有三种可能的成因。这三种成因按相对重要性依次为 :安第斯地壳的构造加厚 ;弧前壳的俯冲 -侵蚀 ;年轻洋壳的俯冲。在过去 30 Ma,每种成因模式的埃达克岩在智利 -阿根廷安第斯地区均有喷发。它们的产状与智利 -阿根廷边缘快速变化的构造背景中特定构造条件和事件相吻合。埃达克岩在过去安第斯边缘的产状可望成为矿化的优异构造标志 ,也可用于指导找矿  相似文献   

11.
The Alboran Domain, situated at the western end of the Mediterranean subduction system, is characterized by the Ronda Peridotites, one of the world's largest exposures of sub‐continental mantle. Using U–Pb (LA‐ICP‐MS) and Ar–Ar dating, we precisely dated two tectonic events associated with the Tertiary exhumation of the Ronda Peridotites. First, shearing along the Crust–Mantle Extensional Shear Zone caused, at ca. 22.5 Ma, mantle exhumation, local partial melting in the deep crust and coeval cooling in the upper crust. Second, the Ronda Peridotites Thrust triggered the final emplacement of the peridotites onto the continental crust at c. 21 Ma, as testified by granitic intrusions in the thrust hangingwall. The tectonic evolution of the western Alboran Domain is therefore characterized by a fast switch from continental lithospheric extension in a backarc setting, with sub‐continental mantle exhumation, to a rift inversion by thrusting driven by shortening of the upper plate.  相似文献   

12.
川黔湘构造带可划分为4个不同的构造带,其中雪峰山构造带地理位置特殊,恰位于华南块体南北向重力梯度带上,两侧岩石圈厚度差异显著,其成因机制历来是争论的焦点。雪峰山构造带基底是一个花状结构,与川黔隔槽式褶皱带构成一个整体,为一个厚皮结构。雪峰山基底在沅麻盆地隆升最高,表现为压扭性构造特点。参考深反射剖面,绘制了研究区浅层与深部结构地质剖面。板块受挤压,中、上地壳与下地壳存在不同的耦合方式,对此分析了研究区下地壳的变形过程。雪峰山下地壳向下存在对冲,形成山根,但并没有俯冲至地幔。随地壳加厚,岩石圈发生弯曲,下地壳与上地幔存在瑞利泰勒不稳定性,并下沉至软流圈地幔。晚中生代,伸展背景下的软流圈上涌使雪峰山以东岩石圈发生拆沉,致使两侧岩石圈厚度出现差异。  相似文献   

13.
The N–S oriented Coastal Cordillera of South Central Chile shows marked lithological contrasts along strike at ∼38°S. Here, the sinistral NW–SE-striking Lanalhue Fault Zone (nomen novum) juxtaposes Permo-Carboniferous magmatic arc granitoids and associated, frontally accreted metasediments (Eastern Series) in the northeast with a Late Carboniferous to Triassic basal-accretionary forearc wedge complex (Western Series) in the southwest. The fault is interpreted as an initially ductile deformation zone with divergent character, located in the eastern flank of the basally growing, upwarping, and exhuming Western Series. It was later transformed and reactivated as a semiductile to brittle sinistral transform fault. Rb–Sr data and fluid inclusion studies of late-stage fault-related mineralizations revealed Early Permian ages between 280 and 270 Ma for fault activity, with subsequent minor erosion. Regionally, crystallization of arc intrusives and related metamorphism occurred between ∼306 and ∼286 Ma, preceded by early increments of convergence-related deformation. Basal Western Series accretion started at >290 Ma and lasted to ∼250 Ma. North of the Lanalhue fault, Late Paleozoic magmatic arc granitoids are nearly 100 km closer to the present day Andean trench than further south. We hypothesize that this marked difference in paleo-forearc width is due to an Early Permian period of subduction erosion north of 38°S, contrasting with ongoing accretion further south, which kinematically triggered the evolution of the Lanalhue Fault Zone. Permo-Triassic margin segmentation was due to differential forearc accretion and denudation characteristics, and is now expressed in contrasting lithologies and metamorphic signatures in todays Andean forearc region north and south of the Lanalhue Fault Zone.  相似文献   

14.
ABSTRACT Lead isotope variability of magmatic arc rocks and associated mineralization of the Central Andes is usually considered to be the result of mixing between a homogeneous mantle and heterogeneous continental crust. About 230 new lead isotope data on the Northern and Central Andes allow us to compare for the first time lead isotope systematics of the Late Cretaceous – Tertiary arc magmatism and associated mineralization along the Andean chain between 8°N and 40°S. Lead isotope compositions indicate mixing between mantle and upper crustal rocks along the whole Andean chain. Additionally, we have found that mantle end-members of the Late Cretaceous – Tertiary magmatism are heterogeneous and systematically shifted towards less radiogenic 206Pb/204Pb compositions from north to south along the Andes. This heterogeneity most likely results from mixing between a low radiogenic mantle, possibly carrying a DMM or EM I component, and a more radiogenic mantle, possibly carrying an HIMU component. Thus, our results imply that lead isotope variability of Andean magmas at the continental scale is caused not only by crustal but also by mantle heterogeneity.  相似文献   

15.
论述了大规模岩浆活动与岩石圈减薄的关系,指出软流圈地幔与地壳直接接触时,即岩石圈最大减薄时(岩石圈地幔厚度为0),岩石圈厚度等于地壳厚度。中国东部岩石圈最大减薄的时间在燕山期,在这之前和之后,岩石圈是厚的。讨论了中国东部大规模岩浆活动与板块俯冲的关系,认为中国东部燕山期岩浆活动与太平洋板块没有关系:中国东部不属于环太平洋构造带,不是安第斯型活动陆缘,中生代玄武岩不具有岛弧玄武岩的特征,从中酸性岩浆岩得不出岛弧的结论,从三叠纪开始的古太平洋板块扩张方向的演变也不支持板块向西俯冲的认识。认为中国东部燕山期大规模岩浆活动可能与超级地幔柱的活动有关,是一种新的大火成岩省类型。文中将大火成岩省分为两类:一类为B型大火成岩省,部分熔融发生在岩石圈底部,以发育玄武岩为特征;另一类为G型大火成岩省,部分熔融发生在下地壳底部,以发育大规模花岗质岩浆为特征。根据中国东部大规模岩浆活动的时空分布分出5个大火成岩省:鄂霍茨克(大兴安岭北端)、张广才岭—小兴安岭、华北—大兴安岭、华南和东部沿海大火成岩省。认为岩石圈减薄可以产生多种效应,是地壳演化的最重要的动力学因素,但唯独与地壳浅部的伸展事件无关。还评论了流行的岩石圈减薄的见解,认为流行的见解将岩石圈减薄定位在新生代(岩石圈厚80~120km)是似是而非的,不是科学的命题。  相似文献   

16.
冈底斯斑岩铜矿成矿模式   总被引:35,自引:0,他引:35  
已有的斑岩铜矿成矿模式都是建立在“B”型俯冲基础上的,而冈底斯斑岩铜矿成矿为18~12Ma,主碰撞期为65Ma,因此属于“A”型俯冲时期,即印度大陆壳俯冲到亚洲大陆壳之下的早期,此时夹于两者之间的新特提斯洋壳尚未消失掉,由此上地幔脱水和部分熔融提供了斑岩铜矿的主要成矿的物质来源。本文讨论了俯冲作用与斑岩铜矿的关系,通过驱龙和冲江两个代表性矿床的Nd、Sr同位素讨论了冈底斯斑岩铜矿成矿物质来源,通过矿带结构和成矿年代等制定了冈底斯斑岩铜矿成矿模式。  相似文献   

17.
中国东部燕山期和四川期岩石圈构造滑脱与岩浆起源深度   总被引:9,自引:0,他引:9  
较确切地研究岩石圈内部构造滑脱面在地质历史时期形成的时间和部位是当前大地构造学研究的一个重要课题。通过大量收集中国东部燕山期(205~135Ma)和四川期(135~52Ma)岩浆起源深度资料来判断岩石圈内部和底部是否存在局部的构造滑脱界面,是否发生层圈相互作用,是否发生部分的解耦现象,是一种可行的研究方法。研究表明,中国东部燕山期和四川期岩石圈板块的构造滑脱、圈层的解耦作用及相互作用主要集中在中地壳、莫霍面与区域性主干断层的交线附近,而岩石圈板块的底面却并不存在大幅度的滑移。中国东部燕山期和四川期岩浆活动比较发育的地区基本上都位于大兴安岭—山西西部—武陵山—十万大山一线以东地区,而在此线以西地区岩浆活动相当微弱。笔者认为,在侏罗—白垩纪时期,该线以西缺少岩浆活动的地区可能就是当时的大陆型岩石圈,而该线以东岩浆活动剧烈的地区可能就属于海陆过渡型岩石圈。中国东部岩石圈的转型和"变薄",不太可能是深部地幔羽、去根作用、深部地幔热物质上涌或大陆伸展作用的结果,也不太可能与太平洋板块的俯冲作用有直接联系。  相似文献   

18.
Interaction between the subducting slab, the overriding continental lithosphere and mantle flow are fundamental geodynamic processes of subduction systems. Eastern China is an ideal natural laboratory to investigate the behavior and evolution of cratonic blocks within a subduction system. In this study, we investigate deformation of the upper mantle beneath eastern China. We present seismic shear wave splitting measurements from three networks consisting of over 483 broadband stations, with 157 stations giving a total of 516 results. The splitting parameters exhibit complex regional patterns but are relatively coherent within individual tectonic units. Tectonic blocks exhibited distinctive fast directions relative to regional features. The dominant attitude of fast directions for the North China Craton was subparallel to the direction of subduction, whereas fast directions for Southeastern China were perpendicular to the direction of subduction. The shear wave splitting measurements were interpreted according to a high resolution tomographic body-wave velocity model. Combining these two datasets showed that the predominant geodynamic models for the region (mantle plume, mantle wedge and flat-slab subduction models) are incompatible with the observations presented here. We suggest that the North China Craton, Yangtze Craton and the Cathaysia block have undergone different deformational events due to differing mantle flow patterns, and distinct spatial and temporal subduction histories of the Pacific and Philippine Sea plates.  相似文献   

19.
《地学前缘(英文版)》2020,11(4):1219-1229
We investigate the effect of the westerly rotation of the lithosphere on the active margins that surround the Americas and find good correlations between the inferred easterly-directed mantle counterflow and the main structural grain and kinematics of the Andes and Sandwich arc slabs.In the Andes,the subduction zone is shallow and with low dip,because the mantle flow sustains the slab;the subduction hinge converges relative to the upper plate and generates an uplifting doubly verging orogen.The Sandwich Arc is generated by a westerly-directed SAM(South American) plate subduction where the eastward mantle flow is steepening and retreating the subduction zone.In this context,the slab hinge is retreating relative to the upper plate,generating the backarc basin and a low bathymetry single-verging accretionary prism.In Central America,the Caribbean plate presents a more complex scenario:(a) To the East,the Antilles Arc is generated by westerly directed subduction of the SAM plate,where the eastward mantle flow is steepening and retreating the subduction zone.(b) To the West,the Middle America Trench and Arc are generated by the easterly-directed subduction of the Cocos plate,where the shallow subduction caused by eastward mantle flow in its northern segment gradually steepens to the southern segment as it is infered by the preexisting westerly-directed subduction of the Caribbean Plateau.In the frame of the westerly lithospheric flow,the subduction of a divergent active ridge plays the role of introducing a change in the oceanic/continental plate's convergence angle,such as in NAM(North American)plate with the collision with the Pacific/Farallon active ridge in the Neogene(Cordilleran orogenic type scenario).The easterly mantle drift sustains strong plate coupling along NAM,showing at Juan de Fuca easterly subducting microplate that the subduction hinge advances relative to the upper plate.This lower/upper plate convergence coupling also applies along strike to the neighbor continental strike slip fault systems where subduction was terminated(San Andreas and Queen Charlotte).The lower/upper plate convergence coupling enables the capture of the continental plate ribbons of Baja California and Yakutat terrane by the Pacific oceanic plate,transporting them along the strike slip fault systems as para-autochthonous terranes.This Cordilleran orogenic type scenario,is also recorded in SAM following the collision with the Aluk/Farallon active ridge in the Paleogene,segmenting SAM margin into the eastwardly subducting Tupac Amaru microplate intercalated between the proto-LiquineOfqui and Atacama strike slip fault systems,where subduction was terminated and para-autochthonous terranes transported.In the Neogene,the convergence of Nazca plate with respect to SAM reinstalls subduction and the present Andean orogenic type scenario.  相似文献   

20.
CENOZOIC VOLCANISM AND LITHOSPHERETECTONIC EVOLUTION IN NORTH TIBET  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号