首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primitive andesites from the Taupo Volcanic Zone formed by magma mixing   总被引:1,自引:0,他引:1  
Andesites with Mg# >45 erupted at subduction zones form either by partial melting of metasomatized mantle or by mixing and assimilation processes during melt ascent. Primitive whole rock basaltic andesites from the Pukeonake vent in the Tongariro Volcanic Centre in New Zealand’s Taupo Volcanic Zone contain olivine, clino- and orthopyroxene, and plagioclase xeno- and antecrysts in a partly glassy matrix. Glass pools interstitial between minerals and glass inclusions in clinopyroxene, orthopyroxene and plagioclase as well as matrix glasses are rhyolitic to dacitic indicating that the melts were more evolved than their andesitic bulk host rock analyses indicate. Olivine xenocrysts have high Fo contents up to 94%, δ18O(SMOW) of +5.1‰, and contain Cr-spinel inclusions, all of which imply an origin in equilibrium with primitive mantle-derived melts. Mineral zoning in olivine, clinopyroxene and plagioclase suggest that fractional crystallization occurred. Elevated O isotope ratios in clinopyroxene and glass indicate that the lavas assimilated sedimentary rocks during stagnation in the crust. Thus, the Pukeonake andesites formed by a combination of fractional crystallization, assimilation of crustal rocks, and mixing of dacite liquid with mantle-derived minerals in a complex crustal magma system. The disequilibrium textures and O isotope compositions of the minerals indicate mixing processes on timescales of less than a year prior to eruption. Similar processes may occur in other subduction zones and require careful study of the lavas to determine the origin of andesite magmas in arc volcanoes situated on continental crust.  相似文献   

2.
《International Geology Review》2012,54(10):1179-1190
Andesite magmatism plays a major role in continental crustal growth, but its subduction-zone origin and evolution is still a hotly debated topic. Compared with whole-rock analyses, melt inclusions (MIs) can provide important direct information on the processes of magma evolution. In this article, we synthesize data for melt inclusions hosted by phenocrysts in andesites, extracted from the GEOROC global compilation. These data show that melt inclusions entrapped by different phenocrysts have distinct compositions: olivine-hosted melt inclusions have basalt and basaltic andesite compositions, whereas melt inclusions in clinopyroxene and othopyroxene are mainly dacitic to rhyolitic. Hornblende-hosted melt inclusions have rhyolite composition. The compositions of melt inclusions entrapped by plagioclase are scattered, spanning from andesite to rhyolite. On the basis of the compositional data, we propose a mixing model for the genesis of the andesite, and a two-chamber mechanism to account for the evolution of the andesite. First, andesite melt is generated in the lower chamber by mixing of a basaltic melt derived from the mantle and emplaced in the lower crust with a felsic melt resulting from partial melting of crustal rocks. Olivine and minor plagioclase likely crystallize in the lower magma chamber. Secondly, the andesite melt ascends into the upper chamber where other phenocrysts crystallize. According to SiO2-MgO diagrams of the MIs, evolution of the andesite in the upper chamber can be subdivided into two distinct stages. The early stage (I) is characterized by a phenocrystal assemblage of clinopyroxene + othopyroxene + plagioclase, whereas the late stage (II) is dominated by crystallization of plagioclase + hornblende.  相似文献   

3.
Approximately 150 km west of Mexico City in the central part of the Mexican Volcanic Belt (MVB) near Zitácuaro, Mexico, young volcanism has produced shield volcanoes, large volume silicic deposits, and fault-related basalt and andesite lava flows and cinder cones. This paper concerns a small cluster of Pleistocene andesite cones and flows which can be separated into two distinct groups: high-magnesium andesites (>6% MgO, 57–59% SiO2), conveniently called basaltic andesites, with phenocrysts of orthopyroxene and augite, or augite and olivine; and andesites (60–62% SiO2, <4.6% MgO), which have phenocrysts of orthopyroxene and augite, and ghosts of relict hornblende. Remarkably, plagioclase phenocrysts are absent, and evenly distributed but sparse (0.5–3.5%) quartz xenocrysts are present in all the lavas. In order to establish the conditions under which early crystallizing plagioclase is suppressed in these lavas, water saturated experiments up to 3 kbars were performed on one of the basaltic andesites. The conditions required to reproduce the phenocryst assemblages (either olivine + augite or opx + augite) are temperatures in excess of 1000 °C, with water saturated liquids (>3 wt%) at pressures of about 1 kbar. Compared to basaltic andesites of western Mexico, the Zitácuaro basaltic andesites have ∼2 wt% lower Al2O3 concentrations, which causes plagioclase to precipitate at significantly lower temperatures, and it therefore follows the crystallization sequence: olivine, augite, and orthopyroxene. Based on ubiquitous quartz xenocrysts, with glassy rhyolitic inclusions, a reasonable conclusion is that substantial mixing of a quartz-bearing rhyolitic magma with a parental basaltic andesite has occurred at low pressure (shallow depth), and this would account for the low Al2O3 concentrations in the Zitácuaro basaltic andesites. Whatever the mechanism of incorporation, the quartz xenocrysts are evidence of contamination of basaltic magma with more siliceous material, thus making it difficult to use these magmas as indicators of mantle melting processes. Received: 29 July 1997 / Accepted: 29 January 1998  相似文献   

4.
Quaternary basalts, andesites and dacites from the Abu monogenetic volcano group, SW Japan, (composed of more than 40 monogenetic volcanoes) show two distinct chemical trends especially on the FeO*/MgO vs SiO2 diagram. One trend is characterized by FeO*/MgO-enrichment with a slight increase in SiO2 content (Fe-type trend), whereas the other shows a marked SiO2-enrichment with relatively constant FeO*/MgO ratios (Si-type trend). The Fe-type trend is explained by fractional crystallization with subtraction of olivine and augite from a primitive alkali basalt magma. Rocks of the Si-type trend are characterized by partially melted or resorbed quartz and sodic plagioclase phenocrysts and/or fine-grained basaltic inclusions. They are most likely products of mixing of a primitive alkali basalt magma containing olivine phenocrysts with a dacite magma containing quartz, sodic plagioclase and hornblende phenocrysts. Petrographic variation as well as chemical variation from basalt to dacite of the Si-type trend is accounted for by various mixing ratios of basalt and dacite magmas. Pargasitic hornblende and clinopyroxene phenocrysts in andesite and dacite may have crystallized from basaltic magma during magma mixing. Olivine and spinel, and quartz, sodic plagioclase and common hornblende had crystallized in basaltic and dacitic magmas, respectively, before the mixing. Within a lava flow, the abundance of basaltic inclusions decreases from the area near the eruptive vent towards the perimeter of the flow, and the number of resorbed phenocrysts varies inversely, suggesting zonation in the magma chamber.The mode of mixing changes depending on the mixing ratio. In the mafic mixture, basalt and dacite magmas can mix in the liquid state (liquid-liquid mixing). In the silicic mixture, on the other hand, the basalt magma was quenched and formed inclusions (liquid-solid mixing). During mixing, the disaggregated basalt magma and the host dacite magma soon reached thermal equilibrium. Compositional homogenization of the mixed magma can occur only when the equilibrium temperature is sufficiently above the solidus of the basalt magma. The Si-type trend is chemically and petrographically similar to the calc-alkalic trend. Therefore, a calc-alkalic trend which is distinguished from a fractional crystallization trend (e.g. Fe-type trend) may be a product of magma mixing.  相似文献   

5.
The Huerto Andesite is the largest of several andesite sequences interlayered with the large-volume ash-flow tuffs of the San Juan volcanic field, Colorado. Stratigraphically this andesite is between the region's largest tuff (the 27.8 Ma, 3,000 km3 Fish Canyon Tuff) and the evolved product of the Fish Canyon Tuff (the 27.4 Ma, 1,000 km3 Carpenter Ridge Tuff), and eruption was from vents located approximately 20–30 km southwest and southeast of calderas associated with these ashflow tuffs. Olivine phenocrysts are present in the more mafic, SiO2-poor samples of andesite, hence the parent magma was most likely a mantle-derived basaltic magma. The bulk compositions of the olivine-bearing andesites compared to those containing orthopyroxene phenocrysts suggest the phenocryst assemblage equilibrated at 2–5 kbar. Two-pyroxene geothermometry yields equilibrium temperatures consistent with near-peritectic magmas at 2–5 kbar. Fractionation of phenocryst phases (olivine or orthopyroxene + clinopyroxene + plagioclase + Ti-magnetite + apatite) can explain most major and trace element variations of the andesites, although assimilation of some crustal material may explain abundances of some highly incompatible trace elements (Rb, Ba, Nb, Ta, Zr, Hf) in the most evolved lavas. Despite the great distance of the San Juan volcanic field from the inferred Oligocene destructive margin, the Huerto Andesite is similar to typical plate-margin andesites: both have relatively low abundances of Nb and Ta and similar values for trace-element ratios such as La/Yb and La/Nb.Deriving the Fish Canyon and Carpenter Ridge Tuffs by crystal fractionation from the Huerto Andesite cannot be dismissed by major-element models, although limited trace-element data indicate the tuffs may not have been derived by such direct evolution. Alternatively, heat of crystallization released as basaltic magmas evolved to andesitic compositions may have caused melting of crust to produce the felsic-ash flows. Mafic magmas may have been gravitationally trapped below lighter felsic magmas; mafic magmas which ascended to the surface probably migrated upwards around the margins of silicic chambers, as suggested by the present-day outcrops of andesitic units around the margins of recognized ash-flow calderas.  相似文献   

6.
Xenolithic inclusions in calc-alkaline andesite from Mt. Moffettvolcano, Adak Island, Aleutian arc, reveal a nearly continuousrecord of crystallization of basaltic magmas in the crust, andpossibly upper mantle, of the arc. The record is more detailedand continuous than that obtained from study of calc-alkalinevolcanic rocks in the arc. Cumulate xenoliths form a progressiveseries in modal mineralogy from ultramafic, hornblende-bearingolivine clinopyroxenite to both hornblende-bearing and hornblende-freegabbros. The cumulate hornblende gabbro xenoliths are typicalof those found in island arc andesites worldwide. Xenolithicinclusions without cumulate textures, here termed compositexenoliths, are characterized by forsteritic olivine, zoned Cr-diopsideand hornblende, and are interpreted to have resulted from reactionand chilling upon magma mixing at depth. The olivine and clinopyroxene in both cumulate and compositexenoliths show the largest and the most complete variation trendsfor Ni, Cr, and FeO/MgO ratio yet reported in igneous xenolithsfrom island arc volcanic rocks. Variation of Ni in olivine indicatesthat the parent magmas for the xenoliths had minimum MgO contentsof 9 wt. per cent. Variation of Cr in clinopyroxene indicatesthat the magmas were basaltic rather than picritic, probablyin equilibrium with spinel lherzolite at near Moho depths. Successiveinjections of batches of primary melt into a magma chamber fractionatingolivine and clinopyroxene can reproduce observed compatibleelement depletion trends. A steady-state process of cotecticcrystallization in a magma chamber continually replenished withbasaltic magma is a possible mechanism for producing large accumulationsof olivine and clinopyroxene, suggesting that Alaskan-type ultramaficcomplexes are related to hydrous basaltic magmas in island arcs.This steady-state open-system crystallization process can alsoyield the abundant high-alumina basalt type in the Aleutianarc. Continued crystallization of high-alumina basalt in lowercrustal magma chambers, recorded in a mineralogically coherentseries of pyroxenite to hornblende gabbro xenoliths, can yieldbasaltic to andesitic magmas of the calc-alkaline series. No xenoliths with a sedimentary protolith have been found atMt Moffett, evidence that the arc crust is igneous in origin,with the lower crust formed of gabbro crystallized from mantle-derivedmelts. Ultramafic cumulates may reside in both the lower crustor upper mantle beneath the arc. A model is proposed wherebythe cumulate crystallization products of hydrous, mantle beneaththe arc. A model is define the upper mantle and lower crustof the arc over time.The net composition added to the crustof the arc is that of high-alumina basalt.  相似文献   

7.
Petrographical and geochemical characteristics of calc-alkalineandesites on Shodo-Shima Island, SW Japan, having bulk compositionslargely identical to the continental crust, are presented. Thefollowing petrographic observations suggest a role for magmamixing in producing such andesite magmas: (1) two types of olivinephenocrysts and spinel inclusions, one with compositions identicalto those in high-Mg andesites and the other identical to thosein basalts, are recognized in terms of Ni–Mg and Cr–Al–Fe3+relations, respectively; (2) the presence of orthopyroxene phenocrystswith mg-number >90 suggests the contribution of an orthopyroxene-bearinghigh-Mg andesite magma to production of calc-alkaline andesites;(3) reversely zoned pyroxene phenocrysts may not be in equilibriumwith Mg-rich olivine, suggesting the involvement of a differentiatedandesite magma as an endmember component; (4) the presence ofvery Fe-rich orthopyroxene phenocrysts indicates the associationof an orthopyroxene-bearing rhyolitic magma. Contributions fromthe above at least five endmember magmas to the calc-alkalineandesite genesis can also provide a reasonable explanation ofthe Pb–Sr–Nd isotope compositions of such andesites. KEY WORDS: calc-alkaline andesites; high-Mg andesites; magma mixing; continental crust; SW Japan  相似文献   

8.
The Pliocene–Pleistocene northern Taiwan volcanic zone (NTVZ) is located within a trench-arc–back-arc basin and oblique arc–continent collision zone. Consequently the origin and tectonic setting of the andesitic rocks within the NTVZ and their relation to other circum-Pacific volcanic island-arc systems is uncertain. Rocks collected from the Tatun volcanic group (TTVG) include basaltic to andesitic rocks. The basalt is compositionally similar to within-plate continental tholeiites whereas the basaltic andesite and andesite are calc-alkaline; however, all rocks show a distinct depletion of Nb-Ta in their normalized incompatible element diagrams. The Sr-Nd isotope compositions of the TTVG rocks are very similar and have a relatively restricted range (i.e. ISr = 0.70417–0.70488; εNd(T) = +2.2 to +3.1), suggesting that they are derived directly or indirectly from the same mantle source. The basalts are likely derived by mixing between melts from the asthenosphere and a subduction-modified subcontinental lithospheric mantle (SCLM) source, whereas the basaltic andesites may be derived by partial melting of pyroxenitic lenses within the SCLM and mixing with asthenospheric melts. MELTS modelling using a starting composition equal to the most primitive basaltic andesite, shallow-pressure (i.e. ≤1 kbar), oxidizing conditions (i.e. FMQ +1), and near water saturation will produce compositions similar to the andesites observed in this study. Petrological modelling and the Sr-Nd isotope results indicate that the volcanic rocks from TTVG, including the spatially and temporally associated Kuanyinshan volcanic rocks, are derived from the same mantle source and that the andesites are the product of fractional crystallization of a parental magma similar in composition to the basaltic andesites. Furthermore, our results indicate that, in some cases, calc-alkaline andesites may be generated by crystal fractionation of mafic magmas derived in an extensional back-arc setting rather than a subduction zone setting.  相似文献   

9.
Andesites of the calc-alkaline volcanic series associated with the circum-Pacific orogenic zone commonly contain crystal clots consisting essentially of plagioclase, clinopyroxene, orthopyroxene, and magnetite. It is proposed that these crystal clots represent the breakdown products of an amphibole as it enters the low-pressure environment of the upper crust. The bulk chemical composition of the clots compares favorably to that of the high-Al amphibole, pargasitic hornblende. The crystal clots support the hypothesis of the formation of andesitic magma by fractionation of early formed amphibole from a basaltic magma at total pressures less than 18 kbars and temperatures less than 1000° C. The origin of these clots has previously been attributed to random accumulation of phenocrysts. Some features of clot-bearing andesites from Crater Lake, Oregon, U.S.A., cannot be explained by this mechanism. First, in some andesites, certain minerals occur as phenocrysts but are not constituents of the clots, and conversely, certain minerals occurring as accessories in the clots are rarely found as phenocrysts. Second, the minerals comprising the clots occur in a fixed ratio that is significantly different than the ratio of the same minerals as phenocrysts. Crystal clots may form up to 10% by volume of the andesite, imparting a glomeroporphyritic texture to the rock. Crystal clots can be distinguished from xenoliths of similar mineralogy by the presence in the latter of abundant glass, both as interstitial material and as inclusions in the plagioclase grains, giving the plagioclase a “spongy” appearance.  相似文献   

10.
Calc-alkaline andesites and olivine tholeiitic basalts are widely distributed on Shodo-Shima island, southwest Japan. The Fo content of olivine phenocrysts in the andesite is higher than in the basalt. The primary magma of the andesite, estimated on the basis of the olivine fractional crystallization model, is not basaltic but andesitic. The basalt contains both chromite and titanomagnetite as inclusions in olivine phenocrysts, while only chromite appears in the andesite. The Cr content of chromite in the andesite is higher than in the basalt. These facts again indicate that the andesite cannot be a fractionation product of the basalt, and that andesitic and basaltic primary magmas were generated independently.  相似文献   

11.
西南极菲尔德斯半岛第三纪火山岩的岩石学和岩石化学特征表明,它们基本属于钙碱性火山岩系列,是岛弧火山作用的产物。该岩石组合中,随岩石中SiO_2含量的增加,斜长石斑晶数量减少,微量元素Cr、V丰度降低,Sr、Ba丰度下降,这些揭示了岩浆中斜长石和单斜辉石的分离结晶作用。稀土元素的系统变化也证明了这一点。主元素和微量元素的定量计算所验证了岩浆的分离结晶作用演化过程。  相似文献   

12.
幔源岩石包体研究,是认识上地幔岩石圈物质组成、幔源岩浆演化及壳幔动力学过程的重要手段。铜陵地区小铜官山石英二长闪长岩中发育有微粒闪长质包体,并且这些微粒闪长质包体中不均匀地分布着镁铁质团块,三者的形成过程可视为铜陵地区岩浆演化的缩影,为了解本区深部岩浆作用过程提供了有力的证据。在前人研究的基础上,笔者借助电子探针、扫描电镜、电镜能谱和二次飞行时间离子探针(Tof-SIMS)对产于铜陵地区微粒闪长质包体中的镁铁质团块进行了详细的研究,首次获得了一套精确的矿物化学资料和元素分布图,总结了镁铁质团块的特征,并讨论了本区的深部岩浆作用过程。矿物学研究表明,镁铁质团块中的角闪石和辉石均已发生了不同程度的透闪石化和阳起石化蚀变,蚀变过程中,从镁钙闪石到镁角闪石,再到透闪石,随着Si的增加,角闪石呈现出Mg的富集和Ti、Al贫化的特点。团块中的富Cr磁铁矿、Ti磁铁矿和少量的铝直闪石指示了其具有深源性。Tof-SIMS元素分布图显示,透闪石主要由Al、Si、Ca、Sc、V、Cr、Mn、Cu和Sr元素组成,透辉石主要由Si、Mg、Ca、Cu和Rb组成。在铜陵地区,上地幔部分熔融形成一套玄武岩浆,受岩浆底侵作用影响,玄武岩浆上侵,进入下地壳深位岩浆房,与下地壳硅镁层发生同化混染作用,形成一套轻度演化的中基性(辉长质)玄武岩浆,镁铁质团块就是这类中基性玄武岩浆直接结晶形成的。后受构造作用影响,这类中基性玄武岩浆上侵到中地壳岩浆房(12~16 km),与中地壳的变质岩系发生同化混染和结晶分异作用形成一套中性闪长质岩浆,微粒闪长质包体就是这套闪长质岩浆发生结晶分异作用而形成的。镁铁质团块和微粒闪长质包体清楚地解释了铜陵地区深部岩浆作用过程,并有力地证明了铜陵地区中地壳的闪长质岩浆来源于下地壳的壳幔混源岩浆。  相似文献   

13.
Three linear zones of active andesite volcanism are present in the Andes — a northern zone (5°N–2°S) in Colombia and Ecuador, a central zone (16°S–28°S) largely in south Peru and north Chile and a southern zone (33°S–52°S) largely in south Chile. The northern zone is characterized by basaltic andesites, the central zone by andesite—dacite lavas and ignimbrites and the southern zone by high-alumina basalts, basaltic andesites and andesites. Shoshonites and volcanic rocks of the alkali basalt—trachyte association occur at scattered localities east of the active volcanic chain,The northern and central volcanic zones are 140 km above an eastward-dipping Benioff zone, while the southern zone lies only 90 km above a Benioff zone. Continental crust is ca. 70 km in thickness below the central zone, but is 30–45 km thick below northern and southern volcanic zones. The correlation between volcanic products and their structural setting is supported by trace element and isotope data. The central zone andesite lavas have higher Si, K, Rb, Sr and Ba, and higher initial Sr isotope ratios than the northern or southern zone lavas. The southern zone high-alumina basalts have lower Ce/Yb ratios than volcanics from the other zones. In addition, the central zone andesite lavas show a well-defined eastward increase in K, Rb and Ba and a decrease in Sr.Andean andesite magmas are a result of a complex interplay of partial melting, fractional crystallization and “contamination” processes at mantle depths, and contamination and fractional crystallization in the crust. Variations in andesite composition across the central Andean chain reflect a diminishing degree of partial melting or an increase in fractional crystallization or an increase in “contamination” passing eastwards. Variations along the Andean chain indicate a significant crustal contribution for andesites in the central zone, and indicate that the high-alumina basalts and basaltic andesites of the southern zone are from a shallower mantle source region than other volcanic rocks. The dacite-rhyolite ignimbrites of the central zone share a common source with the andesites and might result from fractional crystallization of andesite magma during uprise through thick continental crust. The occurrence of shoshonites and alkali basalts eat of the active volcanic chain is attributed to partial melting of mantle peridotite distant from the subduction zone.  相似文献   

14.
The Aoso volcano is a member of the newly defined volcanic front of Northeast Japan, characterized by the occurrence of low-K and hornblende andesites. Its activity can be divided into three stages: the early, caldera-forming, and late stages. While petrographic and geochemical data show all products underwent magma mixing or co-mingling, Sr and Nd isotopic ratios indicate that all are consanguineous. The end-member magmas are basaltic and andesitic in the early stage, but basaltic and dacitic in the late stage. In the caldera-forming stage, hornblende-free and hornblende-rich andesites co-mingled, which triggered an explosive eruption leading to caldera formation. Hornblende occurs also in the dacite from the early part of the late stage. These hornblende andesites and dacites are lower in magmatic temperature compared to hornblende-free andesites. The estimated basaltic end-member is low-K and high in magmatic temperature, and can be derived by a high degree of partial melting of mantle under the volcanic front. The estimated andesitic and dacitic end-members cannot be derived from the basaltic end-member magma through fractional crystallization, but can be derived from partial re-melting of the solidified low-K basalt, leaving amphibolitic and gabbroic residues, respectively.  相似文献   

15.
The Soufrière Hills volcano on Montserrat has for the past 12 years been erupting andesite with basaltic to basaltic–andesite inclusions. The andesite contains a wide variety of phenocryst textures and strongly zoned microlites. Analysis of minor elements in both phenocrysts and microlites allows us to put detailed constraints on their origins. Compositions of clinopyroxene, from overgrowth rims on quartz and orthopyroxene and coarse-grained breakdown rims on hornblende, are identical to those from the mafic inclusions, indicating that these rims form during interaction with mafic magma. In contrast, resorbed quartz and reversely zoned orthopyroxenes form during heating. Microlites of plagioclase and orthopyroxene are chemically distinct from the phenocrysts, being enriched in Fe and Mg, and Al and Ca respectively. However, microlites of plagioclase, orthopyroxene and clinopyroxene are indistinguishable from the compositions of these phases in the mafic inclusions. We infer that the inclusions disaggregated under conditions of high shear stress during ascent in the conduit, transferring mafic material into the andesite groundmass. The mafic component of the system is therefore greater than previously thought. The presence of mafic-derived microlites in the andesite groundmass also means that care must be taken when using this as a starting material for phase equilibrium experiments.  相似文献   

16.
Abstract. This study presents the petrographical, mineralogical, and geochemical characteristics of Late Pliocene‐Pleistocene volcanic rocks distributed in the Hishikari gold mining area of southern Kyushu, Japan, and discusses their origin and evolution. The Hishikari volcanic rocks (HVR), on the basis of age and chemical compositions, are divided into the Kurosonsan (2.4–1.0 Ma) and Shishimano (1.7–0.5 Ma) Groups, which occur in the northern and southern part of the area, respectively. Each group is composed of three andesites and one rhyodacite. HVR are characterized by high concentrations of incompatible elements compared with other volcanic rocks in southern Kyushu, and have low Sr/Nd and high Th/U, Th/Pb, and U/Pb ratios compared with typical subduction‐related arc volcanic rocks. Modal and whole‐rock compositions of the HVR change systematically with the age of the rocks. Mafic mineral and augite/hypersthene ratios of the andesites decrease with decreasing age in the Kurosonsan Group, whereas in the Shishimano Group, these ratios are higher in the youngest andesite. Similarly, major and trace element compositions of the younger andesites in the former group are enriched in felsic components, whereas in the latter group the youngest andesite is more mafic than older andesites. Moreover, the crystallization temperature of phenocryst minerals decreases with younger age in the former group, whereas the opposite trend is seen in the latter group. Another significant feature is that rhyodacite in the Shishimano Group is enriched in felsic minerals and incompatible elements, and exhibits higher crystallization temperatures of phenocryst minerals than the rhyodacite of the Kurosonsan Group. Geochemical attributes of the HVR and other volcanic rocks in southern Kyushu indicate that a lower subcontinental crust, characterized by so‐called EMI‐type Sr‐Nd and DUPAL anomaly‐like Pb isotopic compositions, is distributed beneath the upper to middle crust of the Shimanto Supergroup. The HVR would be more enriched in felsic materials derived from the lower crust by high‐alumina basaltic magma from the mantle than volcanic rocks in other areas of southern Kyushu. The Kurosonsan Group advanced the degree of the lower crust contribution with decreasing age from 51 %, through 61 and 66 % to 77 %. In the Shishimano Group, the younger rhyodacite and andesite are derived from hotter magmas with smaller amounts of lower crust component (58 and 57 %) than the older two andesites (65 % and 68 %). We suggest that the Shishimano rhyodacite, which is considered to be responsible for gold mineralization, was formed by large degree of fractional crystallization of hot basaltic andesite magma with less lower crustal component.  相似文献   

17.
Four magma series are distinguished in the northeastern TroodosExtrusive Series: (A) a Lower Low-Ti Series (Lo-LTS) of basalticandesites, (B) a High-Ti Series (HTS) of basaltic andesitesto rhyodacites, (C) a Low-Ti Series(DLTS), the last two beingof basaltic andesite. Trace-element characteristics vary systematicallyfrom Series A to D and are interpreted in terms of a variablecontribution of three major source components (SCs). LILE-enrichedwater-rich fluids (SCI) derived from dehydration of a subductedlithosphere slab were continuously added to the overlying mantlewedge. Increasing LILE/HFSE and LILE/REE ratios and decreasingabsolute HFSE and REE concentrations from Series A to Dindicateprogressive depletion of the actual mantle source (SCII). Anegative Ta anomaly in the lavas decreases from Series A toD and is interpreted to have resulted from partial melting ofthe lower crust (SCII) where Ta-Nb-Ti may be fractionated byTi-rich accessory phases. The contribution of SCIII decreaseswhen the eruptive sites successively move away from the centralaxial zone and the temperature of the lower crust decreases,preventing partial melting of the lower crust. Chemical compositionsof fresh glass separates and phenocrysts indicate a change ofmajor petrogenetic processes from series A to D. Lo-LTS andIITS lavas are intrepreted to be directly related by open-systemfractional crystallization in crustal magma chambers. Removalof observed phenocryst phases clinopyroxene, orthopyroxene,plagioclase, and magnetite, and repeated subsequent mixing ofdacitc to rhyodacitic magmas with batches of replenshing basalticandesites are the major processes, possibly induced by vesicleformation in the mafic layer after a period of some crystallization.LTS and DLTS magmas were directly fed to the surface withoutstagnating at crustal levels, with feeder dykes positioned marginalto the central rift zone and thus by-passing the central magmachambers. These magmas apparently experienced only limited fractionalcrystallization of 10–15 wt.% olivine+clinopyroxene+chromite,probably at the mantle-crust boundary.  相似文献   

18.
Lavas from Medicine Lake volcano, Northern California have been examined for evidence of magma mixing. Mixing of magmas has produced basaltic andesite, andesite, dacite and rhyolite lavas at the volcano. We are able to identify the compositional characteristics of the components that were mixed and to estimate the time lag between the mixing event and eruption of the mixed magma. Compositional data from pairs of phenocrysts identify a high alumina basalt (HAB) and a silicic rhyolite as endmembers of mixing. Mg-rich olivine or augite and Ca-rich plagioclase are associated with the HAB component, and Fe-rich orthopyroxene and Na-rich plagioclase are associated with the rhyolitic component. Some lavas contain multiple phenocryst assemblages suggesting the incorporation of several magmas intermediate between the HAB and silicic components. Glass inclusions trapped in Mg-rich olivine and Na-rich plagioclase are similar in composition to the proposed HAB and rhyolite end members and provide supportive evidence for mixing. Textural criteria are also consistent with magma mixing. Thermal curvature of the liquidus surfaces in the basalt-andesite-rhyolite system allows magmas produced by mixing to be either supercooled or superheated. Intergranular textures of basaltic andesites and andesites result from cooling initiated below the liquidus. The trachytic textures of silicic andesites form from cooling initiated above the liquidus. Reversed compositional zoning profiles in olivine crystals were produced by the mixing event, and the homogenization of the compositional zoning has been used to estimate the time interval between magma mixing and eruption. Time estimates are on the order of 80 to 90 h, suggesting that the mixing event triggered eruption.  相似文献   

19.
Trace element systematics throughout the cal-calkaline high alumina basalt — basaltic andesite — andesite — dacite — rhyodacite lavas and dyke rocks of the Main Volcanic Series of Santorini volcano, Greece are consistent with the crystal fractionation of observed phenocryst phases from a parental basaltic magma as the dominant mechanism involved in generating the range of magmatic compositions. Marked inflection points in several variation trends correspond to changes in phenocryst mineralogy and divide the Main Series into two distinct crystallisation intervals — an early basalt to andesite stage characterised by calcic plagioclase+augite+olivine separation and a later andesite to rhyodacite stage generated by plagioclase augite+hypersthene+magnetite+apatite crystallisation. Percent solidification values derived from ratios of highly incompatible trace elements agree with previous values derived from major element data using addition-subtraction diagrams and indicate that basaltic andesites represent 47–69%; andesites 70–76%; dacites ca. 80% and rhyodacite ca. 84% crystallisation of the initial basalt magma. Least squares major element mixing calculations also confirm that crystal fractionation of the least fractionated basalts could generate derivative Main Series lavas, though the details of the least squares solutions differ significantly from those derived from highly incompatible element and addition-subtraction techniques. Main Series basalts may result from partial melting of the mantle asthenosphere wedge followed by limited olivine+pyroxene+Cr-spinel crystallisation on ascent through the sub-Aegean mantle and may fractionate to more evolved compositions at pressures close to the base of the Aegean crust. Residual andesitic to rhyodacite magmas may stagnate within the upper regions of the sialic Aegean crust and form relatively high level magma chambers beneath the southern volcanic centres of Santorini. The eruption of large volumes of basic lavas and silicic pyroclastics from Santorini may have a volcanological rather than petrological explanation.  相似文献   

20.
Camiguin is a small volcanic island located 12 km north of Mindanao Island in southern Philippines. The island consists of four volcanic centers which have erupted basaltic to rhyolitic calcalkaline lavas during the last ∼400 ka. Major element, trace element and Sr, Nd and Pb isotopic data indicate that the volcanic centers have produced a single lava series from a common mantle source. Modeling results indicate that Camiguin lavas were produced by periodic injection of a parental magma into shallow magma chambers allowing assimilation and fractional crystallization (AFC) processes to take place. The chemical and isotopic composition of Camiguin lavas bears strong resemblance to the majority of lavas from the central Mindanao volcanic field confirming that Camiguin is an extension of the tectonically complex Central Mindanao Arc (CMA). The most likely source of Camiguin and most CMA magmas is the mantle wedge metasomatized by fluids dehydrated from a subducted slab. Some Camiguin high-silica lavas are similar to high-silica lavas from Mindanao, which have been identified as “adakites” derived from direct melting of a subducted basaltic crust. More detailed comparison of Camiguin and Mindanao adakites with silicic slab-derived melts and magnesian andesites from the western Aleutians, southernmost Chile and Batan Island in northern Philippines indicates that the Mindanao adakites are not pure slab melts. Rather, the CMA adakites are similar to Camiguin high-silica lavas which are products of an AFC process and have negligible connection to melting of subducted basaltic crust. Received: 27 February 1998 / Accepted: 27 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号