首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
致密砂岩气藏储层流动单元划分方法及随机模拟   总被引:3,自引:0,他引:3  
针对致密砂岩气藏开发中所面临的难题,以及流动单元划分中存在的问题,提出了一套致密砂岩储层流动单元划分新方法。根据流动单元的定义及其地质意义,在取心井定性和定量分析的基础上,确定了孔隙度、渗透率、流动层指数和Winland r35 四个参数作为流动单元划分的指标。应用储层层次分析的研究思路,结合致密砂岩气藏的工业气流标准,识别了渗流屏障,并通过聚类分析、判别分析等统计学方法建立了连同体内部流动单元的定量识别模式,实现了流动单元由取心井到非取心井的定量识别,最后利用序贯指示模拟方法建立了流动单元的三维地质模型。进一步研究表明,应用储层流动单元方法不仅精细地刻画了河流相储层的空间非均质性,而且不同的流动单元对应着不同的开发效果。其中,A类流动单元开发效果最好,B类流动单元开发效果次之,是挖潜的主要目标,C类流动单元开发效果最差。  相似文献   

2.
解伟  马广明  孙卫 《现代地质》2008,22(1):81-85
对吐哈盆地丘东凝析气藏中侏罗统储层的流动单元的划分方法和参数选取进行探讨。针对丘东凝析低渗透气藏的储层和流体特点,纵向上对研究区中侏罗统地层进行小层精细划分,平面上应用SPSS统计分析软件对厚度、孔隙度、泥质含量、流动带指数等4个参数进行聚类分析和判别分析,将研究区中侏罗统储层砂体划分为4类流动单元。结果表明各流动单元的类型与储层物性、沉积微相具有很好的对应关系,能够客观地反映气藏储层的地质特征。虽然丘东凝析低渗透气藏中流动单元的划分和油藏中流动单元的划分没有太大差别,但是参数的选取却与油藏中的存在着明显的不同。  相似文献   

3.
松辽盆地营城组火山岩储层流动单元特征和控制因素   总被引:1,自引:0,他引:1  
根据孔隙度、渗透率、储层品质指数(RQI)、流动层带指数(FZI)4个参数对XS1井区白垩系营城组火山岩的388个样品进行聚类分析,通过对聚类结果与各井产气情况的对比将储层流动单元划分为4类,所占比例依次为39.2%(Ⅲ类)、33.2%(Ⅱ类)、25.0%(Ⅰ类)、2.6%(Ⅳ类)。Ⅰ类储层流动单元多为高孔高渗、高孔中渗和中孔高渗储层,厚度范围为10~20m;Ⅱ类储层流动单元多为中孔高渗、高孔中渗和低孔高渗储层,厚度范围为10~47m;Ⅲ类储层流动单元多为中孔高渗、中孔低渗和低孔中渗储层,厚度范围为11~86m;Ⅳ类储层流动单元为低孔低渗和特低孔特低渗储层,厚度小于10m。火山岩储层流动单元发育和分布受火山机构相带和火山岩亚相的控制,表现为火山口-近火山口相带成为Ⅰ、Ⅱ类储层流动单元的机率最大,近源相带成为Ⅱ、Ⅲ类储层流动单元的机率最大,远源相带成为Ⅲ类和Ⅳ类储层流动单元的机率最大。原生气孔发育的上部亚相和粒间孔发育的热碎屑流亚相形成Ⅰ类储层流动单元的机率最大,原生孔隙不发育的空落亚相和下部亚相形成Ⅲ类储层流动单元的机率大。实现了火山岩储层流动单元的单井识别,为其三维模型的建立提供依据。  相似文献   

4.
为了建立宝浪油田粗粒低渗储层的精确渗透率解释模型,从储层物性的影响因素分析入手,确定影响此类储层物性的关键属性参数.从表征岩石结构参数的流动带指数的角度建立了孔隙度和渗透率的关系模型,逐步建立以测井数据为基础的流动单元的判别函数.在流动单元判别的基础上,根据孔隙度和渗透率的关系模型进行了从测井数据到渗透率参数的计算.宝浪油田三工河组储层Ⅲ油组划分出5类流动单元类型,在流动单元控制下解释的储层渗透率值,经实际应用能够满足储层精细描述的要求.  相似文献   

5.
陈晓宏  任战利 《云南地质》2011,30(2):234-237
利用孔隙度和渗透率参数,将陕西定边张韩区块油藏储层分为4类流动单元.分析各流动单元的物性特征,阐明不同级别流动单元分布特点及其与沉积微相的关系,获得各类流动单元物性特征参数.  相似文献   

6.
利用灰关联聚类法划分并预测流动单元   总被引:6,自引:0,他引:6  
桂峰  马正 《现代地质》1999,13(3):339-344
流动单元是在侧向和垂向上连续的具有相同的影响流体流动特征参数的储层单元。流动单元的确定可以为储层非均质性研究提供更准确的分层。作者利用岩心和测井资料, 选用了可以反映宏观与微观、沉积和成岩特征的8 个参数: 岩性、岩石相、泥质含量、胶结指数、粒度中值、渗透率、孔隙度和参数流动层指示器FZI, 采用灰关联聚类法在大港油田官80 断块预测了未取心井的流动单元类型  相似文献   

7.
流动单元是油气储集最小宏观地质单元,它综合反映储层岩性、物性及微观孔喉特征.在分析流动单元定义基础上,针对克拉玛依油田七区八道湾组油藏特征,渗透率、孔隙度、含油饱和度变化规律,采用模糊聚类分析方法,对七区八道湾组储层进行流动单元分类与评价,解决了储层评价难题.工区发育4类流动单元.对各流动单元进行平面研究.绘制工区流动单元分类平面展布图.研究表明,Ⅰ类流动单元物性和储集能力最好,Ⅳ类储集性能最差.  相似文献   

8.
针对丘陵油田三间房组油藏的特点,选取能反映储层物性、沉积特征及流体性质的主要参数(如孔隙度、渗透率、砂体厚度和含油饱和度)对流动单元进行了划分。以研究区7口取心井分析化验资料为基础,分析了不同流动单元的储层特征,同时结合油田生产动态资料对流动单元划分的合理性进行了验证。研究结果表明:①研究区流动单元可以分为E、G、M、P 4类,不同流动单元所处相带位置不同,物性和含油性依次变差;②不同流动单元的岩性、黏土含量、填隙物的相对含量、孔隙类型及连通情况等储层特征不同;③不同流动单元的生产动态特征存在明显差异,M类流动单元目前动用程度较低,剩余油富集。因此,要加强M类流动单元的改造措施,从而改善油田整体的注水开发效果。  相似文献   

9.
根据伊拉克中部A油田主力开发层上白垩统Khasib组碳酸盐岩油藏当前注水开发现状及需要对其进行流动单元的研究,针对该储层岩石及孔隙类型多样,孔喉结构及孔渗关系复杂特征,运用岩心、薄片、扫描电镜、物性分析和压汞资料,在岩相、沉积相、物性及孔喉结构研究基础上,运用微观孔隙结构法对流动单元进行了划分。对多级喉道半径与渗透率关系的分析表明,对本区储层渗透率表征最为敏感的为拐点喉道半径而非传统R35参数。采用该参数并结合岩相、物性、孔隙结构划分出Ⅰ~Ⅲ类流动单元:Ⅰ类流动单元岩相主要为砂屑颗粒灰岩,粒间孔、溶孔配合孔隙缩小型喉道对储层渗流起主要作用,拐点喉道半径大于0.8μm,渗流能力好,孔隙度为22%,渗透率为180×10~(-3)μm~2,发育在高能砂屑滩中;钻遇该类流动单元井初期产量高,但注水开发中易形成早期注水突破,应采取温和注水开采。Ⅱ类流动单元岩相主要为砂屑泥粒灰岩和绿藻泥粒灰岩,砂屑泥粒灰岩以粒间孔配合缩颈喉道,绿藻泥粒灰岩以绿藻铸模孔、溶孔配合网络状、孔隙缩小型喉道对储层渗流起主要作用,但主渗流孔喉组合所占比例较Ⅰ类流动单元小,拐点喉道半径介于0.35~0.8μm之间,渗流能力较好,非均质性强,孔隙度为25%,渗透率为10×10~(-3)μm~2,发育在中-高能的砂屑滩和中-低能的藻屑滩中;该类流动单元井初期产量较高,非均质性强导致剩余油分布差异大,是进一步开采和挖潜的主要区域。Ⅲ类流动单元岩相为抱球虫粒泥灰岩,体腔孔、微孔配合管束状喉道对渗流起主要作用,拐点喉道半径小于0.35μm,渗流能力差,孔隙度平均值仍高达24%,但渗透率平均值仅为1.5×10~(-3)μm~2,发育在较低能的缓斜坡中,含油饱和度低,储量低,较难开采。  相似文献   

10.
松辽盆地徐家围子断陷深层火山岩储层具有埋藏深、 温度高、 压力大、 物性差、 非均质性强的特征。为了预测火山岩储层类型和质量在平面上的变化规律,本文讨论了影响火山岩储层物性的主要地质因素。结果表明,火山岩的物性主要受火山岩相(组)和所处对应碎屑岩成岩阶段的影响。距火山口越远的火山岩相组的火山岩储层,其孔隙度和渗透率越低。火山岩工业气层主要分布在晚成岩阶段A期以前的火山岩储层中。在晚成岩阶段B期,只有少量低产气层。本文充分考虑徐家围子断陷火山岩相和成岩作用对火山岩储层物性的影响与控制,应用成岩模拟软件,预测了成岩阶段的横向展布,通过叠合营三段火山岩相图和成岩阶段预测图,预测了火山岩储层的类型和质量,目前已发现工业气流的井主要分布在断陷中部的Ⅱ、 Ⅲ类火山岩储层中。  相似文献   

11.
以青海涩北一号气田为例,探讨了气藏储层流动单元研究方法。通过对各种储层参数分析,选择了自然电位相对幅度(ΔSP)、自然伽马相对幅度(ΔGR)作为流动单元划分参数,将研究目的层段储层划分为5类流动单元。其中Ⅰ、Ⅱ类流动单元储层物性最好,主要发育在高能滩坝相;Ⅲ类流动单元储层物性较好,主要分布中能滩坝相;Ⅳ类流动单元储层物性差,为低能滩坝相;Ⅴ类流动单元为泥岩层,其实质上为渗流屏障。通过综合分析,建立了研究区流动单元的分布模式,并分析了其对流体分布的控制作用。  相似文献   

12.
以黄骅坳陷王官屯油田官104断块为例,探讨辫状河储层流动单元的研究方法。储层流动单元研究包括两个层次,其一为渗流屏障和连通体分析,其二为渗流差异分析。研究区主要微相类型有心滩、辫状河道与河道间。渗流屏障主要为泥岩屏障和成岩胶结屏障。通过渗流差异分析将官104断块枣Ⅲ、枣Ⅱ油组辫状河储层划分为四类流动单元。其中,Ⅰ类流动单元以中高孔、中高渗为主要特征,主要分布于心滩与辫状河道主体部位;Ⅱ类流动单元属中孔、中低渗储层,主要分布于辫状河道;Ⅲ类流动单元以中低孔、低渗透率为主要特征,分布于河道侧缘及河漫滩溢微相;Ⅳ类储层流动单元主要为渗透性极差的非储集层。通过综合分析,建立了工区储层流动单元的分布模型。这一研究对于优化油田开发调整方案具有重要的指导意义。  相似文献   

13.
Reservoir classification is a key link in reservoir evaluation. However, traditional manual means are inefficient,subjective, and classification standards are not uniform. Therefore, taking the Mishrif Formation of the Western Iraq as an example, a new reservoir classification and discrimination method is established by using the K-means clustering method and the Bayesian discrimination method. These methods are applied to non-cored wells to calculate the discrimination accuracy of the reservoir...  相似文献   

14.
路乐河组(E1+2)是柴达木盆地昆北油田切6区主要含油气层系,储层特征(特别是孔隙结构和物性特征)认识不清严重阻碍了油田的开发。综合运用岩心、薄片、扫描电镜、压汞及实验测试等,对该区储层孔隙结构及物性特征进行研究,明确储层物性的控制因素。研究表明:路乐河组储层岩性以砾岩和砂岩为主,岩石类型主要为长石砂岩、长石岩屑砂岩,成分成熟度较低;储层孔隙类型包括原生孔隙、次生孔隙以及裂缝,以原生粒间孔为主,占总孔隙的70.3%;孔隙喉道形状主要为缩小型状和管束状,孔隙直径主要分布于20~40 μm,根据压汞曲线形态将孔隙结构分为4类,以Ⅱ类和Ⅲ类孔隙结构为主;路乐河组储层为特低孔低渗储层,孔渗相关性较好,储层物性受岩性、沉积相和成岩作用等综合控制。储层物性较好的岩性为不等粒砂岩和细砾岩,沉积微相为分流河道和河口坝,压实作用、胶结作用使储层物性变差,而溶蚀和破裂作用较好地改善了储层物性。  相似文献   

15.
鄂尔多斯盆地环西—彭阳南段地区长8段沉积以辫状河三角洲平原为主,其储层品质明显受沉积微相控制。基于岩芯观察、薄片观察、压汞及常规测井等资料分析,将研究区长8段划分为5个小层,并对其辫状河三角洲平原沉积储层特征进行了精细研究。结果表明,研究区主要发育分流河道、越岸、分流间湾三种微相,其中分流河道构成了主要的砂体骨架,呈南西—北东向分布。分流河道砂体物性最好,越岸沉积物性次之,分流间湾物性最差。与之相对应,研究区储层可划分为I、II、III、IV四种类型,其中储层质量最好的I型主要位于河道中部,质量最差的IV型对应分流间湾。试油资料也进一步证实沉积微相控制研究区储层质量的差异,基于沉积微相的平面展布可实现储层平面分布规律预测。研究成果可为后续沉积储层精细评价乃至油气勘探开发综合研究奠定基础。  相似文献   

16.
The composition of chromian spinel in alpine-type peridotites has a large reciprocal range of Cr and Al, with increasing Cr# (Cr/(Cr+Al)) reflecting increasing degrees of partial melting in the mantle. Using spinel compositions, alpine-type peridotites can be divided into three groups. Type I peridotites and associated volcanic rocks contain spinels with Cr#<0.60; Type III peridotites and associated volcanics contain spinels with Cr#>0.60, and Type II peridotites and volcanics are a transitional group and contain spinels spanning the full range of spinel compositions in Type I and Type II peridotites. Spinels in abyssal peridotites lie entirely within the Type I spinel field, making ophiolites with Type I alpine-type peridotites the most likely candidates for sections of ocean lithosphere formed at a midocean ridge. The only modern analogs for Type III peridotites and associated volcanic rocks are found in arc-related volcanic and intrusive rocks, continental intrusive assemblages, and oceanic plateau basalts. We infer a sub-volcanic arc petrogenesis for most Type III alpine-type peridotites. Type II alpine-type peridotites apparently reflect composite origins, such as the formation of an island-arc on ocean crust, resulting in large variations in the degree and provenance of melting over relatively short distances. The essential difference between Type I and Type III peridotites appears to be the presence or absence of diopside in the residue at the end of melting.Based on an examination of co-existing rock and spinel compositions in lavas, it appears that spinel is a sensitive indicator of melt composition and pressure of crystallization. The close similarity of spinel composition fields in genetically related basalts, dunites and peridotites at localities in the oceans and in ophiolite complexes indicates that its composition reflects the degree of melting in the mantle source region. Accordingly, we infer from the restricted range of spinel compositions in abyssal basalts that the degree of mantle melting beneath mid-ocean ridges is generally limited to that found in Type I alpine-type peridotites. It is apparent, therefore, that the phase boundary OL-EN-DI-SP +meltOL-EN-SP+melt has limited the degree of melting of the mantle beneath mid-ocean ridges. This was clearly not the case for many alpine-type peridotites, implying very different melting conditions in the mantle, probably involving the presence of water.  相似文献   

17.
Detailed petrographic analyses along a depositional transect from a carbonate platform to shale basin reveals that dolomite is the principal burial diagenctic mineral in the Maryville Limestone. This study examines the role of burial dolomitization of subtidal carbonates. Dolomite occurs as a replacement of precursor carbonate and as inter- and intraparticle cements. Four different types of dolomite are identified based on detailed petrographic and gcochemical analyses. Type I dolomite occurs as small, irregular disseminations typically within mud-rich facies.Type II dolomite typically occurs as inclusions of planar euhedral rhombs (ferroan), 5–300 μm in size, in blocky clear ferroan calcite (meteoric) spar. Type II dolomite is non-luminescent. Type I and II dolomite formed during shallow to intermediate burial diagenesis. Type III dolomite consists of subhedral to anhedral crystals 10–150 μm in size occurring as thin seams along stylolites and as thick bands a few millimetres in width. This dolomite consists of dominantly non-luminescent rhombs and, less commonly, orange luminescent and zoned rhombs. Type IV dolomite consists of baroque or saddle-shaped, 100–1500 μm crystals, and is non-luminescent. Type IV dolomite formed during the period of maximum burial. Types III and IV dolomite increase in abundance downslope. Type III dolomite contains 1.2–2.6 wt% Fe and a maximum of 1000 ppm Mn. The distribution of these elements displays no distinct vertical or lateral trends. In contrast, Fe and Mn distributions in Type IV dolomite exhibit distinct spatial trends, decreasing from 3.5–4.5 wl% Fe and 0.1–0.3 wt% Mn in the west (slope/basin) to 1.5–2.5 wt% Fe and less than 600 ppm Mn in the east (shelf margin), a distance of approximately 60 km. Spatial trends in Fe and Mn distributions in Type IV saddle dolomite, suggest a west-east fluid flow during late burial diagenesis. Types III and IV dolomite have a mean δ18O value of - 7.8%00 and a mean δ13C value of + 1.1%00 (relative to the PDB standard). Based on a range of assumed basinal water composition of 2.8%00 SMOW, temperatures calculated from δ18O values of Types III and IV dolomite range between 75 and 160°C. 87Sr/86Sr data for Types III and IV dolomite range from 0.7111 to 0.7139. These values are radiogenic when compared to Cambrian marine values and are consistent with the presence of a diagenetic fluid that interacted with siliciclastic sediments. The distribution of Palaeozoic facies in the southern Appalachians indicates a Cambrian shale source for the fluids, whilst burial curves suggest a Middle Ordovician age for burial fluid movement.  相似文献   

18.
The Huai Kham On gold deposit is located in the central part of the Sukhothai Fold Belt, northern Thailand. The Sukhothai Fold Belt represents an accretionary complex formed by subduction and collision between the Indochina and Sibumasu Terranes. There are many small gold deposits in the Sukhothai Fold Belt; however, the styles and formation environments of those gold deposits are not clear. The geology of the Huai Kham On deposit consists of volcanic and volcanosedimentary rocks, limestone, and low‐grade metamorphic rocks of Carboniferous to Triassic age. Gold‐bearing quartz veins are hosted by volcanic and volcanosedimentary rocks. The quartz veins can be divided into four stages. The mineral assemblage of the gold‐bearing quartz veins of Stages I and II comprises quartz, calcite, illite, pyrite, native gold, galena, chalcopyrite, and sphalerite. Quartz veins of Stage III consist of microcrystalline quartz, dolomite, calcite, pyrite, native gold, and chalcopyrite. Veins of Stage IV consist of calcite, dolomite, chlorite, and quartz. Fluid inclusions in quartz veins are classified into liquid‐rich two‐phase (Types IA and IB), carbonic‐aqueous (Type II), and carbonic (Type III) fluid inclusions. The homogenization temperatures of Types IA and II fluid inclusions that are related to the gold‐bearing quartz veins from Stages I to III ranged from 240° to 280°C. The δ18O values of quartz veins of Stages I to III range from +12.9 to +13.4‰, suggesting the presence of a homogeneous hydrothermal solution without temperature variation such as a decrease of temperature during the formation of gold‐bearing quartz veins from Stages I to III in the Huai Kham On gold deposit. Based on the calculated formation temperature of 280°C, the δ18O values of the hydrothermal solution that formed the gold‐bearing quartz veins range from +3.2 to +3.7‰, which falls into the range of metamorphic waters. The gold‐bearing quartz veins of the Huai Kham On deposit are interpreted to be the products of metamorphic water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号