首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
随着经济的快速发展,我国对各种硼产品特别是硼砂和硼酸的需求迅速增加.由于我国硼资源状况的制约,国内硼产品产量增长较慢,越来越依赖于进口.目前我国硼资源对外依存度已达70%左右.2011~2015年,我国所有硼产品实物进口来源中土耳其占70.2%,美国占18.5%.特别是天然硼砂及其精矿和硼酸盐产品,从土耳其的进口占绝大部分,有过分依赖有限的国家供应等问题.针对硼资源存在的问题,国家应该加强硼矿地质工作,增加找矿投入,寻找硼资源后备基地;尽快提高低品位硼矿选矿技术和综合利用技术,提高资源利用率和硼砂等硼产品产量;加强宏观调控,保护国内硼矿开采,加大"走出去"力度,争取在国外形成稳定的供应基地;增加进口渠道,拓展进口供应链,减少潜在的供应中断风险.  相似文献   

2.
青藏高原钠硼解石的物理化学特征   总被引:1,自引:0,他引:1  
夏树屏  陈若愚 《沉积学报》1994,12(1):117-121
本文从西藏扎仓茶卡和青海大小柴旦盐湖现代沉积的硼酸盐矿物中.纯化得到符合理论化学组成的纳硼解石.获得它的红外光谱图,X射线粉末衍射圈和DSC、DTA热分析图,讨论了热行为.给出了它在水中的溶解度和热力学函数。  相似文献   

3.
<正> 0 引言工业硼酸盐矿床主要是钠硼酸盐、钠-钙硼酸盐和钙硼酸盐,如硬硼钙石、硼砂(原硼砂)、钠硼解石、贫水硼砂和板硼钙石。另外还有100多种硼酸盐矿物,但含量较低,其中最常见的有:图硼锶石、斜硼钠钙石、三方硼砂、砷硼镁钙石和水硼锶石。所有硼酸生产国(除前苏联外)的硼酸盐矿床都是表生沉积形成的,包括低—中等水溶性硼酸盐。相反,罕见的内生镁硼酸盐——硼镁石是前苏联的主要硼酸盐资源。表生类型的硼酸盐和硼酸的富集赋存在以下的环境中:(1)火山喷气和热泉;(2)海洋  相似文献   

4.
辽东地区沉积变质硼矿床及硼同位素研究   总被引:2,自引:2,他引:2  
辽东地区元古界硼矿床属于沉积变质硼矿。根据现代盐湖沉积 ,认为硼矿物沉积通常为硼砂 ,然后在区域变质作用过程中 ,硼砂矿物转变为硼镁矿物或硼铁矿等硼酸盐矿物 ,但辽东硼矿床中不同硼矿物的硼同位素有一定差别。电气石富10 B ,δ11B值较低或呈负值 ;而硼镁石与硼镁铁矿类矿物明显富集11B ,δ11B值较高 ,为 +2 3‰~ +17 4‰。根据水岩作用过程中硼同位素分馏特征的研究 ,11B与10 B比较有下列 4个特征 :( 1) 11B属于极不相容元素 ,优先进入水相 ,因此在变质残余矿物相中形成低的δ11B值 ;( 2 )在蚀变和交代变质反应中硅优先替代11B进入矿物晶格 ,因此在硅化交代中可以降低δ11B值 ,而脱硅反应中可以提高δ11B值 ;水化作用中 ,OH-带入11B ,使富水矿物具有较高的δ11B值 ;( 3)热水沉积及热液交代成因电气石均具有较低的δ11B值或者为负值 ;( 4)通过最近的研究表明 ,在热蒸馏过程中 ,硼同位素会发生明显的分馏 ,11B倾向于进入蒸汽相 ,而使残余相或后蒸馏相亏损11B ,形成较低的δ11B值。因此可以认为辽东地区元古界硼矿床属于热水沉积电气石岩在后期区域变质或热变质过程中分解出硼酸气水溶液交代镁碳酸盐形成硼镁石或硼镁铁矿矿物 ,而非蒸发沉积变质矿床。  相似文献   

5.
青海和西藏的某些天然硼酸盐矿物的硼同位素组成   总被引:4,自引:0,他引:4  
硼同位素地球化学的研究越来越受到国内外学者的关注。本文对我国盐湖主要分布地区的青海、西藏的某些富硼盐湖中结晶析出的硼矿物进行了硼同位素分析。所有的硼酸盐矿物都经过了X射线和化学分析的验证。分析结果表明 ,采集的西藏地区的硼酸盐矿物的1 1 B 1 0 B值为 4.0 0 5 1~ 4.0 6 31,δ1 1 B值为 - 11.1‰~ +3.2‰ ;青海地区的硼酸盐矿物的1 1 B 1 0 B值为 3.930 7~ 4.0 42 0 ,δ1 1 B值为 - 2 9.5‰~ - 2 .0‰。这说明这些地区的硼酸盐矿物沉积均属于陆相成因。  相似文献   

6.
盐湖硼、锂、锶、氯同位素地球化学研究进展   总被引:5,自引:1,他引:4  
吕苑苑  郑绵平 《矿床地质》2014,33(5):930-944
盐湖作为盐矿资源的重要载体和富集区,探讨其矿物质来源及富集规律,不仅为盐湖的形成、演化及成盐成矿规律研究奠定了基础,也为盐湖资源评价及合理的开发利用提供了科学依据,具有重要的理论和现实意义。近年来,随着同位素地球化学的发展,同位素在盐湖领域的研究成果也日益丰富,使盐湖研究的深度和广度也得到快速发展。文章简要概述了硼、锂、锶、氯同位素的分馏机理及其在盐湖研究领域的发展历程,重点介绍了国内外取得的主要成果和最新进展,探讨了存在的问题,以促进硼、锂、锶、氯同位素地球化学研究在中国盐湖领域的进一步发展。  相似文献   

7.
雒洋冰  郑绵平 《地质学报》2016,90(8):1900-1907
当雄错盐湖为大型硼矿床。大气降水、地表径流和地下径流以及蚀源区岩石是当雄错盐湖卤水中硼等稀有、稀散元素的三个来源途径。本文通过国标法(GB/T8538-2008)、电感耦合等离子光谱法(ICP-AES)、电感耦合等离子质谱法(ICP-MS)对当雄错硼的这三个来源分别进行元素地球化学研究,发现:1大气降水对当雄错B_2O_3的年估算输入量约为0.05×10~(-3)t~1.5×10~(-3)t,与地表径流和地下径流893t相比可以忽略不计;2河流对当雄错B_2O_3的贡献量最大,其中湖南岸的3条河流B_2O_3的年估算输入量达10个水源的95%,这3条河流的地球化学特征与热泉马尔作相同,B同位素δ~(11)B值也与热泉马尔作相同。说明当雄错地表径流和地下径流中的B_2O_3主要来自热水;3当雄错湖周蚀源区岩石主要为二叠纪,白垩纪岩石与第四纪碳酸盐粘土与钙华。其中二叠纪与白垩纪岩层中B_2O_3的含量较中国东部同类岩石低,不是当雄错B_2O_3的主要来源。第四纪碳酸盐粘土与钙华B_2O_3含量较高,高于世界碳酸盐岩与中国东部富泥碳酸盐岩。碳酸盐粘土稀土元素分布模式与已报道的热水湖相沉积的白云岩相同,都是中稀土富集,Dy的正异常,说明碳酸盐粘土是主要受热水影响。当雄错碳酸盐粘土是热水湖相沉积的一个典型实例。综上可知,热水是当雄错硼的主要来源。这一研究不仅为探索盐湖硼的成因提供重要依据,也为扩大寻找硼酸盐矿床指明方向。  相似文献   

8.
某盐湖卤水中硼存在状态的初步研究   总被引:1,自引:0,他引:1  
黄麒 《地球化学》1974,(2):117-122
硼酸盐在水溶液中存在状态的研究,前人已经傲过较详细的工作,并有专门论述。硼在盐湖卤水中存在状态的测定,尚未见文献记载。本文选用pH法测定了莱盐湖卤水和人工配制卤水中硼酸的酸度曲线和电离常数,从而得出了对该湖卤水中硼存在状态的初步看法。  相似文献   

9.
火山沉积型硼矿床是当今世界上最具工业价值的硼矿类型。浙江一带中生代晚期的火山沉积盆地具有高硼背景质。通过利用石油勘查获取的大量岩心 ,系统地建立该区中生代晚期典型火山沉积盆地纵向地质地球化学剖面 ,从中揭露出一处发育良好的含硒、锂、钾、砷、铯、铷等元素综合硼异常区 ,同时发现了独立的硼钙石类矿物。含高硼异常盆地显示出弱咸化古盐湖的沉积建造特征 ,已具备了形成火山沉积硼矿的条件 ,预示着今后在该地区寻找以硼为主并伴生其它有用元素的矿产 ,具有良好的前景。  相似文献   

10.
硼同位素及其地质应用研究   总被引:25,自引:0,他引:25  
硼的两个稳定同位素(10B 和11B)相对质量差较大,因此,硼同位 素分馏较显著。由于分析测量技术方面的改进和创新, 硼同位素地球化学近年来有了长足 的发展。业已查明,自然界中δ11B值变化为 -37‰~+58‰。其中,较负的 δ11B值见于非海相蒸发硼酸盐矿物和某些电气石,而较正的δ11B值见 于某些盐湖卤水和蒸发海水。现代大洋水的δ11B值十分恒定 (+39,5‰)。原始 地幔的δ11B值估测为-10‰±2‰。陨石的δ11B值很不均一,变化 可达90‰。而月岩的δ11B值变化较小(-6‰~+4‰)。由于硼同位素存在大的 分馏和不同地质体中截然不同的δ11B值,硼同位素地质应用范围十分广泛。目 前,硼同位素在研究星云形成过程和宇宙事件,壳-幔演化和板块俯冲作用过程,判别沉积 环境,研究矿床成因,示踪古海洋和古气候条件,和判断环境污染源区等方面的研究中成效显著。  相似文献   

11.
近年,硼、锂同位素地球化学理论和分馏机理的深入,为盐湖体系硼、锂同位素示踪奠定了基础。基于现有大量研究数据,文章系统归纳盐湖体系硼、锂同位素分馏变化特征,总结盐湖演化过程硼、锂同位素组成的变化规律,建立它们的示踪方法。并以此为基础,对西藏典型富硼、锂盐湖-当雄错开展了硼同位素示踪,解决了当雄错与其物源硼同位素特征不符的难题,提出当雄错湖底蕴含大型硼、锂矿床的新认识,并预测了湖底的硼、锂资源量。根据盐湖体系硼、锂同位素地球化学特征,揭示了溶蚀湖的盐湖资源评价意义,为盐湖体系硼、锂同位素示踪和盐湖资源评价奠定理论基础。此外,借助硼同位素地球化学手段建立的当雄错“围岩-地热水-盐湖”的物源补给模式在西藏和全球具有普遍性。  相似文献   

12.
彭章旷  马云麒  彭齐鸣 《地质学报》2021,95(7):2160-2168
建立温度与硼同位素变化的关系是研究沉积硼酸盐成岩-变质作用中硼同位素地球化学行为的关键,这有助于准确认识硼酸盐δ11 B值所代表的地质意义.本文以自然产出的三方硼砂和钠硼解石为材料,结合热分解特征研究了不同热作用过程中硼同位素变化.200℃下硼酸盐经历结晶水的脱水反应,此过程中三方硼砂和钠硼解石δ11B值分别由6.48±0.14‰降低到5.41±0.27‰和由-13.27±0.11‰降低到-15.93±0.23‰.1‰~3‰的硼同位素变化与自然界观察到的由脱水作用形成的次生硼酸盐比原生硼酸盐δ11 B值低2‰~4‰的现象一致.200~300℃间经历羟基的脱水过程,伴随着1‰~2‰的硼同位素降低,此过程中三方硼砂和钠硼解石δ11 B值分别由5.41±0.27‰降低到3.73±0.26‰和由-15.93±0.23‰降低到-17.11±0.11‰.300~670℃间硼酸盐经历物相转化过程,三方硼砂和钠硼解石δ11B值分别由3.73±0.26‰升高到4.59±0.08‰和-17.11±0.11‰升高到-16.08±0.20‰.此过程1‰的硼同位素升高是由硼-氧骨架结构改变造成的.本实验结果可以指示沉积硼酸盐的形成过程,以及埋藏过程中的硼同位素变化规律.硼酸盐脱水过程中会形成具有更高δ11 B值的流体,其可能显著影响内生硼矿的硼同位素组成,因此讨论硼同位素地质意义不能与海相-非海相环境中的硼同位素组成进行简单对比,需要考虑流体演化过程中的硼同位素变化.  相似文献   

13.
青藏高原盐湖硼酸盐矿物   总被引:10,自引:0,他引:10  
西藏硼砂早就闻名中外。多年来有关单位对青藏高原盐湖进行调查研究的结果表明,本区盐类矿物的种类多、分布广、储量丰富,以硼酸盐尤为突出。现已发现十余种硼酸盐矿物,其中水碳硼石、章氏硼镁石和多水氯硼钙石是首次发现的新矿物。在昆仑山两侧还发现一种新类型盐湖——硫酸镁亚型硼酸盐盐湖,正在沉积各种水合硼酸镁盐。 我们在进行青藏高原盐卤硼酸盐研究中发现了含硼浓缩盐卤加水稀释成盐这一过程。这为水合硼酸镁盐的形成提供了新的实验解释。  相似文献   

14.
柴达木盆地大柴旦硼矿床地质特征及成矿机理   总被引:8,自引:0,他引:8  
大柴旦盐湖因蕴藏固体和液体硼矿资源成为柴达木盆地诸多盐湖中最早被关注和开发的盐湖之一。不仅如此,大柴旦盐湖还沉积有全球少有分布的特色柱硼镁石矿床。此种特色硼矿床的成矿环境和形成机理目前尚未得到应有的关注和研究。本研究基于大柴旦盐湖因开采硼矿而揭露出来的湖中高分辨率的天然沉积剖面DCD-2和DCD03,利用岩性地层学、沉积学、矿物学、地球化学以及AMS 14 C年代学等多指标研究方法,深入探讨了更具特色的湖底柱硼镁石矿层以及其他硼矿层的成矿环境和成矿机理,丰富和完善了盐湖硼矿床成因理论。研究结果显示,大柴旦湖底柱硼镁石矿层(第一硼矿层)形成年代始于BC 1790a左右。湖底柱硼镁石含量为35%,B2O3含量约为3%~16%,属于中低品位硼矿层;而湖滨钠硼解石和水方硼石含量分别为82%和35%,B2O3平均含量约为3%~9%,属于低品位硼矿层。硼矿形成前的较长时期内,大柴旦盐湖是以碎屑沉积为主的非盐湖相沉积环境,此后快速进入硫酸盐型盐湖阶段和湖底柱硼镁石矿层形成阶段。湖底柱硼镁石以及湖滨钠硼解石和水方硼石是在特定水文地球化学条件和湖泊环境下形成,在湖区的不同地带,由于不同的成矿作用和成矿机理形成了不同的硼酸盐矿物或硼矿床。大柴旦盐湖硼酸盐矿床的形成受控于硼自身内在地球化学特性及其外在控制条件,是内外条件耦合的结果。在固体硼酸盐整个形成过程中,盐湖卤水都呈现弱碱性—碱性,这是盐湖硼酸盐沉积形成的先决条件。文章提出了盐湖固体硼酸盐的具体形成机理并确定大柴旦盐湖硼矿床为高山-深盆-浅水成矿模式。  相似文献   

15.
青海可可西里盐湖水化学及硼同位素地球化学特征   总被引:3,自引:0,他引:3  
本文主要依据2009—2010年间的考察对可可西里地区盐湖进行了水化学及硼同位素分布特征研究。结果表明,除前人发现的5个盐湖外,可可西里东部新发现的多秀湖、茶错、布查湖和果木错玛德日4个湖泊也属于盐湖;勒斜武担湖为氯化物型盐湖,其余8个盐湖均为硫酸盐型盐湖;盐湖及周围水体皆富集B、Li元素,形成以盐湖为中心的含量高值区,且B-Li元素对显示出协同消长关系,表明在该地区这两种元素的物质来源、搬运条件及富集环境具有相似性;正热电离质谱法测量结果显示,本区盐湖δ11B值的变化范围在+4.77‰~+12.52‰之间,远低于海水δ11B值,证明这些盐湖均属陆相成因,与前人对青藏高原地区盐湖成因的研究结果相一致;勒斜武担湖和布查盐湖北部均出露有大量泉水,水化学分析和硼同位素分析数据表明,勒斜武担湖和布查盐湖分别与各自周围的泉水具有同源性,认为这些泉水是这两个盐湖的主要物质来源;根据区域地质构造特征和硼同位素地球化学数据,可判断出新青峰喷泉中的硼主要来自于深部火山岩溶滤。  相似文献   

16.
世界上硼矿床主要集中在美国和土耳其,矿床类型以新生代盐湖型及火山热泉型硼砂矿床,硬硼钙石-钠硼解石矿床,钠硼解石、硼砂和板硼钙石矿床为主(Smith,1985;Crowley,1996;1985;Sieke,1991).辽东地区变质热液交代型镁硼酸盐矿床是我国所特有的硼矿成因类型,大石桥地区镁橄榄岩作为硼矿的容矿岩石,在世界上较罕见(肖荣阁等,2003;刘敬党等,2007).  相似文献   

17.
硼同位素在矿床学中的应用研究   总被引:2,自引:0,他引:2       下载免费PDF全文
硼在自然界有两种稳定同位素11B和10B,常采用δ(11B)/10-3来表示不同地质体的同位素组成。由于硼同位素在不同地质体中的分馏作用大,在较大温度范围内岩浆-热液流体中的高活动性和化学性质稳定等方面的优势,使硼同位素在地球科学研究中的作用越来越广泛。控制硼同位素分馏的主要因素是硼源。一般情况下,非海相的硼酸盐矿物和与之相关的电气石的δ(11B)值为负值,而在某些盐湖卤水和与海相环境有关的硼酸盐矿物的δ(11B)值则为正值。目前,硼同位素示踪主要应用于块状硫化物矿床、与花岗岩有关的热液矿床以及盐湖矿床的研究。随着硼同位素分馏机制及其在不同环境地质样品中分布特征的深入研究,硼同位素在解决矿床的成矿物质来源、矿床成因和成矿作用等方面将发挥更大的作用。  相似文献   

18.
硼硅玻璃是目前压水堆应用最多的可燃毒物材料,产品中硼同位素组成的准确测定对燃耗预估及产品质量判定具有重要意义。文章基于直接熔融热电离质谱法,首先探讨了硅元素对硼酸中硼同位素测量结果的影响,结果表明:Si/B质量比小于9时,硅对NIST 951a硼酸标准物质测量结果无显著干扰,采用直接熔融热电离质谱法测定核电用硼硅玻璃中硼同位素比值具有可行性;随后,详细分析了Na/B摩尔比、甘露醇和石墨加入量3个参数对测试结果的影响,得到的最佳参数为Na/B摩尔比9、加入甘露醇及3μL石墨发射剂;最后,采用优化测试参数,对实际硼硅玻璃样品进行了测试,并以NIST 951a硼酸标准物质为外标对测量结果进行分馏校正,结果发现分馏校正后样品的不确定度来源主要是标准物质。研究成果可满足硼硅玻璃的燃耗预估及产品质量的快速判定需要。  相似文献   

19.
天津蓟县硼矿床锰方硼石矿物的硼同位素研究   总被引:4,自引:0,他引:4  
天津蓟县硼矿床是世界上唯一的沉积环境特殊的锰方硼石型硼矿床。矿床呈层状产于震旦系碳酸岩泥灰质岩系中 ,矿石呈鲕粒状或球粒状集合体 ,是成因条件极其特殊的矿床类型。含矿岩系为中元古界高于庄组沉积岩系 ,含矿岩性由下而上依次为含锰白云岩、页岩互层→含锰白云岩、泥硅质岩 ,夹锰方硼石矿层→含锰页岩、白云岩→厚层白云岩→薄层白云岩→厚层白云岩 ,锰方硼石矿体在矿层中呈断续相连的团块状或透镜状分布。硼矿物成分简单 ,只有锰方硼石一种矿物 ,锰方硼石矿体呈透镜状断续成层分布 ,东西延长达 30km。东部矿段以锰方硼石为主 ,向西部渐变为菱锰矿。矿石有块状和斑点状。块状矿石全部由球粒状锰方硼石集合体组成 ,w (B2 O3 ) >2 0 % ,最高可达 4 2 %以上。斑点状矿石中锰方硼石集中呈球粒状集合体分布于泥质白云岩中 ,w (B2 O3 ) <7%。首次研究了该硼矿床锰方硼石的硼同位素组成 ,δ11B值为 +6 7‰~ +14 9‰ ,均为正值 ,并且东部大峪矿段的硼同位素值低于西部柏树沟矿段的硼同位素值 ,表明该硼矿床的成矿元素属于海水来源。由于锰方硼石的微量元素组成难以与蒸发岩比较 ,且富含F、Ba、Sn热液富集的元素和Co、Ni、Cr、Ti基性岩浆岩元素以及与Fe、Mn大洋结核有关的元素组分 ,因此锰方硼石应属于  相似文献   

20.
【研究目的】硼是重要的非金属关键性矿产资源,也是新技术产业重要的工业原材料。中国硼矿资源储量2400万t,位列世界第五,中国既是硼矿生产大国,也是硼矿进口大国,82%的硼矿来自国外。研究硼矿床的成因、分布及其找矿远景,是解决中国硼资源大量依赖进口的有效途径,有利于保障国民经济的持续发展。【研究方法】本文通过搜集公开资料,对硼矿的成因类型、分布及应用等进行了归纳总结。【研究结果】硼矿按成因可划分为火山沉积型、沉积变质型、矽卡岩型、现代盐湖型、地下卤水型、海相蒸发沉积型等六类;主要分布于环太平洋沿岸及地中海沿岸,如土耳其的凯斯特莱克、埃梅特、比加迪奇等矿床,美国的克拉默矿床,玻利维亚的乌尤尼盐湖等,储量占全球储量的90%左右。【结论】其中火山沉积型硼矿床占全球总量的75%左右,品位最低可达25%(B2O3),是全球重要的矿床类型;现代盐湖型硼矿床约占20%,品位8%~30%(B2O3)不等;沉积变质型硼矿床是中国重要的硼工业矿床,矿石品位11%(B2O3)。根...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号