首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
The World Ocean Database 2005 as of May 2009 is used to estimate temperature and sample depth biases of expendable (XBT) and mechanical (MBT) bathythermographs by comparing bathythermograph temperature profiles with more accurate bottle and conductivity/temperature/depth (CTD) data. It is shown that the application of depth corrections estimated earlier from side-by-side XBT/CTD inter-comparisons, without accounting for a pure thermal bias, leads to even larger disagreement with the CTD and bottle reference temperatures. Our calculations give evidence for a depth-variable XBT fall-rate correction with the manufacturer-derived depth being underestimated in the upper 200 m and overestimated below this depth. These results are in agreement with side-by-side inter-comparisons and direct fall-rate estimates. Correcting XBT sample depths by a multiplicative factor which is constant with depth does not allow an effective elimination of the total temperature bias throughout the whole water column. The analysis further suggests a dependence of the fall rate on the water temperature which was reported earlier in the literature. Comparison among different correction schemes implies a significant impact of systematic biases on the estimates of the global ocean heat content anomaly.  相似文献   

2.
陈文景  张林  孙雪海  段嘉希 《海洋科学》2020,44(11):114-122
海洋温度的变化会显著影响水下声传播、生物活动、气象和洋流等现象,温深是反映海洋变化运动规律的基本参数。投弃式温深剖面仪(Expendable Bathythermograph,XBT)、温盐深测量仪(Conductivity Temperature Depth,CTD)、全球海洋实时观测网(Array for Real-time Geostrophic Oceanography,Argo)等是目前进行海水温深测量的主要仪器。其中XBT因其现场测量简便、效率高、硬件成本低等特点,正在被大规模使用。本文主要介绍有关海洋温度测量的背景及演化历史,分析对比了国内外相关仪器设备的发展现状,总结了国产化产品还存在的差距和不足,另外对传感器、结构设计、数据通讯传输、数据后处理、可靠性研究等关键技术和研究热点进行了详细介绍,最后对未来无人平台的技术发展路线给出了思路和见解,开展投弃式温深剖面仪的相关技术研究和产品研制对实现国产化有积极的推动意义。  相似文献   

3.
The fall-rate of the T-5 expendable bathythermograph (XBT) produced by Tsurumi Seiki (TSK) Co., Ltd and that by Sippican Inc., are intercompared by a series of contemporaneous and colocated measurements with conductivity-temperature-depth (CTD) profilers. It is confirmed that the fall-rates of the two manufacturers' T-5 differ by about 5 percent, despite the fact that they had been believed to be identical for many years. The cause of the difference is discussed on the basis of a detailed cross-examination of the two T-5 models. It is found for the first time that the two models are different in several respects. The manufacturer's fall-rate equation is only applicable to the Sippican T-5, for which Boyd and Linzell's (1993) equation seems to be slightly more accurate. Kizu et al.'s (2005) equation gives a clearly less biased depth than the manufacturers' equation for the TSK T-5. It is also found that the fall-rates of both T-5 models are dependent on water temperature, perhaps because of viscosity. The temperature-dependency of the fall-rate of the TSK T-5 is larger than that of the Sippican T-5.  相似文献   

4.
The accuracy of the manufacturer’s fall-rate equation for the T-5 Model of expendable bathythermograph (XBT) has been investigated based on about 300 collocated pairs of XBT-CTD (Conductivity-Temperature-Depth profiler) measurements in various climatological regions. We found that the equation systematically overestimates depth by about 5% for the T-5 produced by Tsurumi Seiki, Co. Ltd. (TSK), but almost no bias is associated with the T-5 produced by Sippican, Inc., in USA. The cause of this difference is not clear, because the two manufacturers’ T-5 probes are reported to have identical shape and weight in water. We propose a new fall-rate equation for the TSK T-5: z(t) = 6.54071t - 0.0018691t 2, where z(t) is depth in meters at time, t, in seconds.  相似文献   

5.
A non-destructive temperature calibration system for expendable bathythermographs (XBT) is described. A transfer standard technique has been used to estimate XBT thermistor probe-to-probe temperature variability. One-point calibration results suggest that a standard deviation of 0.025°C is typical at 10°C. Additional calibration data from nine XBT thermistors suggest that probe-to-probe temperature variability is largest at 0°C (ca. 0.03°C) and decreases uniformly to a minimum at 30°C (ca. 0.01°C).  相似文献   

6.
Comparison experiment between XBT of T-7 probe and CTD was conducted at 15 stations in the sea area centered on 29°N, 135°E in December 1985. There were systematic errors in XBT temperature profiles in comparison with CTD temperature profiles. The main cause of errors was attributed to an error in the free-fall speed of the XBT probes which was provided by the XBT maker. A previous equation for depth correction proposed by Heinmilleret al. (1983) could not give effective correction for our data. A new equation between the probe depth and the elapsed time from landing of the probe on the water was obtained by the method of adjusting temperature gradients of XBT profiles to those of CTD profiles. This equation agreed with the theoretical result given by Seaver and Kuleshov (1982) much better than that of Heinmilleret al. (1983). Systematic errors due to a scatter of values of the reference resistance and variation of B-constant of thermistors used in XBT also seemed to exist. After an adjustment using the temperature difference between XBT and CTD in the mixed layer with depths of about 100 m, the standard deviation of temperature difference between XBT and CTD from the surface to the depth of 750 m was 0.14°C.  相似文献   

7.
国家海洋技术中心根据科研需求研发了抛弃式温度剖面仪(XBT)等一系列抛弃式产品.针对2014年8月份在西太平洋海域投放的XBT和XCTD所获取的温度数据进行对比分析,单剖面结果显示两者相关系数达到了0.95,在温跃层处出现温度差,断面标准差分析结果为200 m以上温跃层处较大而200m以下标准差较小,最大和最小标准差值分别为0.39和0.08.温度断面分析结果显示两者在同样的位置出现等值线的凹凸现象,对大洋水团特殊物理海洋现象描述基本一致.分析温跃层处两者温度存在偏差的原因有3个:不同传感器的不同响应时间引起的误差、深度测量公式的误差以及传感器本身的测量误差影响.国产XBT的数据质量较好,总体上性能能满足对环境复杂海域的快速走航观测,数据质量准确度和可靠性都较好.  相似文献   

8.
New CTD-XBT (T-7 probe) comparison data are analyzed, which provide additional evidence of XBT depth error and support previous results (Hanawa and Yoritaka, 1987; Hanawa and Yoshikawa, 1991). The depth difference between the corrected and uncorrected data is about 26 m at 750 m. In the present study, new data processing procedures by which the depth errors are automatically detected, are developed and adopted. In the new method, first, temperature gradients (TG) of XBT and CTD profiles are calculated. Then, 20 m segment of the XBT-TG profile which should fit to the CTD-TG profile of 20 m segment to be referred to is searched in the XBT-TG profile. Actually, this is achieved by shifting the XBT-TG profile of 20 m segment so as to minimize the area surrounded by both TG profiles. The shifted depth of XBT-TG profile for CTD-TG profile can be regarded as the XBT depth error. This processing is repeated at intervals of 5 m from 10 m to 790 m of CTD-TG profile. The relationship between the scatter of the quadratic depth-time equation coefficients and the depth error is also discussed. It is shown that when the two coefficients have a certain relationship, the depth differences between the plural depth-time equations are small, even if the two coefficients of those equations have apparently very different values.This paper was presented and discussed in the Ad Hoc Meeting of the IGOSS Task Team on Quality Control for Automated System, held in Marion, Massachusetts,U.S.A. in June 3–6, 1991.  相似文献   

9.
本文基于常用的统计方法,通过与WOA09观测的海洋溶解氧浓度数据进行比较,定量地评估了9个CMIP5地球系统模式在历史排放试验中海洋溶解氧气候态特征的模拟能力。在海表,由于地球系统模式均能很好地模拟海表温度(SST),模式模拟的海表溶解氧浓度分布与观测一致,模拟结果无论是全球平均浓度偏差还是均方根误差均接近0,空间相关系数与标准偏差接近1。在海洋中层以及深层这些重要水团所在的区域,各模式的模拟能力则差异较大,尤其在溶解氧低值区(OMZs)所在的500m到1000m,各模式均出现全球平均偏差、均方根误差的极大值以及空间相关系数的极小值。在海洋内部,模式偏差的原因比较复杂。经向翻转环流和颗粒有机碳通量均对模式的偏差有贡献。分析结果表明物理场偏差对溶解氧偏差的贡献较大。一些重要水团,比如北大西洋深水,南极底层水以及北太平洋中层水在极大程度上影响了溶解氧在这些海区的分布。需要指出的是,虽然在海洋内部各模式模拟的溶解氧浓度偏差较大,但是多模式平均结果却能表现出与观测较好的一致性。  相似文献   

10.
In order to evaluate the assimilation results from a global high resolution ocean model, the buoy observations from tropical atmosphere ocean(TAO) during August 2014 to July 2015 are employed. The horizontal resolution of wave-tide-circulation coupled ocean model developed by The First Institute of Oceanography(FIOCOM model) is 0.1°×0.1°, and ensemble adjustment Kalman filter is used to assimilate the sea surface temperature(SST), sea level anomaly(SLA) and Argo temperature/salinity profiles. The simulation results with and without data assimilation are examined. First, the overall statistic errors of model results are analyzed. The scatter diagrams of model simulations versus observations and corresponding error probability density distribution show that the errors of all the observed variables, including the temperature, isotherm depth of 20°C(D20), salinity and two horizontal component of velocity are reduced to some extent with a maximum improvement of 54% after assimilation. Second, time-averaged variables are used to investigate the horizontal and vertical structures of the model results. Owing to the data assimilation, the biases of the time-averaged distribution are reduced more than70% for the temperature and D20 especially in the eastern Pacific. The obvious improvement of D20 which represents the upper mixed layer depth indicates that the structure of the temperature after the data assimilation becomes more close to the reality and the vertical structure of the upper ocean becomes more reasonable. At last,the physical processes of time series are compared with observations. The time evolution processes of all variables after the data assimilation are more consistent with the observations. The temperature bias and RMSE of D20 are reduced by 76% and 56% respectively with the data assimilation. More events during this period are also reproduced after the data assimilation. Under the condition of strong 2014/2016 El Ni?o, the Equatorial Undercurrent(EUC) from the TAO is gradually increased during August to November in 2014, and followed by a decreasing process. Since the improvement of the structure in the upper ocean, these events of the EUC can be clearly found in the assimilation results. In conclusion, the data assimilation in this global high resolution model has successfully reduced the model biases and improved the structures of the upper ocean, and the physical processes in reality can be well produced.  相似文献   

11.
西太平洋暖池变异及其对西太平洋次表层海温场的影响   总被引:9,自引:0,他引:9  
应用热带太平洋上层XBT温度资料,分析研究了西太平洋暖池区(0°~16°N,125°~145°E)上层海洋的变化特征以及与西太平洋次表层海温场之间的关系.研究表明,西太平洋暖池区的垂向温度存在显著的年际变化,尤其在次表层(120~200m)的变化最为明显.西太平洋暖池区的次表层冷暖信号明显早于西太平洋次表层的海温异常.分析发现,西太平洋暖池区的海温异常是导致整个西太平洋次表层海温场变异的关键区,当西太平洋暖池区的次表层冷暖信号加强时,3~4个月后西太平洋海温场出现大范围的冷暖异常.  相似文献   

12.
A 1/8° global version of the Navy Coastal Ocean Model (NCOM) is used for simulation of upper-ocean quantities on interannual time scales. The model spans the global ocean from 80°S to a complete Arctic cap, and includes 19 terrain-following σ- and 21 fixed z-levels. The global NCOM assimilates three-dimensional (3D) temperature and salinity fields produced by the Modular Ocean Data Assimilation System (MODAS) which generates synthetic temperature and salinity profiles based on ocean surface observations. Model-data intercomparisons are performed to measure the effectiveness of NCOM in predicting upper-ocean quantities such as sea surface temperature (SST), sea surface salinity (SSS) and mixed layer depth (MLD). Subsurface temperature and salinity are evaluated as well. An extensive set of buoy observations is used for this validation. Where possible, the model validation is performed between year-long time series obtained from the model and time series from the buoys. The statistical analyses include the calculation of dimensionless skill scores (SS), which are positive if statistical skill is shown and equal to one for perfect SST simulations. Model SST comparisons with year-long SST time series from all 83 buoys give a median SS value of 0.82. Model subsurface temperature comparisons with the year-long subsurface temperature time series from 24 buoys showed that the model is able to predict temperatures down to 500 m reasonably well, with positive SS values ranging from 0.18 to 0.97. Intercomparisons of MLD reveal that the model MLD is usually shallower than the buoy MLD by an average of about 15 m. Annual mean SSS and subsurface salinity biases between the model and buoy values are small. A comparison of SST between NCOM and a satellite-based Pathfinder data set demonstrates that the model has a root-mean-square (RMS) SST difference of 0.61 °C over the global ocean. Spatial variations of kinetic energy fields from NCOM show agree with historical observations. Based on these results, it is concluded that the global NCOM presented in this paper is able to predict upper-ocean quantities with reasonable accuracy for both coastal and open ocean locations.  相似文献   

13.
利用南大洋漂流浮标数据评估AMSR-E SST   总被引:8,自引:4,他引:4  
利用AOML(Atlantic Oceanographical and Meteorological Laboratory)SVP漂流浮标的海表面温度数据,针对30°S以南的南大洋海域,对目前主要使用的微波遥感产品(AMSR-E,Ad-vanced Microwave Scanning Radiometer for the Earth Observing System)反演的SST进行了较为系统的评估。结果表明,AMSR-E SST比浮标数据偏冷,偏差为-0.01℃,标准差为0.70℃。夏季的偏差为0.004℃,标准差为0.64℃;冬季的偏差为-0.06℃,标准差为0.75℃,冬季的偏差和标准差较大。温差ΔT受流速影响,随着流速的增大而减小,且这种趋势在夏季更为显著。具备托伞结构的浮标与总体情况基本一致,而无托伞结构的浮标受流速的影响要大一些。同时,温差ΔT受水汽的影响,随着水汽的增加而减小,且这种影响在冬季更大一些。进一步对4个穿极和绕极浮标的追踪分析表明,温差ΔT受大洋海流系统的影响显著。在海流大的大西洋边界流和南极绕极流中,温差ΔT的不确定性要明显大于总体情况。  相似文献   

14.
Satellite-derived sea surface temperature (SST) is validated based on in-situ data from the East China Sea (ECS) and western North Pacific where most typhoons, which make landfall on the Korean peninsula, are formed and pass. While forecasting typhoons in terms of intensity and track, coupled ocean-typhoon models are significantly influenced by initial ocean condition. Potentially, satellite-derived SST is a very useful dataset to obtain initial ocean field because of its wide spatial coverage and high temporal resolution. In this study, satellite-derived SST from various sources such as Tropical Rainfall Measuring Mission Microwave Imager (TMI), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) and New Generation Sea Surface Temperature for Open Ocean (NGSST-O) datasets from merged SSTs were compared with in-situ observation data using an indirect method which is using near surface temperature for validation of satellite derived SST. In-situ observation data included shipboard measurements such as Expendable Bathythermograph (XBT), and Conductivity, Temperature, Depth (CTD), and Argo buoy data. This study shows that in-situ data can be used for microwave derived SST validation because homogeneous features of seawater prevail at water depths of 2 m to 10 m under favorable wind conditions during the summer season in the East China Sea. As a result of validation, root-mean-square errors (RMSEs) are shown to be 0.55 °C between microwave SST and XBT/CTD data mostly under weak wind conditions, and 0.7 °C between XBT/CTD measurement and NGSST-O data. Microwave SST RMSE of 0.55 °C is a potentially valuable data source for general application. Change of SST before and after typhoon passing may imply strength of ocean mixing due to upwelling and turbulent mixing driven by the typhoon. Based on SST change, ocean mixing, driven by Typhoon Nari, was examined. Satellite-derived SST reveals a significant SST drop around the track immediately following the passing of Typhoon Nari in October, 2007.  相似文献   

15.
The results of simulations performed by the CORE-II scenario using the two Russian OGCMs, INMOM and INMIO, are presented. The models use different coordinate systems in the basic set of primitive equations and different numerical techniques. Both models are used as oceanic components of the INM RAS coupled models. Simulations have shown that reproducing ocean circulation using both models agrees with observations and simulations by other models. In general, the INMOM slightly underestimates the meridional heat transport in the ocean when compared to the INMIO model and climatic estimations. However, the INMIO yields a higher bias in temperature than the INMOM.  相似文献   

16.
The ocean temperature field off the north‐east coast of New Zealand is studied to quantify the annual cycle and reveal the intra‐ and inter‐annual variability. The data used are repeat expendable bathythermograph (XBT) sections between Auckland and either Suva or Honolulu which have been collected quarterly since 1986. These sections give temperature measurements between the surface and 800 m and Auckland and 30°S from 1986 to August 1999. The mean and annual cycle are compared with those from the NOAA World Ocean Atlas (WOA98). The results are similar; however WOA98 lacks the horizontal resolution to fully discern the East Auckland Current and North Cape Eddy, while the XBT analysis lacks the temporal resolution to discern higher frequency intra‐annual signals. The temperature variability in the mixed layer is dominated by the annual cycle, which accounts for 80–90% of the variance. The amplitude of the annual cycle diminishes rapidly with depth, from 2.8°C at the surface, to c. 0.1°C at 180 m. The phase of the annual cycle is retarded with depth, with peak temperatures occurring in February at the surface and in June/July at 180 m. Removing the annual cycle from the time series reveals the more subtle inter‐ and intra‐annual variability. This variability is of the order of 1°C in the upper 50 m, decreasing to 0.3°C at 400–500 m. The surface layer was cold between 1991 and 1994 (c. 0.7°C cooler than average), and 0.7°C warmer than average in 1999. The deeper ocean shows a different signal, being up to 0.3°C cooler in 1990–92, 0.3°C warmer in 1998, and c. 0.2°C warmer than average in 1999. The inter‐annual mixed layer variability is highly correlated with the Southern Oscillation Index and also with inter‐annual terrestrial air temperature and wind measurements from northern New Zealand. In contrast, at higher intra‐annual frequencies, the mixed layer variability is not correlated with air and wind measurements. At these higher frequencies, the air temperature is better correlated with the sea surface temperature (SST) than with the bulk mixed layer temperature.  相似文献   

17.
浪致混合对亚热带冬季海洋混合强度的影响   总被引:1,自引:1,他引:0  
上层海洋在全球气候系统中起着至关重要的作用。对上层海洋层结及混合的模拟偏差一直是海洋和气候数值模式发展中悬而未决的问题。本文首先评估了CMIP5中45个模式对上层海洋层结模拟的偏差,确认了冬季亚热带地区海洋模式垂向混合偏强。随后,基于自然资源部第一海洋研究所地球系统模式(FIO-ESM v1.0),分别开展了1986?2005年期间包含和关闭海浪垂向混合情况下的数值实验,分析浪致混合对亚热带冬季海洋混合强度模拟的影响及机制。发现浪致混合使得气候模式中亚热带海域冬季的海洋层结增强,增强的层结使上层海洋更加稳定。首次揭示了增加浪致混合反而降低了海洋总体的垂向混合率:浪致混合使北半球冬季亚热带海域混合率从无浪实验的227 cm2/s降低到有浪实验的178 cm2/s,降低了21.6%;南半球冬季亚热带海域混合率从无浪实验的189 cm2/s降低到有浪实验的165 cm2/s,降低了12.7%。进一步分析发现,浪致混合主要是通过增加冬季亚热带海域上层海洋的热含量从而强化了海洋的层结,最终改善了气候模式对上层海洋混合的模拟。  相似文献   

18.
台湾岛附近海洋对0908号台风“莫拉克”的响应特征   总被引:1,自引:1,他引:0  
在模拟2009年登陆我国东部沿海的台风"莫拉克"的基础上,利用AVHRR/AMSR和SODA再分析数据和模拟结果,初步评估了GRAPES-ECOM海-气耦合模式(上海台风研究所基于GRAPES-TCM区域台风模式和ECOM海洋模式开发而成)模拟台风期间海洋响应的能力,并分析了台风期间台湾岛周围海域的海温、上升流、中尺度冷涡等的变化特点。分析结果表明,GRAPES-ECOM耦合模式较好地模拟了表层海温对台风的响应,与深水海洋响应比较,揭示了近海对台风响应的一些新特征:(1)在台湾以东海域,台风活动改变了黑潮海域海水的垂直运动,诱导黑潮南部沿岸上升流,而北部先于台风存在的上升流减弱,导致不同水深海温的最大降温位置都出现在路径左侧,与深海偏向路径右侧不同;(2)位于台湾岛东北面的彭佳屿冷涡因其形成与大陆架和黑潮有关,当台风在台湾以东洋面活动时,冷涡位于台风右前方,黑潮表层海水辐合流向大陆架,冷涡中心温度上升,强度减弱,当台风转折北上,冷涡位于台风东南侧,表层海水辐散,加强底层冷水上涌,从而增强了该冷涡的强度;(3)台风不仅加深了台湾海峡的混合层深度,还使得海水的垂直热力结构改变,并使整层海温趋于一致。  相似文献   

19.
Wen-Hui Cheng   《Ocean Engineering》2005,32(3-4):499-512
The purpose of the current study is to introduce a set of mobile underwater positioning systems (MUPS) that will enable non-offshore vessels to execute underwater missions. Besides mobility, the system would also possess the advantage of having to use fewer acoustic instruments than conventional acoustic positioning systems. The method adopted by the system will involve the use of expendable and multi-functional bathythermographs (XBT) to measure the underwater acoustic speed and the depth of water at the same time. Then it must utilize the geometric relations formed by measuring the position of underwater targets at set intervals during navigation. In addition, since sound does not travel in a straight line when underwater, the iteration and convergence method must be used to perform corrections on the transmission speed and positional errors to obtain an accurate coordinate of the underwater target. After simulation testing, the positioning system established by the current study has proven to be fast in converging the error values along with high positioning accuracy of the system. The results of the study indicate that the MUPS built by the research institute can be utilized on a vessel, and will be very helpful in assisting the management of urgent underwater positioning missions.  相似文献   

20.
This study compares two regional eddy resolving ocean reanalysis systems, based on the ensemble Kalman filter (EnKF) and ensemble optimal interpolation (EnOI), focusing on data assimilation aspects. Both systems are configured for the Tasman Sea using the same ocean model with 0.1° resolution and commonly available observations of satellite altimetry, sea surface temperature and subsurface temperature and salinity. The primary goals are to quantify the difference in performance of the EnKF and EnOI and investigate how important this difference might be from an oceanographic perspective. We find that both systems generally constrain mesoscale circulation in the region, with some exceptions for the East Australian Current separation region, the most energetic and chaotic part of the domain. Overall, the EnKF is found to consistently outperform the EnOI, producing on average 9–21% smaller innovations. The EnKF also has better forecast skill relative to the persisted analysis than the EnOI. For SST the EnKF forecast outperforms persisted analysis by about 17%, which indicates that the surface circulation is mainly constrained. The EnKF and EnOI are shown to produce qualitatively different increments of unobserved or sparsely observed variables; however, we find only moderate improvements of the EnKF over EnOI in subsurface temperature fields when compared against withheld XBT observations. We attribute this lack of a major improvement in subsurface reconstruction to the inability of the EnKF to linearly constrain the system due to initialisation shock, model error caused by open boundaries, and possibly insufficient observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号