首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Salt marshes are potentially threatened by sea level rise if sediment supply is unable to balance the rising sea. A rapid sea level rise is one of the pronounced effects of global warming and global sea level is at present rising at an elevated rate of about 3.4 mm y? 1 on average. This increasing rate of sea level rise should make it possible to study the effect of rapidly rising sea level on salt marsh accumulation. However, such an understanding is generally hampered by lack of available data with sufficient precision. Here we present a high-precision dataset based on detailed radiometric measurements of 137Cs in 10 sediment cores retrieved at a natural and unmanaged micro tidal salt marsh. Two distinct 137Cs-peaks were found in all cores, one peak corresponding to the 1963-maximum caused by testing of nuclear weapons in the atmosphere and the other to the Chernobyl accident in 1986. Salt marsh accretion has generally kept pace with sea level rise since 1963 but comparison of the accumulation rates of minerogenic material in the period 1963–1986 and 1986–2003 revealed a slight decrease in accumulation with time in spite of an observed increase in inundation frequency. The observed decrease in sediment deposition is significant and gives reason for concern as it may be the first sign of a sedimentation deficiency which could be threatening this and other salt marshes in the case of a rapidly rising sea level. Our work demonstrates that the assumption of a constant relationship between salt marsh inundation and sediment deposition is not necessarily valid, even for a salt marsh that receives most of its allocthonous sediment from the adjacent sea. The apparent decrease in sediment deposition indicates that the basic assumption of sufficient sediment supply used in contemporary models dealing with salt marsh accretion is most probably not valid in the present case study and it may well be that this is also the case for many other salt marshes, especially if sea level continues to rise rapidly as indicated by some climate change scenarios.  相似文献   

2.
Key aspects of deep-ocean fluid dynamics such as basin-scale (residual) and tidal flow are believed to have changed over glacial/interglacial cycles, with potential relevance for climatic change. To constrain the mechanistic links, magnitudes and temporal succession of events analyses of sedimentary paleo-records are of great importance. Efforts have been underway for some time to reconstruct residual-flow patterns from sedimentary records. Attempts to reconstruct tidal flow characteristics from deep-sea sediment deposits, however, are at a very early stage and first require a better understanding of the reflection of modern tides in sediment dynamics. In this context internal (baroclinic) tides, which are formed by the surface (barotropic) tide interacting with seafloor obstacles, are believed to play a particularly important role. Here we compare two modern deep-sea environments with respect to the effect of tides on sediment dynamics. Both environments are influenced by kilometre-scale topographic features but with vastly different tidal forcing: (1) two sites in the Northeast Atlantic (NEA) being surrounded by, or located downstream of, fields of short seamounts (maximum barotropic tidal current velocities ~5 cm s?1); and (2) a site next to the Anaximenes seamount in the Eastern Mediterranean (EMed) (maximum barotropic tidal current velocities ~0.5 cm s?1). With respect to other key fluid-dynamical parameters both environments are very similar. Signals of sedimentary particle dynamics, as influenced by processes taking place in the bottom boundary layer, were traced by the vertical water-column distribution of radioactive disequilibria (daughter/parent activity ratios≠1) between the naturally occurring, short-lived (half-life: 24.1 d) particulate-matter tracer 234Th relative to its very long-lived and non-particle-reactive parent nuclide 238U. Activity ratios of 234Th/238U<1 in water samples collected near the seafloor indicate fast 234Th scavenging onto particles followed by fast settling of these particles from the sampled parcel of water and, therefore, imply active sediment resuspension and dynamics on time scales of up to several weeks. In the Northeast Atlantic study region tides (in particular internal tides) are very likely to locally push total current velocities near the seafloor across the critical current velocity threshold for sediment erosion or resuspension whereas in the Eastern Mediterranean the tides are much too weak for this to happen. This difference in tidal forcing is reflected in a difference of the frequency of the occurrence of radioactive disequilibria <1 between total 234Th and 238U: In the near-bottom water column of the Northeast Atlantic region 59% of samples had detectable 234Th/238U disequilibria whereas at the Eastern Mediterranean site this fraction was only 7% (including a few disequilibria >1). The results of this study, therefore, add to the evidence suggesting that tides in the deep sea of the open oceans are more important for sediment dynamics than previously thought. It is hypothesised that (a) tide/seamount interactions in the deep open ocean control the local distribution of erosivity proxies (e.g., distributions of sediment grain sizes, heavy minerals and particle-reactive radionuclides) in sedimentary deposits and (b) the aforementioned topographically controlled sedimentary imprints of (internal) tides are useful in the reconstruction of past changes of tidal forcing in the deep sea.  相似文献   

3.
To examine the spatial and temporal variability of sediment grain size in exposed tidal wetlands with ample sediment supply, we sampled sediments and measured hydrodynamics, accretion/erosion rates, and vegetation characteristics in the Yangtze Delta. Sediment grain size exhibited a landward/upward decreasing trend. This trend is mainly attributed to attenuation of hydrodynamics. A 630-day series of daily surface sediment sampling at a fixed site on an unvegetated intertidal flat revealed significant seasonal and storm-cyclic changes in grain size. This temporal variability was related to alternating accretion/erosion events, with erosion associated with coarser grain size. Such temporal dynamics were not present in vegetation, where sediment remained fine grained throughout the year. In the marsh, vegetation cover enables the trapping of fine-grained sediments in the following ways: (a) adherence of suspended sediments onto plants; (b) deposition of suspended sediments stimulated by attenuation of hydrodynamics through plant obstruction; and (c) prevention of resuspension of fine-grained deposits due to the protection of the plant canopy. The influence of vegetation on sediment grain size was clearly seen when comparing sediment trapped by different vegetation types and seasonal patterns of trapped sediment on different vegetation canopy densities. The relatively high plant biomass of the recently introduced Spartina alterniflora enhanced the trapping effect, whereas plant degradation due to buffalo grazing reduced the trapping effect. We conclude that for exposed tidal wetlands with ample sediment supply such as the Yangtze Delta, the spatial and temporal variability of sediment grain size is governed predominantly by physical controls on the unvegetated flat and predominantly by biophysical interaction of hydrodynamics and vegetation in the salt marsh, rather than by sediment supply.  相似文献   

4.
In the Castle Creek study area, a vertically dipping, 2.5 km-thick succession of basin-floor to base-of-slope Neoproterozoic rocks are superbly exposed. In part of that outcrop, inner-bend (point-bar) deposits of sharp-based, laterally accreting sinuous channels are exposed, of which one is described in detail (Isaac Channel unit 2.2—IC2.2). IC2.2 is up to 13 m thick and extends laterally for at least 400 m. Lateral-accretion deposits, or simply lateral accretion deposits (LADs), are inclined at 7–12° toward the channel base and are about 120–140 m long. Grain size changes little obliquely upward along an individual LAD, or vertically upward through the channel-fill. LADs consist of two repeating and interstratified kinds: coarse-grained LADs consisting of strata up to granule conglomerate, and fine-grained LADs composed of thin- to medium-bedded finer-grained turbidites. In the lower part of the channel-fill, strata consist only of amalgamated coarse-grained LADs composed of decimetre-thick beds composed of very coarse sandstone/granule conglomerate that grade upward to medium sandstone. Tractional sedimentary structures are absent and fine-grained strata, specifically mudstone, occur only as isolated patches of intraclast breccia. In the upper part of the channel-fill, however, LADs consist of a rhythmic interfingering of coarse- and fine-grained LADs. Coarse-grained LADs consist of 2–3 bed-thick packages that are separated and then pinch-out rapidly into fine-grained LADs. Close to their up-dip pinch-out these coarse strata consist commonly of poorly sorted, ungraded very coarse sandstone/granule conglomerate overlain abruptly by planar-laminated or medium-scale (dune) cross-stratified, medium-grained sandstone. Fine-grained LADs are composed of mudstone interbedded with thin- and medium-bedded Tbcd and Tcd turbidites that obliquely downward and become truncated as the super- and subjacent coarse-grained LADs amalgamate.The rhythmic intercalation of coarse- and fine-grained LADs is interpreted to be related to temporal changes in the nature of sediment deposition along the point-bar of a deep-marine sinuous channel. Following failure along the cut-bank margin (outer bend), deposition of coarse-grained sediment on the point-bar (inner bend) occurred in order to re-establish an equilibrium channel geometry, and thereby equilibrium sediment transport conditions (i.e. sediment bypass). Once equilibrium was re-established deposition of finer, thinner-bedded strata of the succeeding fine LAD resumed. These strata represent deposition from the dilute tail region of flows that for the most part had already transited that particular channel bend and transported the bulk of its coarse sediment further down-dip. This history of alternating coarse and fine-grained sedimentation was repeated several times in the channel bend as it migrated laterally. Moreover, in coarse LADs, the restricted occurrence of tractional sedimentary structures close to their up-dip pinch-out suggests that although suspension deposition may have dominated over much of the lateral accretion surface, it was succeeded, at least on the upper part of the lateral accretion surface, by sediment reworking and bed-load transport, possibly related to elevated turbulent stresses caused by mixing along the sharp density interface in a strongly stratified turbulent flow.Although seemingly similar to LADs reported from fluvial point-bars, deep-marine LADs of the Windermere exhibit many important differences. Some of these differences are likely related to the differences in the mode of sand (and coarser) sediment transport in deep-marine versus non-marine environments, specifically, suspension versus bed load, respectively. In addition, fundamental differences in the flow structure between subaqueous suspension currents and open-channel flows most probably exert an additional first-order control contributing to these differences.  相似文献   

5.
Boundary currents and internal waves determine cross-slope zonation of erosion and deposition in the Faeroe-Shetland Channel. Currents were measured at 8 and 34–50 m above the bottom at three mooring sites (502, 595 and 708 m depth) for 14 days. The structure of the water column was evaluated from CTD sections, and included nepheloid layers and particulate matter concentrations. Indicators for recent deposition in the sediment (organic carbon, phytopigments, 210Pb) were measured at eight stations across the slope. Strong near-bottom currents at the upper slope sustain down-slope particle transport in a benthic nepheloid layer, which is eroded under the influence of critically reflecting M2 internal tidal waves at 350–550 m, where the major pycnocline meets the sloping bottom. Beam attenuation profiles confirmed the presence of intermediate nepheloid layers intruding into the Channel along the major pycnocline, and elevated concentrations of particulate matter and chlorophyll-a were measured at this depth. Near-bottom currents decreased with depth, thus allowing particle deposition down the slope. Inventories of excess 210Pb activity in the sediment deeper than 600 m were higher than what was expected on the basis of atmospheric input of 210Pb and production in the water column, thus indicating additional lateral inputs. Simple calculations showed that off-slope input of particles from areas shallower than 600 m may be responsible for the enhanced deposition at greater depths.  相似文献   

6.
Investigations of lithogenic and biogenic particle fluxes using long-term sediment traps are still very rare in the northern high latitudes and are restricted to the arctic marginal seas and sub-arctic regions. Here data on the variability of fluxes of lithogenic matter, CaCO3, opal, and organic carbon and biomarker composition from the central Arctic Ocean are presented for a 1-year period. The study was carried out on material obtained from a long-term mooring system equipped with two multi-sampling traps, at 150 and 1550 m depth, and deployed on the southern Lomonosov Ridge close to the Laptev Sea continental margin from September 1995 to August 1996. In addition, data from surface sediments were included in the study. Annual fluxes of lithogenic matter, CaCO3, opal, and particulate organic carbon were 3.9, 0.8, 2.6, and 1.5 g m−2 y−1, respectively, in the shallow trap and 11.3, 0.5, 2.9, and 1.05 g m−2 y−1, respectively, in the deep trap.Both the shallow and the deep trap showed significant variations in vertical flux over the year. Higher values were found from mid-July to the end of October (total mass flux of 75–130 mg m−2 d−1 in the shallow trap and 40–225 mg m−2 d−1 in the deep trap). During all other months, fluxes were fairly low in both traps (most total mass flux values <10 mg m−2 d−1). The interval of increased fluxes can be separated into (1) a mid-July/August maximum caused by increased primary production as documented in high abundances of marine biomarkers and diatoms and (2) a September/October maximum caused by increased influence of Lena River discharge indicated by maximum lithogenic flux and large amounts of terrigenous/fluvial biomarkers in both traps. During September/October, total mass fluxes in the deep trap were significantly higher than in the shallow trap, suggesting a lateral sediment flux at greater depth. The lithogenic flux data also support the importance of sediment input from the Laptev Sea for the sediment accumulation on the Lomonosov Ridge on geological time scales, as indicated in sedimentary records from this region.  相似文献   

7.
王爱军  叶翔  陈坚 《海洋学报》2009,31(6):77-86
通过对"凤凰"台风的现场观测和沉积物样品的分析,结果表明,在台风影响下潮水淹没时间增长,增水达1.1 m;台风期间互花米草盐沼内流速变化较复杂,而且盐沼内部流速大于盐沼边缘的;台风期间盐沼边缘潮周期平均悬沙含量是台风前2 d的7倍;台风期间十分之一波高最大为1.54 m。滩面重复测量结果显示,台风登陆期间整个光滩滩面都发生了侵蚀,盐沼内部有部分地区发生侵蚀,侵蚀深度为4.5~5.5 cm,盐沼边缘的侵蚀深度仅为0.7 cm,侵蚀原因主要是植被在风浪作用下从根部折断,从而带走了滩面的沉积物;随着台风强度的减弱,整个滩面均接受悬沙沉降;台风带来的强降雨是影响滩面沉积物活动的重要因素。  相似文献   

8.
We investigated the impact of sediment reworking fauna and hydrodynamics on mobilization and transport of organic matter and fine particles in marine sediments. Experiments were conducted in an annular flume using lugworms (Arenicola marina) as model organisms. The impact of lugworms on sediment characteristics and particle transport was followed through time in sediments experimentally enriched with fine particles (< 63 μm) and organic matter. Parallel experiments were run at low and high water current velocity (11 and 25 cm s 1) to evaluate the importance of sediment erosion at the sediment–water interface. There was no impact of fauna on sediment composition and particle transport at current velocity below the sediment erosion threshold. At current velocity above the erosion threshold, sediment reworking by lugworms resulted in dramatic particle transport (12 kg dry matter m 2) to an adjacent particle trap within 56 days. The transported matter was enriched 6–8 times in fine particles and organic matter when compared to the initial sediment. This study suggests that sediment reworking fauna is an important controlling factor for the particle composition of marine sediments. A. marina mediated sediment reworking greatly increases the sediment volume exposed to hydrodynamic forcing at the sediment–water interface, and through sediment resuspension control the content of fine particles and organic matter in the entire reworked sediment layer (> 20 cm depth).  相似文献   

9.
Under present-day conditions, rivers are the main source of fine sediments dispersed to the Bay of Biscay. They deliver about 2.5×106 t yr−1 of continental fine sediments, 60% of which is derived from the Gironde estuary. Of this flux, 65% is believed stored on the shelf. Two kinds of mud fields can be found in the Bay of Biscay: coastal mud and shelf mud belts. The total mass of fine sediments stored during the past 2000 years is 3.2×109 t. Consequently, about 0.9×106 t yr−1 could reach the shelf edge and eventually the open sea. From this amount of displaced material and the deposition surface areas, an evaluation of sediment fluxes across the margin during the late Holocene period is discussed. This evaluation is compared with results obtained from ECOsystéme du canyon du cap-FERret (ECOFER) data from sediment traps and surficial box cores.  相似文献   

10.
台风期间 ,潮间带和潮下带岸坡总体上遭受侵蚀 ,而向岸一侧的沼泽和向海一侧的深槽则趋于淤积。台风期间的冲淤强度比正常天气的高 1- 2个数量级。台风期间裸滩的侵蚀机制是风将高能传递给水体使水体挟沙能力剧增 ,沼泽迅速淤积的机制与植被的消能捕沙功能、涨潮水体的高含沙量和明显的增水有关 ,而深槽的骤淤则是由于深水区底层相对较弱的动力条件与浅滩侵蚀所致的高含沙量不相适应。受径流和潮流对泥沙扩散作用的影响 ,台风所致的滩槽冲淤不一定达成平衡  相似文献   

11.
Pools of Zn, Cu, Cd and Co in the leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analysed for a Tagus estuary (Portugal) salt marsh. Pools of Cu and Cd in the salt marsh were higher in spring/summer, indicating a net uptake of these metals during the growing season. Standing stocks of Zn, Cu, Cd and Co in the leaf and stem biomass of S. fruticosa, S. perennis and H. portulacoides showed a strong seasonal variation, with higher values recorded in autumn. The metal-containing leaves and stems that shed in the autumn become metal-containing detritus. The amount of this material washed out from the total marsh area (200 ha) was estimated as 68 kg of Zn, 8.2 kg of Cu, 13 kg of Co and 0.35 kg of Cd. The high tidal amplitude, a branched system of channels and semi-diurnal tidal cycle greatly favour the export of the organic detritus to adjoining marsh areas.  相似文献   

12.
《Marine Geology》2006,225(1-4):23-44
The morphodynamics of inlets and ebb-tidal deltas reflect the interaction between wave and tidal current-driven sediment transport and significantly influence the behaviour of adjacent shorelines. Studies of inlet morphodynamics have tended to focus on sand-dominated coastlines and reference to gravel-dominated or ‘gravel-rich’ inlets is rare. This work characterises and conceptualises the morphodynamics of a meso-tidal sand–gravel inlet at the mouth of the Deben estuary, southeast England. Behaviour of the inlet and ebb-tidal delta over the last 200 yr is analysed with respect to planform configuration and bathymetry. The estuary inlet is historically dynamic, with ebb-tidal shoals exhibiting broadly cyclic behaviour on a 10 to 30 yr timescale. Quantification of inlet parameters for the most recent cycle (1981–2003) indicate an average ebb delta volume of 1 × 106 m3 and inlet cross-sectional area of 775 m2. Bypassing volumes provide a direct indicator of annual longshore sediment transport rate over this most recent cycle of 30–40 × 103 m3 yr 1. Short-term increases in total ebb-tidal delta volume are linked to annual variability in the north to northeasterly wind climate. The sediment bypassing mechanism operating in the Deben inlet is comparable to the ‘ebb delta breaching’ model of FitzGerald [FitzGerald, D.M., 1988. Shoreline erosional–depositional processes associated with tidal inlets, in: Aubrey, D.G., Weishar, L. (Ed.), Hydrodynamics and Sediment Dynamics of Tidal Inlets. Springer-Verlag Inc., New York, pp. 186–225.], although the scales and rates of change exhibited are notably different to sand-dominated systems. A systematic review of empirical models of sand-dominated inlet and ebb-tidal delta morphodynamics (e.g. those of [O'Brien, M.P., 1931. Estuary tidal prisms related to entrance areas. Civil Engineering, 1, 738–739.; Walton, T.L., and Adams, W.D., 1976. Capacity of inlet outer bars to store sand. Proceedings of 15th Coastal Engineering Conference, 1919–1937.; Gaudiano, D.J., Kana, T.W., 2001. Shoal bypassing in mixed energy inlets: geomorphic variables and empirical predictions for nine South Carolina inlets. J. Coast. Res., 17, (2), 280–291.]) shows the Deben system to be significantly smaller yet characterised by a longer bypassing cycle than would be expected for its tidal prism. This is attributed to its coarse-grained sedimentology and the lower efficiency of sediment transporting processes.  相似文献   

13.
The objective of this study is to elucidate the burrow structure and to clarify the role of burrows in material cycle in the tidal flat. In our work, we focused on the dominant species in muddy tidal flat, crab Macrophthalmus japonicus.Burrow structure of Macrophthalmus japonicus was investigated on a Katsuura river tidal flat in Tokushima prefecture, Japan, using in situ resin casting. Sampling was conducted in August 2006, and a total of 48 burrow casts were obtained. Burrows consisted mainly of J-shaped structures (98%) while the rest belonged to U-shaped structures (2%). The maximum measured burrow volume was 120 cm3 and wall surface area was 224 cm2, while maximum burrow length and depth were 23.2 cm and 16.5 cm, respectively. Burrow volume and surface area were strongly correlated with carapace width of M. japonicus. Investigation of the individual number of M. japonicus in 13 quadrats (50 × 50 × 20 cm) was conducted using 2 mm sieve. The number of M. japonicus was 15–31 ind./m2. Using cohort analysis we estimated that surface area of burrows was 0.07–0.15 m2/m2.CO2 emission rate was measured at the surface sediment during the period from June to December 2008. Results varied from 13.8 ± 2.2 to 49.4 ± 3.2 mg CO2/m2/h, and organic carbon decomposition was 3.8 ± 0.6–13.5 ± 0.9 mg C/m2/h. This leads the increase of organic carbon decomposition by 1.1 times, because of the expansion of the tidal flat surface area by burrowing activity. Organic carbon decomposition in burrow walls therefore contributed to organic matter decomposition in the tidal flat. These results indicated that in situ activities of Macrophthalmus japonicus significantly influence the material cycle and it is important to consider the existence of burrow in order to understand the fluxes of materials and to evaluate the purification function of the tidal flat.  相似文献   

14.
Progressive burial of artificial markers over a 5-year period is used to determine the rate and pattern of vertical accretion within a large backbarrier salt marsh on the UK east coast. Over this period, annual accretion varies spatially from 1 to 8 mm yr−1. The arithmetic mean rate for the whole marsh is 3.9 mm yr−1. Spatial variability in accretion is a joint function of (1) elevation-dependent inundation frequency and (2) progressive sediment removal from water masses advected across channel margins. Accretion is, therefore, inadequately represented by simple averaging of point measurements. Numerical integration of the ‘accretion surface’ results in a spatial average rate of around 3 mm yr−1, well below the arithmetic mean rate.

Short-term sediment trap deployments show that local and long-range meteorological effects, and remobilisation of sediment deposited within tidal creeks, often mask the expected link between tidal height and sedimentation rate. Retention of sediment on plant surfaces is minimal, with direct settling accounting for approximately 95% of total deposition.

Time-extrapolation of weekly sediment trap data, and comparison with the 5-year marker horizon burial, shows that processes associated with ordinary tides can account for long-term accretion over most of the marsh. However, the highest surfaces receive appreciable sediment input only during aperiodic storm events.  相似文献   


15.
Understanding biogenic silica (bSi) dissolution kinetics in margin environments is important in assessing the global silicon cycle, a cycle closely linked to the global carbon cycle. This understanding is also essential to answer the question of whether bSi content in marine sediment is a valid indicator of productivity in the overlying surface ocean. In this study, plankton tow, sediment trap, and sediment samples were collected at sites in three Southern California borderland basins. Batch dissolution experiments with plankton tow and sediment trap materials (conducted in the laboratory at 22 °C) showed linear dissolution kinetics, from which mean dissolution rate constants of 0.05 d? 1 for plankton tow samples and 0.07 d? 1 for sediment trap samples could be calculated. The dissolution rate constants for both types of samples showed seasonal variability but not the same seasonal patterns. Faster dissolution was observed with sediment trap samples collected at 800 m than at 550 m. With sediment multi-core samples, non-linear dissolution kinetics was observed, which complicates the direct comparison of dissolution rates. Nonetheless, dissolution appeared to be slower for the sediments samples than for samples collected from the water column and to decrease with depth in the sediments. Rate constants for surface sediment (0–0.5 cm) were at least 3–5 times less, and sediments at depths > 2 cm had rate constants at least 6–13 times less than those for material sinking to the sediment surface at these sites. Dissolution experiments conducted with Santa Barbara Basin surface sediment samples amended with dissolved aluminum (Al) and San Pedro Basin trap samples amended with enriched detrital materials (obtained by leaching bSi from sediment samples) suggested that dissolution was inhibited by Al and that the sediments from the different basins varied in the extent of Al release.  相似文献   

16.
This study focuses on sediment exchange in the degraded Mwache mangrove forest wetland located in southern Kenya. It involved measurement of total and particulate organic suspended sediment concentrations (TSSC and POSC), tidal water elevation and current velocities. Results showed that in the heavily degraded backwater zone mangrove forest, the ebb and flood tide total sediment fluxes were of same order of magnitude, however, flood tide sediment fluxes were slightly higher than the ebb ones. In the moderately degraded frontwater zone mangrove forest, the flood tide sediment fluxes were more than 50% higher than the ebb tide fluxes. The peak net sedimentation in the highly degraded backwater zone was 4 g m−2 tide−1 but that in the moderately degraded frontwater zone was 63 g m−2 tide−1. In the frontwater zone of the mangrove forest, the peak instantaneous ebb tide sediment flux was 3206 kg tide−1 equivalent to 35.6 g m−2 tide−1 and the flood one 8574 kg tide−1 (95 g m−2 tide−1). The peak instantaneous flood and ebb tide particulate organic sediment (POS) fluxes in the frontwater zone mangrove forest were 1316 kg tide−1 (15 g m−2 tide−1) and 587 kg tide−1 (6.5 g m−2 tide−1), respectively. The peak ebb and flood tide sediment fluxes in the backwater mangrove forest were 3206 kg tide−1 (36 g m−2 tide−1) and 3305 kg tide−1 (36.7 g m−2 tide−1), respectively. In case of POS fluxes in the backwater zone mangrove forest, the peak flood period POS flux was 969 kg tide−1 (10.7 g m−2 tide−1) while the ebb period one was 484 kg tide−1 (5.4 g m−2 tide−1). In both highly degraded backwater and moderately degraded frontwater zone of the mangrove forest, there is net import of sediments. However, the net import is relatively lower in the backwater zone forest where the trapping efficiency is 27%. In the moderately degraded frontwater zone of the mangrove forest, the sediment trapping efficiency is 65%. The net sediment import occurs mainly in periods of high river discharge in both neap and spring tides, but occurs only in spring tides during dry season. The net accretion rates in the backwater and frontwater zone mangrove forests are 0.25 and 3.5 cm year−1, respectively.  相似文献   

17.
On aerial photographs, sandy tidal flats display (1) large sandy bedforms (> 10 m long, > 3 m wide), indicating effects of strong hydrodynamics on sediment relief, and (2) beds of seagrass and mussels, indicating stable sediment conditions. These physical and biogenic structures have been mapped from aerial photographs taken in a back-barrier tidal basin of the North Sea coast at low tide between 1936 and 2005. Fields of large intertidal sandy bedforms show a consistent spatial distribution in the central part of the basin, and have increased in area from 7.2 to 12.8 km2, corresponding now to 10% of the tidal flats. Areal expansion may be linked to a rise in average high tide level and an increase of the expansion rate from the 1960s to the mid 1990s might be traced back to an increased frequency of storm tides during this period. It is shown that expanding fields of large sandy bedforms have replaced mussel beds in the low tidal zone and displaced seagrass beds in the mid tidal zone. Fields of intertidal large sandy bedforms are expected to expand further with an accelerating rise in sea level, and it is recommended to monitor these physical indicators of sediment instability and disturbance of biogenic benthic structures by analysing aerial photographs.  相似文献   

18.
The abundance, carbon isotopic composition (Δ14C and δ13C), and lipid biomarker (alkenones and saturated fatty acids) distributions of suspended particulate organic matter were investigated at three stations centered on the 2000, 3000, and 3500 m isobaths over the New England slope in order to assess particulate carbon sources and dynamics in this highly productive and energetic region. Transmissometry profiles reveal that particle abundances exhibit considerable fine structure, with several distinct layers of elevated suspended particulate matter concentration at intermediate water depths in addition to the presence of a thick bottom nepheloid layer at each station. Excluding surface water samples, the Δ14C values of particulate organic carbon (POC) indicated the presence of a pre-aged component in the suspended POC pool (Δ14C<+38‰). The Δ14C values at the 3000 m station exhibited greater variability and generally were lower than those at the other two stations where the values decreased in a more systematic matter with increasing sampling depth. These lower Δ14C values were consistent with higher relative abundances of terrigenous long-chain fatty acids at this station than at the other two stations. Two scenarios were considered regarding the potential provenances of laterally transported POC: cross-shelf transport of shelf sediment (Δ14C=?140‰) and along-slope transport of the slope sediment proximal to the sampling locations (Δ14C=?260‰). Depending on the scenario, isotopic mass balance calculations indicate allochthonous POC contributions ranging between 15% and 54% in the meso- and bathy-pelagic zone, with the highest proportions at the 3000 m station. Alkenone-derived temperatures recorded on suspended particles from surface waters closely matched in-situ temperatures at each station. However, alkenone-derived temperatures recorded on particles from the subsurface layer down to 250 m were lower than those of overlying surface waters, especially at the 3000 m station, implying supply of phytoplankton organic matter originally produced in cooler surface waters. AVHRR images and temperature profiles indicate that the stations were under the influence of a warm-core ring during the sampling period. The low alkenone-derived temperatures in the subsurface layer coupled with the lower Δ14C values for the corresponding POC suggests supply of OC on resuspended sediments underlying cooler surface waters distal to the study area, possibly further north or west. Taken together, variations in Δ14C values, terrigenous fatty acid abundances, and alkenone-derived temperatures among the stations suggest that input of laterally advected OC is a prominent feature of POC dynamics on the NW Atlantic margin, and is spatially heterogeneous on a scale smaller than the distance between the stations (<150 km).  相似文献   

19.
North Atlantic sediment drifts are valuable archives for paleoceanographic reconstructions spanning various timescales. However, the short-term dynamics of such systems are poorly known, and this impinges on our ability to quantitatively reconstruct past change. Here we describe a high-resolution 319-day time-series of hydrodynamics and near-bottom (4 m) particulate matter flux variability at a 2600 m deep site with an extremely high sediment accumulation rate on the southern Gardar Drift in the North Atlantic. We compare our findings with the actual deposits at the site. The total annual particle flux amounted to ~360 g m?2 yr?1, varied from ~0.15 to >5.0 g m?2 day?1 and displayed strong seasonal compositional changes, with the highest proportion of fresh biogenic matter arriving after the spring bloom in June and July. Flux variability also depended on the changing input of lithogenic matter that had been (re)suspended for a longer time (decades). Active focussing of material from both sources is required to account for the composition and the magnitude of the total flux, which exceed observations elsewhere by an order of magnitude. The enhanced focussing or increased delivery appeared to be positively related to current velocity. The intercepted annual particle flux accounted for only 60% of the sediment accumulation rate of 600±20 g m?2 yr?1 (0.20±0.07 cm yr?1), indicating higher intra- and inter-annual variability of both the biogenic and lithogenic fluxes and/or advection of additional sediment closer to the seafloor (i.e. <4 m). This temporal variability in the composition and amount of material deposited highlights intra-annual changes in the flux of lithogenic material, but also underscores the importance of (reworked) sediment focussing and seasonality of the biogenic flux. All should be taken into account in the interpretation of the paleorecord from such depositional settings.  相似文献   

20.
The natural isotope 234Th is used in a small-scale survey of particle transport and exchange processes at the sediment–water interface in the Benguela upwelling area. Results from water and suspended particulate matter (SPM) samples from the uppermost and lowermost water column as well as the underlying sediment of three stations are compared. The stations are situated in different sedimentological environments at 1200–1350 m water depth at the continental slope off Namibia. Highly differing extent and particle content of the bottom nepheloid layer (BNL) are determined from transmissometer data. Three models are presented, all explaining the 234Th depletion of the BNL and 234Th excess of the surface sediment that were observed. While the first model is based solely on local resuspension of surface sediment particles, the second evaluates the influence of vertical particle settling from the surface waters on the 234Th budget in the BNL. The third model explains 234Th depletion in the BNL by sedimentation of particles that were suspended in the BNL during long-range transport. Particle inventory of the BNL is highest at a depocenter of organic matter at 25.5°S, where strong deposition is presently taking place and lateral particle transport is suggested to predominate sediment accumulation. This is supported by the high settling flux of particles out of the BNL into the sediments of the depocenter, exceeding the vertical particle flux into sediment traps at intermediate depth in the same area by up to an order of magnitude. High particle residence/removal times in the BNL above the depocenter in the range of 5–9 weeks support this interpretation. Comparison with carbon mineralization rates that are known from the area reveals that, notwithstanding the large fraction of advected particles, organic carbon flux into the surface sediment is remineralized to a large extent. The deployment of a bottom water sampler served as an in situ resuspension experiment and provided the first data of 234Th activity on in situ resuspended particles. We found a mean specific activity of 86 disintegrations per minute (dpm) g−1 (39–339 dpm g−1), intermediate between the high values for suspended particles (in situ pump: 580–760 dpm g−1; CTD rosette: 870–1560 dpm g−1) and the low values measured at the sediment surface (26–37 dpm g−1). This represents essential information for the modeling of 234Th exchange processes at the sediment–water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号