首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
《Coastal Engineering》2006,53(10):825-843
A newly developed two-phase flow model was applied to simulate the sediment movement under 2nd-order Stokes wave sheetflow conditions with different sediment sizes and wave periods. As for the distribution of eddy viscosity and sediment diffusion coefficient, the difference between onshore and offshore phases was considered by using an equivalent sinusoidal velocity amplitude for the asymmetric velocity profile. Sophisticated comparisons between laboratory measurements [O'Donoghue, T., Wright, S., 2004b. Flow tunnel measurements of velocities and sand flux in oscillatory sheetflow for well-sorted and graded sands. Coast. Eng., 51 (11–12), 1163–1184.] and the present numerical simulation were performed for sediment concentration, sediment velocity, sand flux and net transport rate. Four existing engineering models, together with the present two-phase flow model, were introduced for net transport rate prediction. Taking both the net sand transport rate magnitude and direction into account, the present process-based two-phase flow model provided the best estimations, which can simulate both the onshore net transport for medium/coarse sand cases and offshore net transport for fine sand cases with the agreement by a factor of 2 for almost all the considered cases.  相似文献   

2.
Prototype scale physical model tests were conducted to investigate the sheetflow sediment transport of uniform sand under different skewed-asymmetric oscillatory flows with and without the presence of relatively strong currents in the opposite direction against wave propagation. Experiments show that in most cases with fine sands, the “cancelling effect” which balances the on-/off-shore net transport under pure asymmetric/skewed oscillatory flows and results a moderate net transport was developed for combined skewed-asymmetric shaped oscillations. However, under certain conditions (T > 5 s) with coarse sands, the onshore sediment transport was enhanced for combined skewed-asymmetric flows. Additionally, the new experimental data under collinear oscillatory flows and strong currents show that offshore net transport rates increase with decreasing velocity skewness and acceleration skewness. Sediment movement behaviors were investigated through analysis of experimental data obtained from the image analysis technique and attempts were made to estimate and formulate the sheetflow layer thickness. Accordingly, sediment transport under oscillatory sheetflow conditions was studied and successfully explained by comparing the bed shear stress and the phase lag parameter at each half cycle. Consequently, these parameters were incorporated in an improved Dibajinia and Watanabe's type sediment transport model. The formula is calibrated against a comprehensive experimental data (331 in total). Good agreement obtained between predictions and measurements shows that the new formula is fulfilled for practical purposes.  相似文献   

3.
4.
本文用了一个可考虑相位差作用和波浪边界层非对称性的瞬态理论模型和一个两相紊流模型共同研究非对称歪斜波引起的片流输沙现象。为了解速度偏度和加速度偏度对输沙通量和输沙率的贡献,两相流模型为理论模型提供了必要的相位超前、瞬时侵蚀深度和边界层的发展过程。理论模型研究显示了由速度偏度和加速度偏度引起的向岸阶段和离岸阶段的泥沙运动非对称性,解释了净输沙的产生原因。在以往的非对称歪斜波片流输沙研究中,净输沙的产生主要被归结于相位差作用。本文的研究则表明了非对称的边界层发展所产生的净流量和动床面效应在净输沙产生过程中的比相位差作用更为重要。  相似文献   

5.
6.
《Coastal Engineering》2006,53(11):897-913
For the general purposes of morphodynamic computations in coastal zones, simple formula-based models are usually employed to evaluate sediment transport. Sediment transport rates are computed as a function of the bottom shear stress or the near bed flow velocity and it is generally assumed that the sediment particles react immediately to changes in flow conditions. It has been recognized, through recent laboratory experiments in both rippled and plane bed sheet flow conditions that sediment reacts to the flow in a complex manner, involving non-steady processes resulting from memory and settling/entrainment delay effects. These processes may be important in the cross-shore direction, where sediment transport is mainly caused by the oscillatory motions induced by surface short gravity waves.The aim of the present work is to develop a semi-unsteady, practical model, to predict the total (bed load and suspended load) sediment transport rates in wave or combined wave-current flow conditions that are characteristic of the coastal zone. The unsteady effects are reproduced indirectly by taking into account the delayed settling of sediment particles. The net sediment transport rates are computed from the total bottom shear stress and the model takes into account the velocity and acceleration asymmetries of the waves as they propagate towards the shore.A comparison has been carried out between the computed net sediment transport rates with a large data set of experimental results for different flow conditions (wave-current flows, purely oscillatory flow, skewed waves and steady currents) in different regimes (plane bed and rippled bed) with fine, medium and coarse uniform sand. The numerical results obtained are reasonably accurate within a factor of 2. Based on this analysis, the limits and validity of the present formulation are discussed.  相似文献   

7.
Hydrodynamic and sediment transport measurements from instrumentation deployed during a 54-day winter period at two sites on the Louisiana inner shelf are presented. Strong extratropical storms, with wind speeds of 7.8 to 15.1 m s-1, were the dominant forcing mechanism during the study. These typically caused mean oscillatory flows and shear velocities about 33% higher than fair weather (averaging 12.3 and 3.2 cm s-1 at the landward site, and 11.4 and 2.7 cm s-1 at the seaward site, respectively). These responses were coupled with mean near-bottom currents more than twice as strong as during fair weather (10.3 and 7.5 cm s-1 at the landward and seaward sites, respectively). These flowed in approximately the same direction as the veering wind, causing a net offshore transport of fine sand. Weak storms were responsible for little sediment transport whereas during fair weather, onshore sand transport of approximately 25-75% of the storm values appears to have occurred. This contradicts previous predictions of negligible fair-weather sediment movement on this inner shelf.  相似文献   

8.
《Coastal Engineering》2005,52(9):745-770
New experiments were carried out in the Large Oscillating Water Tunnel of WL|Delft Hydraulics (scale 1:1) using asymmetric 2nd-order Stokes waves. The main aim was to gain a better understanding of size-selective sediment transport processes under oscillatory plane-bed/sheet-flow conditions. The new data show that for uniform sand sizes between 0.2 < D < 1.0 mm, measured net transport rates are hardly affected by the grain size and are proportional to the third-order velocity moment. However for finer grains (D = 0.13 mm) net sand transport rates change from the ‘onshore’ direction into the ‘offshore’ direction in the high velocity range. A new measuring technique for sediment concentrations, based on the measurement of electro-resistance (see [McLean, S.R., Ribberink, J.S., Dohmen-Janssen, C.M. and Hassan, W.N.M., 2001. Sediment transport measurements within the sheet flow layer under waves and currents. J. Waterw., Port, Coast., Ocean Eng., ISSN 0733-950X]), was developed further for the improved measurement of sediment dynamics inside the sheet-flow layer. This technique enabled the measurements of particle velocities during the complete wave cycle. It is observed that for long period waves (T = 12.0 s), time-dependent concentrations inside the sheet-flow layer are nearly in phase with the time-dependent flow velocities. As the wave period decreases, the sediment entrainment from the bed as well as the deposition process back to the bed lags behind the wave motion more and more. The new data show that size-gradation has almost no effect on the net total transport rates, provided the grain sizes of the sand mixture are in the range of 0.2 < D < 1.0 mm. However, if very fine grains (D = 0.13 mm) are present in the mixture, net total transport rates of graded sand are generally reduced in comparison with uniform sand with the same D50. The transport rates of individual size fractions of a mixture are strongly influenced by the presence of other fractions in a mixture. Fine particles in sand mixtures are relatively less transported than in that uniform sand case, while the opposite occurs for coarse fractions in a mixture. The relative contribution of the coarse grains to the net total transport is therefore larger than would be expected based on their volume proportion in the original sand mixture. This partial transport behaviour is opposite to what is generally observed in uni-directional (e.g. river) flows. This is caused by vertical sorting of grain sizes in the upper bed layer and in the sheet flow and suspension layers. Kinematic sorting is believed to be responsible for the development of a coarse surface layer on top of a relatively fine sub-layer, providing in this way a relatively large flow exposure for the coarser sizes. Furthermore fine grains are suspended more easily than coarse grains to higher elevations in the flow where they are subject to increasing phase-lag effects (settling lags). The latter also leads to reduced net transport rates of these finer sizes.  相似文献   

9.
Based on a large database of laboratory experiments, the predictability of the conventional one-dimensional vertical Reynolds-averaged Navier–Stokes (RANS) diffusion model is systematically investigated with respect to wave-induced net sediment transport. The predicted net sediment transport rates are compared with the measured data of 176 physical experiments in wave flumes and oscillating water tunnels, covering a wide range of wave conditions (surface, skewed, and asymmetric waves with and without currents), sediment conditions (fine, medium, and coarse sands with median grain diameters ranging from 0.13 to 0.97 mm) and bed forms (flat beds and rippled beds), corresponding to various sediment dynamic regions in the near-shore area. Comparisons show that the majority (73 %) of predictions on a flat bed are within a factor 2 of the measurements. The model behaves much better for medium/coarse sand than for fine sand. The model generally underpredicts the transport rates beneath asymmetric waves and overpredicts the fine sand transport beneath skewed waves. Nevertheless, the model behaves well in reproducing the transport rates under surface waves. A detailed discussion and a quantitative measure of the overall model performance are made. The poor model predictability for fine sand cases is mainly due to the underestimation of unsteady phase-lag effect. It is revealed that the model predictability can be significantly improved by implementing alternative bedload formulas and incorporating more physical processes (mobile-bed roughness, hindered settling, and turbulence damping).  相似文献   

10.
A 1DV-RANS diffusion model is used to study sand transport processes in oscillatory flat-bed/sheet flow conditions. The central aim is the verification of the model with laboratory data and to identify processes controlling the magnitude and direction (‘onshore’/‘offshore’) of the net time-averaged sand transport. The model is verified with a large series of measured net sand transport rates, as collected in different wave tunnels for a range of wave-current conditions and grain sizes. Although not all sheet flow details are represented in the 1DV-model, it is shown that the model is able to give a correct representation of the observed trends in the data with respect to the influence of the velocity, wave period and grain diameter. Also detailed mean sediment flux profiles in the sheet flow layer are well reproduced by the model, including the direction change from ‘onshore’ to ‘offshore’ due to a difference in grain size from 0.34 mm (medium sand) to 0.13 mm (fine sand). A model sensitivity study with a selected series of net transport data shows that the stirring height of the suspended sediment εs/ws strongly controls the magnitude and direction of the net sediment transport. Inclusion of both hindered settling and density stratification appears to be necessary to correctly represent the sand fluxes for waves alone and for waves + a superimposed current. The best agreement with a large dataset of net transport measurements is obtained with the 1DV-RANS model in its original settings using a Prandtl–Schmidt number σρ = 0.5.  相似文献   

11.
To predict sediment transport under oscillatory sheet flow condition, especially for fine sand, is still a challenging research subject in coastal engineering. This paper describes a newly-developed numerical model based on two-phase theory with the use of a one-equation turbulence closure, and its applications in predicting fine sediment suspension in near-prototype oscillatory sheet flow conditions. Model results were compared with comprehensive laboratory measurements of flow velocity and sediment concentration under both symmetrical and asymmetrical oscillatory sheet flows from a large-scale water tunnel. Good agreements between the model results and measurements were achieved and the results demonstrated that the model is capable of reproducing detailed characteristics of sediment entrainment process in the sheet flow regime. The comparisons also revealed the fact that the concentration peaks at flow reversal is associated with the strong vertical sediment transport flux in the pickup layer, which has been widely observed in many laboratory experiments. The effects of flow reversal events on total sediment transport were also discussed.  相似文献   

12.
Many existing practical sand transport formulae for the coastal marine environment are restricted to a limited range of hydrodynamic and sand conditions. This paper presents a new practical formula for net sand transport induced by non-breaking waves and currents. The formula is especially developed for cross-shore sand transport under wave-dominated conditions and is based on the semi-unsteady, half wave-cycle concept, with bed shear stress as the main forcing parameter. Unsteady phase-lag effects between velocities and concentrations, which are especially important for rippled bed and fine sand sheet-flow conditions, are accounted for through parameterisations. Recently-recognised effects on the net transport rate related to flow acceleration skewness and progressive surface waves are also included. To account for the latter, the formula includes the effects of boundary layer streaming and advection effects which occur under real waves, but not in oscillatory tunnel flows. The formula is developed using a database of 226 net transport rate measurements from large-scale oscillatory flow tunnels and a large wave flume, covering a wide range of full-scale flow conditions and uniform and graded sands with median diameter ranging from 0.13 mm to 0.54 mm. Good overall agreement is obtained between observed and predicted net transport rates with 78% of the predictions falling within a factor 2 of the measurements. For several distinctly different conditions, the behaviour of the net transport with increasing flow strength agrees well with observations, indicating that the most important transport processes in both the rippled bed and sheet flow regime are well captured by the formula. However, for some flow conditions good quantitative agreement could only be obtained by introducing separate calibration parameters. The new formula has been validated against independent net transport rate data for oscillatory flow conditions and steady flow conditions.  相似文献   

13.
New laboratory data are presented on the influence of free long waves, bound long waves and wave groups on sediment transport in the surf and swash zones. As a result of the very significant difficulties in isolating and identifying the morphodynamic influences of long waves and wave groups in field conditions, a laboratory study was designed specifically to enable measurements of sediment transport that resolve these influences. The evolution of model sand beaches, each with the same initial plane slope, was measured for a range of wave conditions, firstly using monochromatic short waves. Subsequently, the monochromatic conditions were perturbed with free long waves and then substituted with bichromatic wave groups with the same mean energy flux. The beach profile changes and net cross-shore transport rates were extracted and compared for the different wave conditions, with and without long waves and wave groups. The experiments include a range of wave conditions, e.g. high-energy, moderate-energy, low-energy waves, which induce both spilling and plunging breakers and different turbulent intensities, and the beaches evolve to form classical accretive, erosive, and intermediate beach states. The data clearly demonstrate that free long waves influence surf zone morphodynamics and promote increased onshore sediment transport during accretive conditions and decreased offshore transport under erosive conditions. In contrast, wave groups, which can generate both forced and free long waves, generally reduce onshore transport during accretive conditions and increase offshore transport under erosive conditions. The influence of the free long waves and wave groups is consistent with the concept of the relative fall velocity, H/wsT, as a dominant parameter controlling net beach erosion or accretion. Free long waves tend to reduce H/wsT, promoting accretion, while wave groups tend to increase the effective H/wsT, promoting erosion.  相似文献   

14.
Near-bed oscillatory flows with acceleration skewness are characteristic of steep and breaking waves in shallow water. In order to isolate the effects of acceleration skewness on sheet flow sand transport, new experiments are carried out in the Aberdeen Oscillatory Flow Tunnel. The experiments have produced a dataset of net transport rates for full-scale oscillatory flows with varying degrees of acceleration skewness and three sand sizes. The new data confirm previous research that net transport in acceleration-skewed flow is non-zero, is always in the direction of the largest acceleration and increases with increasing acceleration skewness. Large transport rates for the fine sand conditions suggest that phase lag effects play an important role in augmenting positive net transport. A comparison of the new experimental data with a number of practical sand transport formulations that incorporate acceleration skewness shows that none of the formulations performs well in predicting the measured net transport rates for both the fine and the coarser sands. The new experimental data can be used to further develop practical sand transport formulations to better account for acceleration skewness.  相似文献   

15.
《Coastal Engineering》1999,36(1):59-85
Simple theoretical models to determine the equilibrium profile shape under breaking and non-breaking waves are presented. For the case of breaking waves, it is assumed that the seaward transport in the undertow is locally balanced by a net vertical sedimentation, so that no bottom changes occur at equilibrium. The parameterization of the water and sediment flux in the surf zone yields a power curve for the equilibrium profile with a power of 2/3, which is in agreement with previous field investigations on surf zone profile shapes. Three different models were developed to derive the profile shape under non-breaking waves, namely (1) a variational formulation where the wave energy dissipation in the bottom boundary layer is minimized over the part of the profile affected by non-breaking waves, (2) an integration of a small-scale sediment transport formula over a wave period where the slope conditions that yield zero net transport determine equilibrium, and (3) a conceptual formulation of mechanisms for onshore and offshore sediment transport where a balance between the mechanisms defines equilibrium conditions. All three models produced equilibrium profile shapes of power-type with the power typically in the range 0.15–0.30. Comparison with field data supported the results obtained indicating different powers for the equilibrium profile shape under breaking and non-breaking waves.  相似文献   

16.
Analysis of dune erosion processes in large-scale flume experiments   总被引:1,自引:0,他引:1  
Large-scale physical model tests were conducted with different wave periods to examine the physical processes driving dune erosion. The model tests have been carried out in a flume (2DV) with a sandy dune exposed to extreme surge and wave conditions [Van Gent, M.R.A., Van Thiel de Vries, J.S.M., Coeveld, E.M., De Vroeg, J.H. and Van de Graaff, J., 2008. Large-scale dune erosion tests to study the effect of wave periods. Coastal Engineering. doi:10.1016/j.coastaleng.2008.04.003.]. Detailed measurements in time and space of water pressure, flow velocities and sediment concentrations were performed in the near shore area. The data revealed that both short- and long waves are important to inner surf hydrodynamics. Depth averaged flows are directed offshore and increase towards the shore line. The corresponding mean sediment concentrations rise sharply towards the dune face (up to 50 g/l near the bed). The strong increase in the mean sediment concentration towards the dune face correlates well with the maximum wave surface slope which in turn is coupled to both the pressure gradient and the near-bed wave-breaking induced turbulence. Analysis shows that the pressure gradient is only partially coupled to the flow acceleration suggesting that the latter cannot always be used as a proxy for the first. Weak correlation is obtained with the near-bed flows related to the bed shear stress. Tests with a larger wave period resulted in a larger dune erosion volume. During these tests more wave energy (combined incident and infragravity waves) reached the dune face, but more importantly, this wave energy is dissipated by fewer waves resulting in more intense wave breakers and steeper wave fronts. It is therefore expected that the wave-breaking induced near-bed turbulence increases resulting in significantly higher (O(100%)) mean sediment concentrations. In addition the mean flow velocities are comparable, yielding a substantially larger offshore directed sediment transport capacity. This increase in offshore directed transport is only partially compensated by a concurrent increase in the wave related onshore transport capacity associated with intrawave processes, resulting in a net increase in the dune erosion rate.  相似文献   

17.
海岸沙坝近底悬移质通量实验研究   总被引:1,自引:0,他引:1  
为了研究海岸沙坝的产生和演化机理,对不规则波和波群作用下沙坝上方的近底悬移质通量进行了实验研究。分析了短波、长波和平均水流对悬移质通量的影响。结果表明:各种波况下平均水流和长波的作用始终使泥沙向离岸方向输移,而短波的作用使泥沙向岸方向运动;平均水流引起的泥沙输移始终占主要成分,长波的次之。不规则波情况下平均水流的影响较规则波的情况相对较弱,三种成分对泥沙输运的贡献属于同一量级。波群情况下长波的影响随着波浪群性的增强而加大,短波的不明显,而平均水流的影响则随着波浪群性的增强而减弱。  相似文献   

18.
Time-series of nearbed horizontal flow velocities and suspended sediment concentrations obtained from a colocated electromagnetic current meter (EMCM) and optical backscatter sensor (OBS), respectively, are used to examine the relative importance of steady and fluctuating components to the total sediment transport over a full tidal cycle on a macrotidal, intermediate beach (Spurn Head, UK). Fluctuating sediment fluxes are decomposed into gravity and infragravity contributions using co-spectral techniques. The relative importance of the oscillatory (gravity and infragravity) and steady (mean) transport components to the total sediment transport is analysed throughout the tidal cycle.

A continuum of 34 discrete suspended sediment-cross-shore velocity co-spectra are computed over a full tidal cycle for the OBS and EMCM measurements 0.10 m above the bed. These net transport spectra vary greatly both with cross-shore location and tidal state. In particular, a marked asymmetry in transport processes is evident between the flood and ebb tides, with high levels of sediment resuspension and transport occurring on the ebbing tide approximately two hours after high water (just seaward of the breakpoint). At this time the dominant transport was directed offshore (co-spectral peak, 0.04 kg/m2/s) at incident wave frequency.

Typical patterns are observed in transport spectra outside the surf zone and within the inner surf zone. Outside the narrow surf zone cross-shore transport spectra show weak offshore transport (co-spectral peak = 0.002 kg/m2/s) associated with bound long waves and stronger onshore transport (co-spectral peak = 0.006 kg/m2/s) at incident wave frequencies. Conversely, co-spectra computed within the inner surf zone show the offshore sediment fluxes (spectral peak = 0.010 kg/m2/s) at infragravity frequencies to be greater in magnitude than the corresponding onshore transport (co-spectral peak = 0.008 kg/m2/s) occurring at incident wave frequencies.  相似文献   


19.
At high bed shear stress sheet flows often occur in coastal waters in which high-concentration bedload sediments are transported in a thin layer near the bed. This paper firstly constructs a theoretical model (partial differential equations, PDEs) for the intense transport of non-cohesive bedload sediments by unidirectional currents and then seeks a special solution to the PDEs to determine the thickness of the bedload particle–water mixture, which could serve as the “reference height” that is often invoked in numerical computation and simulation of suspended sediment transport in turbulent flows. Moreover, a modified formula is presented to determine the “reference concentration”. Using a “uch” approach the present study derives a 1D formula for predicting bedload transport rate in sheet flows driven by asymmetric waves, with the help of a novel formula for evaluating wave friction factor. The new bedload formula can generically take into account slope angle (positive and negative), wash load concentration in the driving water flow and other factors that affect bedload transport rate. It compares well with measured data in a large-scale wave flume [Dohmen-Janssen, C.M., Hanes, D.M., 2002. Sheet flow dynamics under monochromatic non-breaking waves. Journal of Geophysical Research, 107(C10), 1301–1321], a large-scale oscillatory water tunnel [ Hassan, W.N., Ribberink, J.S., 2005. Transport processes of uniform and mixed sands in oscillatory sheet flow. Coastal Engineering, 52, 745–770] and in a swash zone of natural beach [Masselink, G., Hughes, M.G., 1998. Field investigation of sediment transport in the swash zone. Continental Shelf Research, 18, 1179–1199].  相似文献   

20.
《Coastal Engineering》2006,53(5-6):531-542
The inception of the sheet flow regime as well as the effects of the phase lag when the sheet flow regime is established were investigated for oscillatory flows and combined steady and oscillatory flows. A new criterion for the inception of sheet flow is proposed based on around 300 oscillatory flow cases from experiments. This criterion was introduced in the Camenen and Larson [Camenen, B., Larson, M., 2005. A bedload sediment transport formula for the nearshore. Estuarine, Coastal and Shelf Science 63, 249–260.] bed load formula in order to take into account phase-lag effects in the sheet flow regime. The modification of the Camenen and Larson formula significantly improves the overall agreement with data and yields a correct behavior in relation to some of the main governing parameters, which are the median grain size d50, the orbital wave velocity Uw, and the wave period Tw. The calibration of the new formula was based on more than 200 experimental data values on the net sediment transport rate for a full wave cycle. A conceptual model was also proposed to estimate the ratio between sediment transport rate with and without phase lag, (rpl = qs,net / qs,net,ϕ=0). This simple model provides accurate results and may be used together with any quasi-steady model for bed load transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号