首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
南海西南海域的内波和细结构   总被引:9,自引:1,他引:9  
根据1990年初夏南海西南部水域的两个连续站CTD和多层海流计资料及50多个大面站CTD资料的分析研究得到一些关于此海域的内波和细结构的特性。它包括等温、盐、密度面起伏的特性,盐度双跃层和逆盐层等长存性细结构、温度Cox数的概率密度函数及流速频谱的特性,Cox数和温度脉动垂向波数谱的一般品性及其随水层和地域的变化规律等诸方面。  相似文献   

2.
作者综述了南沙海域内波及细结构研究现状。首先介绍研究中所用的国际或国内首次使用的一些研究方法,它们包括最基础的CTD资料质量控制的方法,浮力频率计算方法、频散关系和波函数计算方法,细结构概率分布假设检验方法,内波检测方法,内潮计算的谱差分方法等。而后总结所得的研究成果(其中一部分是首次发表的),它们包括南沙海区浮力频率的分类及其随地域和季节的变化规律;内波频散关系和波函数;细结构特性及其与内波的关系;细结构的非高斯概率分布特性;垂向波数谱特性及其随季节、地域及水层的变化;频率特性;Cox 数及其概率分布;内潮特性等。最后对今后研究方向作了展望。  相似文献   

3.
Dynamical properties of short-period temperature fluctuations are studied. Water temperature was measured continuously at several depths at the following stations: at 38°29.5′N, 141°35.8′E (100 m depth) on the continental shelf off Miyagi Prefecture in the summer of 1967, at 35°01.8′N, 139°0.8.5′E (100 m depth) in Sagami Bay in the summer of 1968, and at 32°32.2′N, 129°53.7′E (74 m depth) in Tachibana Bay in the summer of 1970. These measurements were made with a thermistor array laid down from the R. V.Tanseimaru (Ocean Research Institute, University of Tokyo) which was fixed with bow and stern anchors. Significant temperature fluctuations found at the first and the third stations are thought to be due to first mode internal waves having amplitude 3 to 5 m and period 5 to 20 minutes. The wave length of the waves is estimated to be 25 m to 400 m from the observed density structure. At the second station, we found second-mode internal waves. The period, amplitude and wave length of the waves are about 30 minutes, 1.3 m and 600 m, respectively. In all cases, the spectral density of the temperature fluctuations decreases with increase in frequency. However, the decrease obey neither the ?3 power law nor the ?5/3 power law. Coherences in the temperature fluctuations between two depths of measurement in the seasonal thermocline are significantly high in the range of frequencies lower than the local Brunt-Väisälä frequency, but are low in the higher frequency range. At the first and the third stations, the difference in the level of coherences between the lower frequencies and the higher frequencies are large. Phase differences between two depths in the thermocline are small in the lower frequency range. This suggests that the first-mode internal waves are predominant over higher-mode internal waves and over other disturbances.  相似文献   

4.
On the basis of the theoretical research results by the author and the literature published up to date, the analysis and the justification presented in this paper show that the breaking products of oceanic internal waves are not only turbulence, but also the fine-scale near-inertial internal waves (the oceanic reversible finestructure) for inertial waves and the internal solitary waves for internal tides respectively. It was found that the oceanic reversible finestructure may be induced by the effect of the horizontal component f (f = 2Ωcosφ) of the rotation vector on inertial waves. And a new instability of the theoretical shear and strain spectra due to the effect of f occurs at critical vertical wavenumber β c ≈ 0.1 cpm. It happens when the levels of shear and strain of the reversible finestructure are higher than those of inertial waves, which is induced by the effect of f along an "iso-potential-pycnal" of internal wave. If all breaking products of internal waves are taken into account, the average kinetic energy dissipation rate is an order of magnitude larger than the values of turbulence observed by microstructure measurements. The author’s theoretical research results are basically in agreement with those observed in IWEX, DRIFTER and PATCHEX experiments. An important impersonal fact is that on the mean temporal scale of thermohaline circulation these breaking products of internal waves exist simultaneously with turbulence. Because inertial waves are generated by winds at the surface, and internal tides are generated by strong tide-topography interactions, the analysis and justification in this paper support in principle the abyssal recipes Ⅱ:energetics of tidal and wind mixing by Munk & Wunsch in 1998, in despite of the results of microstructure measurements for the turbulent kinetic energy dissipation rate and the diapycnal turbulent eddy diffusivity.  相似文献   

5.
潮汐作用下渤海温跃层波动与起伏的数值研究   总被引:1,自引:0,他引:1  
研究了潮汐(四大分潮 M2,S2,K1,O1同时输入)作用下渤海温跃层起伏与波动的三维数值模型(将海洋分为3层,即上混和层、跃层和下混和层),揭示了整个海区温跃层上界面处跃层起伏(在文中指每个时刻跃层波高的周期平均值)的地理分布及叠加在起伏之上的潮周期波动的时空变化,模拟出跃层波动与实测基本一致.结果发现大振幅的跃层波动均发生在海峡及近海地形突变之处.一般界面波动的波高大于甚至远远大于同一位置的表层潮波.从位相以及周期来看,潮波和跃层上下界面波动相互之间,有些海域一致,有些地方则相差甚远.跃层上界深度及厚度的梯度,对跃层起伏分布有一定的影响.跃层起伏还可能与海岸海底摩擦有关.  相似文献   

6.
By using the data of observations over the spatial variability of the temperature field in the northwest part of the Tropical Atlantic carried out in a test range 400 × 400 miles in size with a horizontal resolution Δx ≈ 2 km and a vertical resolution Δz ≈ 0.5 m, we recorded quasiperiodic fluctuations of temperature with semidiurnal period in the subsurface layer. The internal baroclinic waves with the same period generated, most likely, on the northeast shelf of South America and propagating to the northeast are detected in the seasonal thermocline. The vertical fine structure of the temperature field has different intensities in the test range. The maximum levels of dispersions of temperature fluctuations are recorded on the boundary of the North Equatorial Countercurrent and the North Equatorial Current. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 6, pp. 44–52, November–December, 2006.  相似文献   

7.
Three years of temperature data along two transects extending to 90 m depth, at Palau, Micronesia, show twice-a-day thermocline vertical displacements of commonly 50–100 m, and on one occasion 270 m. The internal wave occurred at a number of frequencies. There were a number of spectral peaks at diurnal and semi-diurnal frequencies, as well as intermediate and sub-inertial frequencies, less so at the inertial frequency. At Palau the waves generally did not travel around the island because there was no coherence between internal waves on either side of the island. The internal waves at a site 30 km offshore were out-of-phase with those on the island slopes, suggesting that the waves were generated on the island slope and then radiated away. Palau Island was thus a source of internal wave energy for the surrounding ocean. A numerical model suggests that the tidal and low-frequency currents flowing around the island form internal waves with maximum wave amplitude on the island slope and that these waves radiate away from the island. The model also suggests that the headland at the southern tip of Palau prevents the internal waves to rotate around the island. The large temperature fluctuations (commonly daily fluctuations ≈10 °C, peaking at 20 °C) appear responsible for generating a thermal stress responsible for a biologically depauperate biological community on the island slopes at depths between 60 and 120 m depth.  相似文献   

8.
Four surveys of airborne expendable bathythermograph with horizontal spacing of about 35 km and vertical spacing of 1 m extending from the surface down to 400 m deep are used to analyze thermal finestructures and their seasonality in frontal zones of the southern Yellow Sea and the East China Sea. Finestructure characteristics are different not only among fronts but also along the same front, implying different mixing mechanisms. Summer thermocline intrusions with thickness from few to 40 meters, generated by the vertically-sheared advection, are identified along the southern tongue of the Cheju-Yangtze Front (especially south of Cheju Island). The finestructures south of the Yangtze Bank (i.e. the western tip of the southern tongue) produced by strong along-frontal currents are not as rich as elsewhere in the southern tongue. The Cheju-Tsushima Front presents mixed finestructures due to confluent currents from various origins. The irregular-staircase finestructures in the Kuroshio region (below the seasonal thermocline), driven by double-diffusive mixing, show seasonal invariance and vertical/horizontal coherence. The strength of mixing related to finestructure is weaker in the Kuroshio region than in the Cheju-Tsushima Front or south of Cheju Island. The profiles in the Tsushima Warm Current branching area show large (∼50 m thick), irregular-staircase structures at the upper 230 m depth, which coincides roughly with the lower boundary of the maximum salinity layer. The finestructure at depths deeper 230 m is similar to that in the Kuroshio region. The possible mechanisms for generating the finestructures are also discussed.  相似文献   

9.
南海Argo浮标观测结果初步分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对投放在南海内部的4个Argo浮标轨迹特征,温、盐结构及漂移速度进行诊断分析发现,Argo浮标剖面温、盐观测结果和气候态资料一致,同时上层海洋温、盐剖面资料表现出周期约2月的扰动信号,并且温跃层起伏与同期海表高度异常相关显著。和高度计资料计算而得的海表地转流相比,由Argo浮标漂移轨迹计算的表观流量值较小。在季节时间尺度上,Argo浮标表观流和Argo浮标所停留的中层参考面季节性海流相一致。  相似文献   

10.
Numerical experiments with two-dimensional nonhydrostatic model have been performed to investigate tidally generated internal waves at the Dewakang sill at the southern Makassar Strait where two large-amplitude “bumps” of relatively shallow water exist. We investigate the effect of these features on vertical mixing, with emphasis on the transformation of the Indonesian throughflow (ITF) water properties. The result shows that large-amplitude internal waves are generated at both bumps by the predominant M2 tidal flow, even though the condition of the critical Froude number and the critical slope are not satisfied. The internal waves induce such vigorous vertical mixing in the sill region that the vertical diffusivity attains a maximum value of 6 × 10−3 m2s−1 and the salinity maximum and minimum core layers characterizing the ITF thermocline water are considerably weakened. Close examination reveals that bottom-intensified currents produced mainly by the joint effect of barotropic M2 flow and internal tides generated in the concave region surrounding both bumps can excite unsteady lee waves (Nakamura et al., 2000) on the inside slopes of the bumps, which tend to be trapped at the generation region and grow into large-amplitude waves. Such generation of unsteady lee waves does not occur in case of one bump alone. Trapping and amplification of the waves in the sill region induce large vertical displacements (∼60 m) of water parcels during one tidal period, leading to strong vertical mixing there. Since the K1 tidal currents are relatively weak, large-amplitude internal waves causing intense vertical mixing are not generated. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Time series of temperature and salinity collected from a station in the NE Arabian Sea during March, April, May, October, and November was utilized to explain the behavior of internal tides. Analysis revealed the existence of semi-diurnal internal tides and high frequency (HF) internal waves (IW). It was observed that the amplitudes of HF IWs were determined by the degree of stratification in the thermocline. Corresponding to an increase in the density gradient in thermocline (0.016 kg/m4 in April to 0.14 kg/m4 in October), the temperature fluctuations due to internal tides increased from <0.2°C to >1.5°C, respectively. Brunt-Vaiisala frequency also showed similar variations (~10 cph to 22 cph). Within the thermocline, semi-diurnal internal tides caused fluctuations of >10m in the isotherm depths. A linear regression equation was fitted to parameterize the amplitude of HF IWs and its upper frequency limit in terms of thermocline gradient. The IW and one-dimensional models simulated the presence of internal tides and diurnal cycling in the temperature field, respectively. Coupling of these models showed improvement in the simulation of temperature.  相似文献   

12.
Nonlinear internal waves are a common event on the continental shelf. The waves depress the high-gradient region of the thermocline and thicken the surface mixed layer with consequent effect on acoustic propagation. After the waves have passed, it may take several hours for the thermocline to rise to its prewave level. To examine the effect of the rising thermocline, oceanographic and acoustic data collected during the 2006 Shallow Water Experiment (SW06) are analyzed. Midfrequency acoustic data (1.5–10.5 kHz) taken for several hours at both fixed range (550 m) and along a tow track (0.1–8.1 km) are studied. At the fixed range, the rising thermocline is shown to increase acoustic intensity by approximately 5 dB . Along the tow track, the transmission loss changes 2 dB for a source–receiver pair that straddles the thermocline. Using oceanographic moorings up to 2.2 km away from the acoustic receiver, a model for the rising thermocline is developed. This ocean model is used as input to a broadband acoustic model. Results from the combined model are shown to be in good agreement with experimental observation. The effects on acoustic signals are shown to be observable, significant, and predictable.   相似文献   

13.
内孤立波具有较大的振幅与较强的垂向剪切,能对海洋工程设施产生极大的破坏作用。本文设计实验研究了内孤立波与直立小直径桩柱的相互作用,采用粒子图像速度测量法(PIV)测量内孤立波的流速场,并采用自行设计的测力天平测量桩柱受力,测量分析了内孤立波对小直径直立桩柱产生作用力的实验值,与Morison公式计算的理论值比较。实验结果表明,第一模态内孤立波的流速方向以及作用力在桩柱的上下部分方向相反,产生很强的速度切变和扭力,对小直径直立桩柱造成破坏。通过与Morison公式计算的理论值比较,发现实验值与理论值的大小以及分布规律基本相同。  相似文献   

14.
Three techniques are used to investigate mode coupling as acoustic energy passes through continental-shelf internal solitary waves (ISW's). Results from all techniques agree. The waves considered here are single downward undulations of a thermocline layer separating upper and lower well-mixed layers. Two techniques are numerical: parabolic equation (PE) solution and a sudden approximation joining range-invariant regions at sharp vertical interfaces. The third technique is an analytic derivation of ISW scale lengths separating adiabatic (at large scale) and coupled-mode propagation. Results show that energy is exchanged between modes as ISW's are traversed. The sharp interface solutions help explain this in terms of spatially confined coupling and modal phase interference. Three regimes are observed: 1) for short ISW's, coupling upon wave entrance is reversed upon exit, with no net coupling; 2) for ISW scales of 75-200 m, modal phase alteration averts the exit reversal, giving net coupling; transparent resonances yielding no net coupling are also observed in this regime; and 3) for long ISW's, adiabaticity is probable but not universal. Mode refraction analysis for nonparallel acoustic-ISW alignment suggests that these two-dimensional techniques remain valid for 0° (parallel) to 65° (oblique) incidence, with an accordant ISW stretching  相似文献   

15.
南海中部上层海洋温度的短周期振动   总被引:1,自引:0,他引:1  
南海季风试验(SCSMEX)期间,南海中部投放了3个ATLAS浮标.本文选取3个站点1998年4月13日~1999年4月8日的所有观测水层的温度数据作为研究.通过逐月功率谱分析,发现50-500m深度,温度存在全日和半日2个显著短周期的振动;利用小波分析得出了温度短周期振动的时空变化特点,并结合温度跃层时空结构的分析,发现跃层深度上,温度全日(或半日)周期振动的时空变化与跃层时空结构存在一致性,即在跃层核心深度上,跃层强度越大的时域内,温度全日(或半日)周期的振动就越显著.  相似文献   

16.
Internal waves were observed by measuring temperature variations of several subsurface layers at the innermost part of Suruga Bay from December 1968 to October 1971. Spectral energy densities of temperature fluctuations were computed from the records of the measurements. In the shorter period range from one minute to one hour, peaks of energy density were found occasionally in the range shorter than the minimum of VÄisÄlÄ periods computed from the vertical distribution of water density. It has been generally understood, however, that the periods of internal waves in a stable stratum should be within the range between the inertial and VÄisÄlÄ periods.The measurements of tidal currents in the surface and lower layers, which were undertaken simultaneously with the temperature measurements, revealed that the short-period oscillations were associated with the increase of current velocity and of vertical shear of current at the pycnocline.It is considered that observed periods shorter than the minimum of VÄisÄlÄ period are not real but apparent periods due to the Doppler effect, because the waves are generated in the velocity shear of tidal current and the source is moving towards the station with the tidal current.  相似文献   

17.
In this paper, the method for determining the direction and velocity of internal tide wave is proposed. The main points are as follows: (1) starting with the continuity equation of incompressible fluid and taking the isotherm whose balance position is situated in the middle of the thermocline as the interface of two-layer ocean, one can get an equation of variations of average total current in the lower and upper layers; (2) WTide (Z) in the above-mentioned equation is expressed in first-order approximation; (3) the internal tide waves are treated as wave packets. Thus, one finds out a statistical relation, AΔu BΔv =ζ, which correlates the average shear effect caused by the internal tide wave with the isothermal fluctuation. The direction and velocity of the wave can be drawn from the formulae: (((1=Arctg (A/B), C1=1/(H0(A2 B2)~1/2).The calculated results agree, in the main, fairly well with two sets of observations at station L3.  相似文献   

18.
THE NONLINEAR INTERNAL GRAVITY WAVES IN STRATIFIED FLUID   总被引:1,自引:0,他引:1  
In this paper, starting from the equations of the nonlinear internal gravity waves in stratified fluid, using the method of the Taylor expansion nearby the equilibrium point for the nonlinear terms, we find the analytical solutions for nonlinear internal gravity waves. The linear internal gravity waves and solitary waves are its special cases. The nonlinear internal gravity waves satisfy the well-known KdV (Karteweg-de Vries) equation. The nonlinear internal gravity waves are different from linear waves in character. The former dispersive relation contains the amplitude, but the latter does not. The larger the amplitude and the wavelength the faster are waves for the nonlinear internal gravity waves. The smaller the stability of the stratification, the larger is the wavelength (or the width). Some phenomena such as squall line, cumulus, turbulent mass structure in atmosphere, and thermocline in ocean have these natures.  相似文献   

19.
在确定温跃层三要素 (深度 (上界深度 )、厚度和强度 )及测站温度垂直最大梯度的基础上 ,分别计算了南沙深水测站 (水深大于 1 0 0 0m)在温跃层上界深度层范围内的平均温度、在温跃层下界深度以下自 3 0 0m层至 80 0m层之间的平均温度。分析表明 ,在温跃层上界深度范围内 ,海水平均温度的水平分布明显显示出低温海水自南沙的西北部向东南部缓慢推进之势 ,似是东北季风驱动的结果。温度垂直梯度越大 ,它在垂直方向上阻碍上层海水的热量往深层扩散的能力就越强。  相似文献   

20.
基于布放在南海东北部陆坡海域的5套潜标观测到的内孤立波波列数据和孤立波扰动KdV(PKdV)理论,研究内孤立波在趋浅陆架上的传播特征。得出如下结果:1)观测到的内孤立波属于C型内孤立波,即平均重现周期为(23.41±0.31)h。2)内孤立波在西传爬坡过程中,其振幅表现为先增大后减小再增大,与该海域温跃层深度的变化趋势一致;由观测数据和理论计算得到的孤立波振幅增长率(SAGR)数值接近,表明该海域的内孤立波的振幅变化可以采用由孤立波PKdV方程导出的趋浅温跃层理论来描述。3)随着水深变浅,内孤立波传播方向向北偏移,传播速度减小,即在A,B和D站位,传播方向分别为279°,296°和301°,偏转角度达22°;传播速度分别为2.36,2.23和1.47 m/s,减小38%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号