首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 750 毫秒
1.
采用受控的自回归滑动平均模型(CARMA)分别研究了珠江河口洪、枯季对外海潮波响应的固有频率.枯季采用单输入单输出模型,洪季采用双输入单输出模型,通过验证、检验表明,模型(CARMA)可用于寻求复杂网河对外海潮波响应的固有频率,方法可靠,易操作.通过频率增益响应分析,发现枯季珠江河口的固有频率以浅水分潮频段为主,对应周...  相似文献   

2.
受径流影响和调制,径优型河口潮汐的非线性作用强,潮汐调和分析和预报误差大。文章在调和分析方法的基础上,结合河口三角洲内径潮相互作用机理,假定河道地形变化微弱,采用实测潮水位和上游径流量,建立径流和潮汐调和分析(river-tidal harmonic analysis,简称RTHA)模型,用于分析和研究珠江三角洲的径流和潮汐的相互作用过程。结果表明,对于珠江河口年尺度的潮水位数据,RTHA模型分析和预报的标准误差0.12~0.17 m,方差贡献(相关指数)为91%~98%,特别是在径流作用强的河口三角洲中上段,RTHA模型结果远高于传统的调和分析和预报结果,可以以较高精度分离径流和潮汐信号。利用该回归模型对珠江径流影响下非线性潮汐的变化进行研究,结果发现,珠江径流量的洪枯季变化引起河口全日分潮、半日分潮、三分之一分潮的振幅洪季小、枯季大,口门段四分之一分潮的振幅洪季大、枯季小;洪季全日分潮、半日分潮传播速度变小(位相增大),分潮振幅沿程衰减幅度显著增大,自枯季的10%~30%迅速增加到洪季的70%~80%。  相似文献   

3.
长江河口潮波时空特征再分析   总被引:1,自引:0,他引:1  
长江河口的潮波传播受到近岸及河口浅水地形及长江径流的显著影响,表现出很强的时空变化特征。已有相关研究主要关注徐六泾以下的河口段,还缺少对河口系统的潮波特征分析。本文基于大通、南京、徐六泾和牛皮礁4站的年内连续潮位资料,分析了主要天文分潮和浅水分潮的振幅沿程变化、季节变化特征和规律,认识到洪季大径流对江阴以上的近口段潮汐衰减作用显著大于枯季,而河口段的平均潮差有一定的半年周期变化,年内秋季最大。口内高频浅水分潮振幅在河口下段最大,且洪季大于枯季,低频浅水分潮则在河口上游振幅最大,由此反应径流对潮汐改造的非线性作用。这些认识可为水道航运及相关河口研究提供基础认识。最后本文也指出关于长江河口潮汐特征尚需进一步研究的若干问题,以期下一步工作取得相应进展。  相似文献   

4.
本文通过构建径潮动力耦合条件下潮波传播的一维水动力解析模型,从理论机制上探讨珠江磨刀门河口径潮动力非线性作用下余水位的多时空尺度变化。结果表明:余水位变化呈现明显的大小潮和洪枯季变化,枯季余水位大小潮的变化幅度介于0~0.4 m,而洪季余水位与上游径流紧密相关,增幅大枯季一个量级(介于0~6 m);解析模型可分离控制余水位变化的3个主要因素,即径流、潮流和径潮相互作用因子,计算结果表明河口不同区段余水位的主控因素有明显的洪枯季变化,上游段,枯季余水位受径潮相互作用因子控制,洪季受径流因子控制;枯季下游段余水位受潮流控制,而洪季余水位主要受径潮相互作用因子控制。  相似文献   

5.
基于FVCOM模型,将珠江河网、河口和口外海区作为整体,建立完全三维数值模式,对珠江河口及其邻近海域的潮汐进行数值模拟.采用23个潮位站的潮汐表水位资料对模式进行验证,结果表明模式能比较准确地重现珠江河口的潮汐变化过程.通过对计算结果进行潮汐调和分析,给出了珠江河口区域及近岸海域8个主要分潮的同潮图,讨论了潮波的传播特征.珠江河口潮汐属于混合潮类型,潮型系数介于0.8—1.5.浅水分潮成分很小,最大振幅不超过5cm.对珠江河口的潮差进行统计,给出了珠江河口大潮和小潮期间的潮差大小及分布,大潮时潮差介于2.2—3.1m,小潮时减小到0.6—1.1m.  相似文献   

6.
本文基于4次洪枯季同步水文观测资料,着重分析了长江口北支悬沙浓度的潮周期变化、垂向分布、纵向分布和悬沙输移及其时空差异。研究结果显示,悬沙浓度的潮周期变化过程在大中潮期以M型(双峰型)为主,下段主槽内在大潮期多出现V型,上段在枯季可出现涨潮单峰型;小潮期可出现无峰、单峰或双峰型。涨、落潮悬沙浓度峰值及均值,在枯季多涨潮大于落潮,洪季中小潮特别是小潮期易出现落潮大于涨潮;下段主槽内在大潮期易出现落潮大于涨潮。悬沙浓度的垂向分布及其变化特点,在大中潮期与悬沙的潮周期变化型式有关,其中M型存在显著的洪枯季差异。纵向上,最高悬沙浓度在枯季出现于中段灵甸港至三和港之间及附近河段,洪季则在下段三条港附近。潮周期悬沙净输移,枯季大多向陆特别是大中潮期,洪季中上段大多向海,下段大潮期多向陆、中小潮易出现向海;下段主槽内在大潮期易出现向海。  相似文献   

7.
海南岛南渡江河口的盐水入侵   总被引:1,自引:0,他引:1  
南渡江是海南岛最大的河流,河口长度较短(约25 km),口外濒临琼州海峡。南渡江的盐水入侵近年来呈加剧趋势,急需对其过程与机理进行研究。本研究运用FVCOM模型,采用2009年枯季的实测数据对模型进行了验证。根据模型计算结果分析了枯季和洪季南渡江河口的流速和盐度的时空分布及盐水入侵的变化,探讨了河口不同位置驱动盐分向陆输运的机制。研究结果表明:枯季小潮时的河口环流强度大于大潮时,而洪季河口环流在大潮时更加发育,洪枯季都表现出大潮期的盐度分层(表底层盐度差)大于小潮期;口门附近,潮汐振荡输运在总的向陆盐分输运通量中占主导,而向上游方向,稳定剪切输运则表现得更重要。主河道内损失的盐分主要通过海甸溪的盐分输入进行补充。  相似文献   

8.
涨落潮槽是河口区的重要地貌单元。只有枯季涨潮槽才能表现出涨潮优势。使用ADCP和ENDECO在枯季对长江口典型涨落潮槽进行一个潮周期的同步水文观测。利用本次观测资料和收集以前洪季水动力结果,比较分析了长江口涨落潮槽一个完整洪枯季大小潮水动力特征和输运机制。结果表明:(1)长江河口涨潮槽的水动力极为复杂。不仅存在洪枯季节的水文特征变化,而且存在着洪季大小潮和枯季大小潮的变化;(2)只有枯季大潮表现出较为明显的涨潮优势。涨潮槽的单宽涨落潮量接近,而落潮槽的单宽涨潮量都小于单宽落潮量;(3)洪季大小潮涨潮槽的平均涨潮流速都大于落潮槽,平均落潮流速都小于落潮槽。枯季小潮的平均涨潮流速来说,涨潮槽大于落潮槽;而对于落潮流速来说,涨潮槽上部小于落潮槽,下部大于落潮槽;(4)涨潮槽的欧拉余流要小于落潮槽,涨潮动力减弱对涨潮槽的影响较为明显。  相似文献   

9.
卢陈  吴尧  杨裕桂  袁菲 《海洋学报》2022,44(12):9-18
河口环流结构关系到物质输运、泥沙沉积和地貌变化等物理过程。根据2019年磨刀门河口原型观测平台洪枯季连续观测分层潮流资料,统计洪枯季、大小潮河口东、西汊的涨落潮流及历时变化特征,利用理论方法解析河口东西汊平面环流和重力环流结构,进一步引入混合参数研究河口纵向环流中的潮汐应变环流。研究发现枯季东、西汊在转潮时刻存在东涨西落的平面环流结构,洪季平面环流特征较不明显;枯季重力环流强度整体略大于洪季,西汊重力环流强于东汊,表层向海环流流速可达0.2~0.25 m/s,而底层向陆环流流速相对较小。洪季大潮期由潮不对称性驱动的潮汐应变环流相对较大,进而增强了纵向环流的强度。河口垂向余流结构同样表现洪枯季、大小潮的变化规律。洪季余流整体较大,西汊在小潮期表层余流流速超过0.6 m/s,而东汊余流则明显呈现表层向海、底层向陆的分布特征,枯季余流整体较小,表明其对物质输运和河口地形塑造作用较弱。  相似文献   

10.
珠江三角洲网河水沙形式复杂,河口的同步水沙分配特征对研究河口水沙输运以及泄洪排放路径的理解至关重要。分别于2016年12月枯季大小潮与2017年7月洪季大小潮,通过4个航次对珠江三角洲16个站位进行了同步水文观测。观测结果显示,洪枯季西江都为珠江三角洲水沙的主要来源,网河区流量输送存在3条通道,最终经由磨刀门(枯季26%,洪季33%)、洪奇沥(枯季18%,洪季20%)、虎门(枯季20%,洪季16%)三口门入海,三口门枯季总流量占八大口门的64%,洪季占69%。泥沙输运存在2条主要通道,最终经由磨刀门(枯季34%,洪季43%)与洪奇沥(枯季16%,洪季26%)入海,两口门枯、洪季泥沙量约占八大口门的50%、69%。16站位流量与输沙率季节性差异显著,网河区流量季节性差异北江大于西江大于东江,八大口门季节性差异由中间口门向两侧口门递减;网河区输沙率季节性差异西江大于东江大于北江,八大口门季节性差异也由中间口门向两侧口门递减,含沙量的季节变化与输沙率相似,受潮流作用影响,洪枯季大潮含沙量一般大于小潮含沙量。  相似文献   

11.
近期长江河口南汇南滩水域水沙变化特征   总被引:1,自引:0,他引:1  
基于南汇南滩水域2011年12月和2012年6月洪、枯季大潮的现场水文观测资料及2003年2月枯季大潮、2004年9月洪季大潮的历史观测资料,分析潮流历时、流速、优势流和含沙量等水沙现状和变化特征,探讨近年来该水域水沙变化的主要影响因素。结果表明:(1)目前,南汇南滩水域洪季大潮落潮流占主导优势,枯季大潮涨潮流占主导优势;(2)东海大桥及其周边促淤围垦工程后,洪季大潮落潮优势增强,涨潮垂线平均含沙量减少,落潮垂线平均含沙量增多;枯季大潮落潮优势减弱,涨、落潮垂线平均含沙量均减少;(3)近岸工程建设是南汇南滩水域洪季落潮优势增强、枯季落潮优势减弱的主要影响因素;涨、落潮垂线平均含沙量的变化主要与工程建设、流域来沙量减少、近岸沙体变迁等作用有关。可为河口河槽治理提供理论依据。  相似文献   

12.
珠江口的黏性泥沙输运对区域海洋工程和河口海洋环境有着重要的影响。本文利用SELFE模型,针对珠江河口海域建立了一个采用非结构三角形网格的三维斜压水动力模型,可耦合模拟海流、潮流及风海流水动力环境,并在此基础上开发了包括底床模块的黏性泥沙输运模型。模拟结果与实测值验证较好,再现了丰水期珠江河口的泥沙输运特征以及最大浑浊带的变化和分布特点。研究表明,丰水期珠江口悬沙质量浓度西侧大于东侧,泥沙主要来自河口上游。河口浅滩上会形成最大浑浊带,最大质量浓度可达0.5 g/L。珠江口最大浑浊带的形成主要受潮动力、重力环流及泥沙再悬浮和沉积过程影响,其中泥沙再悬浮和沉积过程对中滩的最大浑浊带影响显著,而重力环流作用对西滩的最大浑浊带影响显著。  相似文献   

13.
珠江口磨刀门月际尺度地貌演变研究   总被引:1,自引:1,他引:0  
本文基于二维波流耦合泥沙数学模型对磨刀门河口月际尺度地貌演变进行了模拟研究。结果表明:(1)枯季,无波浪作用下,磨刀门河口总体呈淤积状态;波流耦合后,磨刀门河口整体由淤积转为以冲刷为主。洪季,无波浪作用下,磨刀门河口除西汊外均呈淤积状态;波流耦合后,拦门沙内坡与中心区转为冲刷状态,整体仍以淤积为主,但总淤积量减少;(2)月际尺度上,地貌变化幅度为厘米级,洪枯季具有明显差异。不考虑波浪作用下,磨刀门河口洪、枯季均以淤积为主,但洪季淤积幅度更大;波流耦合后,磨刀门河口呈洪淤枯冲的格局;(3)空间上,拦门沙外坡洪淤枯冲,拦门沙顶洪季淤积、枯季变化不大,内坡洪枯季均为冲刷。此外,拦门沙内坡以径潮流作用产生的底切应力为主,外坡以波浪作用引起的底切应力为主。  相似文献   

14.
健跳港是一个狭长的淤泥质港汊,针对枯季和洪季健跳港海床不同的冲淤特点,利用一维潮流泥沙模型复演了该港海床的冲淤过程,通过调整挟沙力系数来模拟健跳港枯水期的淤积和洪水期的冲刷这两种不同的海床变化形态,并预测了健跳港上游引水后对该港河床的淤积影响。  相似文献   

15.
珠江河口磨刀门水道枯季盐水入侵特性分析   总被引:1,自引:0,他引:1  
方神光 《海洋科学》2014,38(11):90-99
为探讨磨刀门水道潮流和盐度的三维分布特性,本文建立了磨刀门水道的三维潮流和盐度数值模型,采用2009年枯季磨刀门水道实测潮流和盐度资料对模型参数进行率定和验证。结果显示,枯季由于上游径流量小,磨刀门水道总体涨、落潮流速都不大,表层总体涨潮平均流速都在0.5 m/s以内,总体落潮平均流速在0.8 m/s以内;底层总体涨落潮平均流速都在0.5 m/s以内;从盐度的平面分布来看,磨刀门水道近口门河段总体呈现涨潮时水道东侧盐度高于西侧,落潮时东侧盐度小于西侧的趋势。大潮和中潮期间,落潮时盐水向上游的入侵距离反而较涨潮时更远,主要原因是,落潮时的底层盐水向上游的补偿流动以及地形阻拦形成更为强烈的紊动扩散。潮汐动力弱(小潮)时,整个水道内水流流速很小,流态平缓,紊动较弱,总体仍呈现涨潮时入侵距离大于落潮,显示枯季磨刀门水道盐水入侵的主要影响因素取决于地形和潮动力。  相似文献   

16.
长江口盐度的时空变化特征及其指示意义   总被引:23,自引:4,他引:19  
2003年2,7月在长江口进行了枯、洪季大规模综合水文测验,布控范围西自江阴东至口外-20m,测验站点覆盖4条入海汊道.测验资料统计分析表明:(1)径流大小、汊道分流比、潮汐强弱和地形条件是控制盐度时空变化的主要要素;(2)在盐度空间分布上从大至小的顺序是:北支,南槽,北槽,北港口;(3)北支枯季发生盐水倒灌南支,而洪季可有一半以上区段为淡水所控;在其他3个入海汊道中,北港口门段是长江口盐淡水混合相对最弱的区段,盐度潮周期变幅最大,但洪枯变幅最小;南槽的盐淡水混合较强,盐度潮周期变幅较小,但洪枯变幅很大;北槽介于两者之间.(4)盐度时空变化反映洪季北支、南港和南槽分流比都有所增加.  相似文献   

17.
长江河口北槽弯道横向次生流、混合与层化   总被引:1,自引:0,他引:1  
2013年2月25至26日(枯季/大潮)、7月23至24日(洪季/大潮)分别在长江河口北槽弯道沿着3条横向测线CS6、CSW和CS3(每条测线上有北、中、南3个站位)测得水位、流速、盐度和含沙量的时间序列资料。通过这些资料的定量计算、分析,理解弯道横向次生流、混合与层化的时、空变化和各种物理机制及其相对重要性。3条横向测线均存在横向次生流,且横向测线CS3还出现横向次生环流。枯、洪季,仅在横向测线CS6、CS3出现环状欧拉余流。枯、洪季,沿着横向测线CS3,3个站位的横向斜压梯度比离心加速度和科氏加速度都大1~2个数量级,而后两项大小接近且数量级都是10-4,罗斯贝数在1左右。这些表明:横向次生流受横向斜压梯度、离心加速度和科氏加速度共同驱动,前一项相对于后两项更加重要。沿着3条横向测线:1)枯、洪季大潮,平均势能差异分别约为54.23、66.56 J/m3,表明洪季层化强于枯季;2)枯季涨潮,平均的势能差异普遍小于落潮,而洪季涨潮,平均的势能差异普遍大于落潮,表明枯、洪季湍流混合均存在潮汐不对称性;3)枯季,由横向、纵向水深平均应变(ΦS-y、ΦS-x)引起的势能差异变化率的范围分别是-67×10~(-3)~37×10~(-3)、-7×10~(-3)~11×10~(-3)W/m~3,而洪季,相应的范围分别是-45×10~(-3)~30×10~(-3)、-14×10~(-3)~13×10~(-3)W/m~3,表明枯、洪季差异不明显,横向水深平均应变(ΦS-y)均大于纵向水深平均应变(ΦS-x),前项对水体混合与层化的影响更大;4)枯季大潮,纵向平流(ΦA-x)、横向平流(ΦA-y)、纵向水深平均应变(ΦS-x)和横向水深平均应变(ΦS-y)的潮汐平均绝对值占四项总和之比例分别为26%、33%、18%和23%,而洪季大潮,相应的值的比例分别为13%、9%、22%和56%,表明枯季,平流项(ΦA-y最大)对混合与层化的控制可能占主导地位;洪季,应变项(ΦS-y最大)可能占主导地位。无量纲数(m)被用于判别横向平流(ΦA-y)、横向水深-平均应变(ΦS-y)的相对重要性。一个概念性模式被用于显示层化与横向次生流/环流的相互关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号