首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
南海北部陆坡海底峡谷形成机制探讨   总被引:3,自引:0,他引:3  
通过对南海北部地震剖面的解释,并结合地貌以及区域地质特征等,对发育于南海北部陆坡区的珠江口外、台湾浅滩南以及澎湖海底峡谷的地貌和构造特征进行分析和对比,并对其形成机制进行探讨。研究结果显示,各海底峡谷具有相似的走向,并均具有转向的特征,但是其形成机制却各不相同,由此形成的地貌特征也各不同:珠江口外海底峡谷的形成与珠江带来的大量陆上沉积物的搬运相关,形成了喇叭型的水道;台湾浅滩南海底峡谷的形成受到NW向断裂构造的控制,这些断裂构造形成了薄弱带,经过沉积流的侵蚀而形成狭长的水道,当进入下陆坡后由于海山的阻隔作用而转为近EW向;澎湖海底峡谷带的上段主要是由陆坡沉积流的下向侵蚀、崩塌和滑移形成的,而其下段则主要具有沿马尼拉海沟北向延伸段发育的特征。  相似文献   

2.
基于高分辨率二维地震资料,对南海西北缘深水水道体系的形态、内部结构、地震反射特征及其演化过程进行了精细刻画。深水水道体系西起莺歌海盆地,经琼东南盆地向东延伸至双峰盆地,整个体系划分为峡谷-水道、水道-朵体转换带、水道-朵体复合体、水道-朵体外缘4个沉积单元,总结其在外部形态、侵蚀深度、宽度、加积方式、内部充填结构特征、所受地形限制性等方面的逐步演化过程。峡谷-水道是以侵蚀作用为主的单一限制性水道体,水道两侧发育5种不同的陆坡类型,分别为进积型陆坡、滑塌型、水道化陆坡、宽缓型陆坡以及陡坡型陆坡。不同的陆坡类型对水道产生的限制性程度不同,导致水道侵蚀宽度以及堤坝的横向展布幅度不同,其中在宽缓型陆坡区规模最大。在中央峡谷口发育水道-朵体转换带,由于受到地形限制性降低,单一水道体产生分支形成低限制性水道复合体。在双峰盆地内,由于地形平缓开阔,发育非限制性水道-朵体复合体,水道体以侧向加积作用为主,侵蚀作用减弱,堤坝展布范围增大至几千米,最终水道消亡,形成大面积席状砂沉积。整个深水水道体系的发育与陆坡类型、古地貌形态以及物源密切相关。  相似文献   

3.
海底峡谷在全球陆缘广泛分布,是浅海沉积物向深海运移的主要通道,对于理解深海浊流触发机制、深海沉积物的搬运模式、深海扇的发育历史和深海油气资源勘探等均具有重要意义。本文基于高分辨率高精度的多波束测深数据,首次对南海东北部海底峡谷体系进行了研究,精细刻画了高屏海底峡谷、澎湖海底峡谷、台湾浅滩南海底峡谷和东沙海底峡谷等4条大型海底峡谷的地貌特征并分析其发育控制因素。海底坡度、构造运动、海山与海丘是影响南海东北部峡谷群走向与特征的重要因素,其中,海底坡度对于峡谷上游多分支与“V”字特征有显著的控制作用;构造运动是控制高屏海底峡谷走向的因素,澎湖海底峡谷的走向则与菲律宾海板块与欧亚板块碰撞有关,东沙海底峡谷的走向则与东沙运动相关,台湾浅滩南海底峡谷上段受NW向断裂构造的控制;海山的阻挡作用造成峡谷局部走向和特征改变。海底峡谷群输送大量陆源沉积物到深海盆并形成大面积的沉积物波,海山和沉积物波的发育导致东沙海底峡谷下段“回春”和转向。  相似文献   

4.
利用高分辨率地震资料,研究了南海北部白云凹陷中新世以来的陆坡峡谷沉积和迁移特征及其对动态似海底反射(BSR)的影响。白云凹陷陆坡区浊流和底流共同作用形成了大型单向迁移峡谷沉积体系。峡谷的沉积过程包括侵蚀为主阶段、侵蚀-沉积共同作用阶段及沉积为主阶段。峡谷沉积相主要包括峡谷侵蚀基底、谷底沉积、谷内滑塌块体搬运沉积及侧向倾斜沉积层等4个单元。峡谷的迁移造成含天然气水合物脊部两侧不同的侵蚀-沉积环境,因此,脊部两侧BSR反射特征也不同。随着峡谷迁移的进行,在峡谷侵蚀侧翼处,沉积物被侵蚀,天然气水合物稳定带底界将发生下移,BSR反射特征为多轴较连续反射;而峡谷沉积侧翼处,沉积物增厚,天然气水合物稳定带将发生上移,BSR反射特征为单轴连续反射。  相似文献   

5.
海底峡谷作为海洋中油气勘探的重要指示器和富集场所,研究其复杂的水动力系统变得十分重要。海底峡谷中水动力系统包括了重力流、浊流、潮汐/内潮汐、内波、底层流、上升流和高密度陆架瀑布流(Dense Shelf Water Cascading)等要素,与峡谷外有明显的不同。首次从海底峡谷水动力系统的综合概况出发,研究了水动力作用对峡谷的侵蚀、沉积物的搬运与沉积以及特殊生态系统的塑造,总结分析了峡谷中水动力系统的主要研究手段。结果表明,海底峡谷中的水动力作用由于成因不同,各自的表现特征也不一样;重力流、内潮汐、上升流等水动力作用对峡谷的形态地貌、物质搬运以及生态系统的影响较为显著;对于常用的4种水动力系统的研究方法而言,其研究背景各不相同,且存在一定的局限性。本文为我国海底峡谷水动力系统的研究起到了一定的指导作用。  相似文献   

6.
海底峡谷沉积物来源、输运机制和沉积过程的研究一直是深水沉积体系研究的关键,也是近年来深海浊流沉积研究中的热点问题。对"蛟龙号"第140潜次在南海北部台湾峡谷中段3个站位获取的沉积物短柱的粒度、有孔虫和黏土矿物进行综合分析,结果表明3个短柱上部均以粒度较细、变化较小并含半深海—深海环境的底栖有孔虫为特征的半深海沉积,下部以粒度明显变粗、含有较多浅水种底栖有孔虫的浊流沉积为主。AMS~(14)C测年结果显示该浊流沉积形成于约150aBP,表明台湾峡谷中段有典型的近现代浊流活动。此外,黏土矿物组成表明研究区正常半深海沉积与浊流沉积物源主要来自台湾,其次为珠江和吕宋岛的碎屑沉积物。  相似文献   

7.
利用高分辨率三维地震资料,在珠江口白云凹陷三维工区中发现形态以及发育特征相似的7个海底峡谷.通过对其现今地貌特征研究,将其分为上、中、下段.综合地震反射振幅、连续性及外部结构形态等信息,识别出了峡谷侵蚀基底、谷底沉积、谷壁滑塌等峡谷地震相单元.结合峡谷不同位置处的各类地震相的发育情况,可知峡谷的这3个地貌单元具有不同的...  相似文献   

8.
海底峡谷是大陆边缘最重要的地貌形态之一,是沉积物和陆源有机质向深海搬运的主要通道,在深海重力流沉积、全球碳循环、生物多样性、油气-水合物资源勘探及海底工程设施安全运营等方面的研究中具有重要意义。大量研究发现,海底峡谷常发育于构造活动较强烈的地区,其形成和演化与构造变形之间存在密切的关联。在文献调研基础上,着重就构造活动对海底峡谷地貌的控制作用进行综述。总结了5种与构造变形有关的海底峡谷平面分布端元模式,分别为限制型、转向型、偏转型、阻挡型及横向切穿型海底峡谷。分析了局部坡度变化对峡谷内部地貌特征的影响:构造变形引起的局部地形坡度增大会导致海底峡谷内部侵蚀作用的加剧与裂点的形成;局部地形坡度减小容易引起天然堤和决口扇的形成;坡度的变化还会引起峡谷弯曲度的动态响应。  相似文献   

9.
基于最新的高分辨率多波束全覆盖测深数据、单道地震和多道地震剖面数据,对南海北部陆坡一统峡谷群9条峡谷的地形地貌及沉积特征进行了分析:峡谷群自陆坡向深海盆方向呈聚敛型,横断面主要呈"V"型,谷壁对称发育,坡度较陡;研究区海底地层受多条断裂控制,呈典型阶梯状发育,海底断陷、重力滑塌面和小型滑坡体等海底不稳定地质灾害高度发育,说明峡谷群海底环境处于极不稳定状态。在研究区海底峡谷群地貌演化过程中,西沙海槽区域沉降等新生代构造运动控制着峡谷群地貌格局的形成;来自北部陆架的充足沉积碎屑物质的输入往往伴随着高密度浊流、海底滑坡、坍塌等海底灾害的发生,控制着峡谷群的进一步发育;相对海平面变化直接改变了研究区的沉积环境,为陆源碎屑物质的搬运提供了更加直接的通道,这也是诱发陆坡海底失稳、塑造峡谷群地貌特征的重要因素之一。  相似文献   

10.
南海北部陆坡神狐海域发育众多海底峡谷,其物质来源、地貌形态、水动力条件、沉积过程复杂,海底滑坡和浊流频发。虽然通过地球物理(多波束和反射地震等)能够识别出数米至百米的滑坡体,但对于浅层海底重力流、浊流和异重流等沉积体系的高分辨率识别还受到很多限制。本研究以南海北部陆坡海底峡谷群12号峡谷脊部下游的SH-CL38站位岩芯沉积物为研究对象,通过粒度测试和浮游有孔虫氧同位素组成分析,将该站位岩芯划分为3个层段:第Ⅰ层段(0~285 cm)、第Ⅱ层段(285~615 cm)以及第Ⅲ层段(615~800 cm)。其中第Ⅱ层段的粒度参数、有孔虫的氧同位素组成明显不同于其他层段,这表明该层段形成时的水动力条件、沉积环境发生了突变。而且第Ⅱ层段的285~505 cm和505~615 cm具有明显不同的概率累积曲线特征,粒度数据也分布在C-M图上不同的区域。基于此,我们认为该站位的异常沉积层是受深水沉积作用和末次冰期海平面变化的影响,285~505 cm层段发育浊流沉积,而505~615 cm层段可能是浊流或重力流引发的沉积物失稳。  相似文献   

11.
南海北部陆坡发育众多海底峡谷,其形成、发育、演化过程都存在较大差异。本文选取南海北部陆坡典型的珠江口外海底峡谷群、东沙海底峡谷、台湾浅滩南海底峡谷和澎湖海底峡谷进行研究,通过高分辨率多道地震数据和多波束测深数据,结合前人研究成果,对4条典型海底峡谷的形态特征、沉积充填特征及结构、形成发育过程及控制因素进行研究。结果表明,南海北部陆缘各个海底峡谷的形成受多个控制因素的影响,其影响程度及方式都有差别。构造活动、海平面变化及沉积物重力流与海底峡谷的演化密切相关,而陆地河流和局部构造因素也以不同方式影响着海底峡谷的发育。对于发育在主动大陆边缘的台湾岛东南侧的澎湖海底峡谷,其板块运动和岩浆活动活跃,其上发育的海底峡谷的控制因素以内营力地质作用为主。而具有被动大陆边缘属性的其他3条峡谷,由于构造运动较少或停止,其上发育的海底峡谷的控制因素以外营力地质作用为主。  相似文献   

12.
The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.  相似文献   

13.
Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified:the canyons, fractural valley and submarine terrace on the north of Chiwei Island where is a structural transition zone between the southern trough and the middle trough. The Chiwei Canyon and the North Chiwei Canyon are two of the largest canyons in the East China Sea (ECS) slope. Topographic features and architectures of them are described. The study shows that both of them are originated along faults. The evolution and spatial distribution of topographic units in the study area are controlled mainly by three groups of faults which were formed and reactive in the recent extensional phase of Okinawa Trough. The Chiwei Canyon was initiated during the middle Pleistocene and guided by F4 that is a N-S trending fault on the slope and F1, a large NW-SE trending fault on the trough. The pathway migration from the remnant channel to the present one of Chiwei Canyon is the result of uplift of tilted fault block that is coupled to the recent extension movements of the southern trough. The submarine terrace is detached from the ECS slope by the NEE-trending fault. The North Chiwei Canyon, developing during the late Pleistocene, is guided by F5, a N-S trending fault, diverted and blocked by the submarine terrace.  相似文献   

14.
Based on new multibeam bathymetric data and about 300 km long single seismic profiles, three topographic units were identified: the canyons, fractural valley and submarine terrace on the north of Chiwei Island where is a structural transition zone between the southern trough and the middle trough. The Chiwei Canyon and the North Chiwei Canyon are two of the largest canyons in the East China Sea (ECS) slope. Topographic features and architectures of them are described. The study shows that both of them are originated along faults. The evolution and spatial distribution of topographic units in the study area are controlled mainly by three groups of faults which were formed and reactive in the recent extensional phase of Okinawa Trough. The Chiwei Canyon was initia- ted during the middle Pleistocene and guided by F4 that is a N--S trending fault on the slope and F1, a large NW--SE trending fault on the trough. The pathway migration from the remnant channel to the present one of Chiwei Canyon is the result of uplift of tilted fault block that is coupled to the recent extension movements of the southern trough. The submarine terrace is detached from the ECS slope by the NEE -trending fault. The North Chiwei Canyon, developing during the late Pleistocene, is guided by FS, a N-S trending fault, diverted and blocked by the submarine terrace.  相似文献   

15.
Based on the interpretation of high resolution 2D/3D seismic data,sedimentary filling characteristics and fullfilled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied.The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma(T40),at which the canyon began to develop due to the scouring of turbidity currents from west to east.During the period of 11.6–8.2 Ma(T40–T31),strong downcutting by gravity flow occurred,which led to the formation of the canyon.The canyon fillings began to form since 8.2 Ma(T31) and were dominated by turbidite deposits,which constituted of lateral migration and vertical superposition of turbidity channels during the time of8.2–5.5 Ma.The interbeds of turbidity currents deposits and mass transport deposits(MTDs) were developed in the period of 5.5–3.8 Ma(T30–T28).After then,the canyon fillings were primarily made up of large scale MTDs,interrupted by small scale turbidity channels and thin pelagic mudstones.The Central Canyon can be divided into three types according to the main controlling factors,geomorphology-controlled,fault-controlled and intrusionmodified canyons.Among them,the geomorphology-controlled canyon is developed at the Ledong,Lingshui,Songnan and western Baodao Depressions,situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt.The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression.Intrusion-modified canyon is only occurred in the Songnan Low Uplift,which is still mainly controlled by geomorphology,the intrusion just modified seabed morphology.The full-filled time of the Central Canyon differs from west to east,displaying a tendency of being successively late eastward.The geomorphology-controlled canyon was completely filled before3.8 Ma(T28),but that in intrusion-modified canyon was delayed to 2.4 Ma(T27) because of the uplifted southern canyon wall.To the Changchang Depression,the complete filling time was successively late eastward,and the canyon in eastern Changchang Depression is still not fully filled up to today.Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities.Due to sufficient supply of turbidity currents and MTDs from west and north respectively,western segment of the Central Canyon is entirely filled up earlier.Owing to slower sediment supply rate,together with differential subsidence by deep-seated faults,the full-filled time of the canyon is put off eastwards gradually.  相似文献   

16.
The Baiyun submarine slide complex (BSSC) along the Pearl River Canyon of the northern South China Sea has been imaged by multibeam bathymetry and 2D/3D seismic data. By means of maximum likelihood classification with slope aspect and gradient as inputs, the BSSC is subdivided into four domains, denoted as slide area I, II, III and IV. Slide area I is surrounded by cliffs on three sides and has been intensely reshaped by turbidity currents generated by other kinds of mass movement outside the area; slide area II incorporates a shield volcano with a diameter of approximately 10 km and unconfined slides possibly resulting from the toe collapse of inter-canyon ridges; slide area III is dominated by repeated slides that mainly originated from cliffs constituting the eastern boundary of the BSSC; slide area IV is distinguished by a conical seamount with a diameter of 6.5 km and a height of 375 m, and two slides probably having a common source that are separated from each other by a suite of residual strata. The BSSC is interpreted to be composed of numerous slide events, which occurred in the period from 10.5 to 5.5 Ma BP. Six specific factors may have contributed to the development of the BSSC, i.e., gas hydrate dissociation, gas-bearing sediments, submarine volcanic activity, seismicity, sedimentation rate and seafloor geomorphology. A 2D conceptual geological model combining these factors is proposed as a plausible mechanism explaining the formation of the BSSC. However, the BSSC may also have been affected by the Dongsha event (10 Ma BP) as an overriding factor.  相似文献   

17.
Here we present results from a suite of laboratory experiments that highlight the influence of channel sinuosity on the depositional mechanics of channelized turbidity currents. We released turbidity currents into three channels in an experimental basin filled with water and monitored current properties and the evolution of topography via sedimentation. The three channels were similar in cross-sectional geometry but varied in sinuosity. Results from these experiments are used to constrain the run-up of channelized turbidity currents on the outer banks of moderate to high curvature channel bends. We find that a current is unlikely to remain contained within a channel when the kinetic energy of a flow exceeds the potential energy associated with an elevation gain equal to the channel relief; setting an effective upper limit for current velocity. Next we show that flow through bends induces a vertical mixing that redistributes suspended sediment back into the interiors of depositional turbidity currents. This mixing counteracts the natural tendency for suspended sediment concentration and grain size to stratify vertically, thereby reducing the rate at which sediment is lost from a current via deposition. Finally, the laboratory experiments suggest that turbidity currents might commonly separate from channel sidewalls along the inner banks of bends. In some cases, sedimentation rates and patterns within the resulting separation zones are sufficient to construct bar forms that are attached to the channel sidewalls and represent an important mechanism of submarine channel filling. These bar forms have inclined strata that might be mistaken for the deposits of point bars and internal levees, even though the formation mechanism and its implications to channel history are different.  相似文献   

18.
Most submarine canyons are erosive conduits cut deeply into the world’s continental shelves through which sediment is transported from areas of high coastal sediment supply onto large submarine fans. However, many submarine canyons in areas of low sediment supply do not have associated submarine fans and show significantly different morphologies and depositional processes from those of ‘classic’ canyons. Using three-dimensional seismic reflection and core data, this study contrasts these two types of submarine canyons and proposes a bipartite classification scheme.The continental margin of Equatorial Guinea, West Africa during the late Cretaceous was dominated by a classic, erosional, sand-rich, submarine canyon system. This system was abandoned during the Paleogene, but the relict topography was re-activated in the Miocene during tectonic uplift. A subsequent decrease in sediment supply resulted in a drastic transformation in canyon morphology and activity, initiating the ‘Benito’ canyon system. This non-typical canyon system is aggradational rather than erosional, does not indent the shelf edge and has no downslope sediment apron. Smooth, draping seismic reflections indicate that hemipelagic deposition is the chief depositional process aggrading the canyons. Intra-canyon lateral accretion deposits indicate that canyon concavity is maintained by thick (>150 m), dilute, turbidity currents. There is little evidence for erosion, mass-wasting, or sand-rich deposition in the Benito canyon system. When a canyon loses flow access, usually due to piracy, it is abandoned and eventually filled. During canyon abandonment, fluid escape causes the successive formation of ‘cross-canyon ridges’ and pockmark trains along buried canyon axes.Based on comparison of canyons in the study area, we recognize two main types of submarine canyons: ‘Type I’ canyons indent the shelf edge and are linked to areas of high coarse-grained sediment supply, generating erosive canyon morphologies, sand-rich fill, and large downslope submarine fans/aprons. ‘Type II’ canyons do not indent the shelf edge and exhibit smooth, highly aggradational morphologies, mud-rich fill, and a lack of downslope fans/aprons. Type I canyons are dominated by erosive, sandy turbidity currents and mass-wasting, whereas hemipelagic deposition and dilute, sluggish turbidity currents are the main depositional processes sculpting Type II canyons. This morphology-based classification scheme can be used to help predict depositional processes, grain size distributions, and petroleum prospectivity of any submarine canyon.  相似文献   

19.
Recent multibeam bathymetry and acoustic imagery data provide a new understanding of the morphology of the western part of the Gulf of Cadiz. The gulf is under the influence of a strong current, the Mediterranean Outflow Water (MOW). This current is at the origin of the construction of the giant Contourite Depositional System. Canyons and valleys with erosive flanks are observed. Only the Portimao Canyon is presently connected to the continental shelf. Channels occur on the continental shelf but are presently disconnected from the deeper network of channels and valleys. Slumps are localized in steep slope areas. They are caused by oversteepening and overloading, sometimes probably associated with earthquake activity. Slumps transform sharply into turbidity currents, depositing turbidites on the floor of deep valleys. Interaction of the MOW and gravity currents is suggested by the filling of the incisions located on the drifts below the present seafloor, the shifting of valleys and canyons in the direction of the MOW flow inducing an unusual phenomenon of capture of submarine valleys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号