首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
张守文  王辉  姜华  杜凌 《海洋学报》2016,38(1):10-19
基于全球降水气候态计划(GPCP)的降水资料和美国伍兹霍尔海洋研究所(WHOI)的客观分析海气通量(OAFlux)的蒸发数据,对CMIP5的13个耦合模式的淡水通量历史模拟结果进行评估。结果表明:模式能够模拟出淡水通量的气候态空间分布,但普遍存在双热带辐合带(ITCZ)现象,热带海域是模式模拟不确定性最大的区域。模式能较好模拟出纬向平均的淡水通量的分布特征,但量值较实测偏小,且由于模式对1月10°S附近淡水通量的模拟过低,导致年平均的赤道和10°S之间的淡水通量模拟存在明显的偏差。季节尺度上,模式对北半球淡水通量的变化特征有很好的模拟能力,但对南半球的模拟能力不足。年际尺度上,模式普遍能够刻画ENSO引起的淡水通量在太平洋中部同西太平洋以及印尼贯通流反相变化的空间分布特征,但是时间特征模拟很差。从各个方面评估模式的历史模拟结果,多模式集合的结果都要优于单个模式的结果。全球变暖背景下,未来淡水通量变化最显著的区域位于热带和亚热带区域。原本蒸发(降水)占主导的海域,蒸发(降水)更强。不同气候情景下,淡水通量变化的空间形态没有显著变化,但RCP8.5气候情景下模拟的淡水通量变化幅度及模式间变化的一致性均强于RCP4.5的结果。  相似文献   

2.
北太平洋热带辐合带区上升运动的季节和年际变化特征   总被引:2,自引:0,他引:2  
本文利用NCEP/NCAR再分析资料研究北太平洋热带辐合带区上升运动(ITCZω)强度和位置的垂直结构及其季节和年际变化。结果表明,气候平均态下西(东)ITCZω在高(低)层最强,低(高)层最弱,其位置随高度不变(偏北)。西ITCZω在8月最强,9月位置最北,2月最弱,位置最南;东ITCZω在8、9月最强,9月最北,2、3月最弱,位置最南,但中、高层的ω在11月也很弱。ITCZω强度最强(弱)的时间一般与位置的快速北跳(快速南撤)的时间相对应,并且有位置变化超前强度变化的表现。通过对ω气候值和异常值的经验正交函数分解,发现气候值EOF第一模态能很好的反映ITCZω的基本气候状态,具有准半年周期,第二模态反映了ITCZω的季节变化特征;异常值EOF第一模态空间场呈现东西反位相的特征,时间序列的功率谱分析最明显的周期为4.8 a。西ITCZω强度在厄尔尼诺年偏弱,拉尼娜年偏强;东ITCZω位置在厄尔尼诺年偏南,拉尼娜年位置则偏北。总体上ENSO事件对东ITCZω位置影响较大,而对西ITCZω强度影响较大。  相似文献   

3.
利用第五次和第六次国际间耦合模式比较计划(coupled model intercomparison project, CMIP)中全球气候模式的历史时期和未来增暖情景模拟结果,结合观测资料,文章对比评估了23个CMIP6模式和32个CMIP5模式对El Ni?o多样性的模拟能力,并预估了东部(eastern Pacific, EP)型和中部(central Pacific, CP)型El Ni?o对未来全球变暖的响应特征。结果表明,绝大多数CMIP5/6气候模式能够合理地模拟El Ni?o的多样性特征,且CMIP6多模式的模拟性能较CMIP5有明显提升。CMIP6模式不仅减弱了EP型El Ni?o空间模态模拟的离散性,而且还显著提高了CP型El Ni?o空间模态的模拟能力; CMIP5/6多模式基本能够模拟出两类El Ni?o的季节锁相性特征,但CP型El Ni?o衰亡时间较观测明显滞后3个月;同时CMIP5/6多模式模拟的EP型El Ni?o强度与观测值较为接近,但CP型El Ni?o的振幅却强于观测。在未来全球变暖背景下, CP型ElNi?o事件的发生频率相对于EP型事件将趋于降...  相似文献   

4.
讨论了西中太平洋经向大气环流的年际变化特征,其中西太平洋区(WP)和中太平洋区(CP)EOF分解的第一模态分别是WP的负异常Hadley环流和CP的正异常Hadley环流,其时间系数与Nio3.4指数极为一致;第二模态的最显著空间特征是两区都在5°N~15°N有异常上升,但其时间系数与Nio3.4指数同期相关很低。西中太平洋有2类海表面温度异常(SSTa),通过其上的深对流潜热加热驱动异常Hadley环流:El Nio型驱动了WP区和CP区赤道区符号相反的第一模态异常环流型;热带辐合带(ITCZ)型驱动了WP区和CP区5°N~15°N区符号一致的第二模态异常环流。  相似文献   

5.
以美国国家海洋和大气局-环境科学协作研究所(NOAA-CIRES)二十世纪大气再分析数据集第二套c版(Twentieth-Century Reanalysis Dataset Version 2c;20CR V2c)资料所提取的二十世纪北太平洋大气环流模态作为观测参考值,利用泰勒图方法与谱分析方法,分别对太平洋北美型遥相关(Pacific-North America Teleconnection;PNA)与北太平洋涛动(North Pacific Oscillation;NPO)模态在国际耦合模式比较计划第三阶段(Coupled Model Intercomparison Project Phase 3;CMIP3)与CMIP5两套多模式数据集合中的表现进行了从空间型到时间周期的综合评估与对比分析工作,并对PNA的4个异常中心以及NPO的2个偶极子进行简化命名。评估结果表明:整体上CMIP5模式对PNA与NPO的空间型模拟能力要优于CMIP3模式,80%的CMIP5模式都能很好的体现与观测PNA/NPO模态相近的空间分布与振幅,而CMIP3模式只能达到约60%。在模式模拟优秀率上,CMIP5也远高CMIP3约10%。在使用谱分析方法对两套资料对时间模拟能力评估结果表明:CMIP5相比于CMIP3并没有太大的进步,整体合格率与CMIP3持平。其中大部分模式能够很好的模拟出同观测一致的PNA 1~2年和4~6年的年际周期,对其20~25年的年代际周期的模拟相对较差;而对NPO来说,更多模式的功率峰值都在1~2年周期上,而且只有约一半模式能够体现与观测相同的2~4年周期。  相似文献   

6.
青藏高原中东部夏季降水主要表现为东北和东南反位相变化的双极型特征。采用经验正交函数(empirical orthogonal function,EOF)分解方法,系统性地评估参与第五次耦合模式比较计划 (Coupled Model Intercomparison Project Phase 5,CMIP5)历史模拟试验的 47 个模式对青藏高原中东部夏季降水双极型变化特征的模拟能力。结果表明,大多数模式基本可以反映青藏高原中东部夏季降水东北部和东南部反位相的变化特征。模式间 EOF 分析结果表明在35°N 以南的东西向模拟偏差是 CMIP5 模式模拟降水空间型态的主要偏差,且大多数模式对时间系数的模拟效果差于空间型态。文中定义了一个综合评估指标 Snew 来定量描述模式对空间型态、时间系数以及方差贡献的综合模拟效果。由定量评估结果来看,MIROC-ESM、HadGEM2-CC 和 ACCESS1-0 (FIO-ESM、 HadGEM2-AO 和 MIROC-ESM-CHEM)模式对观测降水的 EOF1(EOF2)模态的综合模拟能力相对较好,而 GISS 系列模式、CESM1-CAM5 和 MPI-ESM-LR (CMCC-CESM、MPI-ESM-MR 和 GFDL- CM3)模式对观测降水的 EOF1(EOF2)模态的综合模拟效果较差。由 EOF1 和 EOF2 的综合评估结果来看,MIROC-ESM-CHEM模式对观测降水的 EOF1 和 EOF2 模态的综合模拟效果最好。  相似文献   

7.
太平洋沃克环流(Pacific Walker Circulation, PWC)是热带太平洋上空至关重要的大气环流系统, 但其在全球变暖背景下的长期变化仍存在争议, 换而言之, 沃克环流增强或减弱仍是有待回答的科学问题之一。观测表明近30年PWC呈增强趋势, 而气候模式无法得出观测的趋势。文章分析了参加第五次耦合模式比较计划(Coupled Model Inter-comparison Project Phase 5, CMIP5)的18个耦合模式模拟的PWC变化。结果表明, 大部分耦合模式能够较好地再现PWC的气候态分布特征, 但不能给出其加强的趋势。究其原因, 主要取决于模式对海表温度(SST)变化的模拟能力, 能模拟出PWC加强的耦合模式, 其模拟的SST趋势分布与观测相近[即类拉尼娜(La Niña)型], 但仍存在一定差异; 而模拟出PWC减弱的耦合模式, 其模拟的SST趋势分布表现为类厄尔尼诺(El Niño)型, 这与观测不符。对于后者, 如果用观测的SST驱动其大气模式却能够模拟出PWC的加强, 从另一方面也说明了SST变化对于PWC长期变化的主导作用。因此, CMIP5模式要想合理地预估PWC在全球变暖背景下的变化, 需要提高对于热带太平洋SST变化的模拟能力。  相似文献   

8.
热带太平洋是影响全球气候系统的重要区域,热带太平洋海表温度(SST)的长期变化趋势模拟是国际研究领域关注的热点。基于12个参加第六期国际耦合模式比较计划(CMIP6)的模式结果,本研究对1950年至1999年间多模式模拟得到的热带太平洋SST增暖现象进行了初步评估。结果表明,不同模式对热带太平洋SST增暖的模拟能力差别较大,特别在赤道东太平洋区域,部分模式模拟得到了偏强的SST降温趋势,与实际观测中的SST增温趋势相反,多模式集合平均结果给出了中部型厄尔尼诺事件的增温趋势。通过引入SST增暖变率分析方法,本研究对多模式模拟的热带太平洋SST在过去50 a中的增暖内在变化进行了进一步评估,结果表明目前各模式对热带太平洋SST增暖变率模拟偏弱,空间分布差异较大。  相似文献   

9.
在北半球的春季,热带三大洋的海洋–大气系统年际变化会对同期太平洋厄尔尼诺–南方涛动(ElNi?o-Southern oscillation,ENSO)产生响应,同时也能通过区域海洋–大气耦合过程影响ENSO的发展。基于国际公开使用的海表温度资料和降水资料,通过联合正交经验分解方法分析,可以发现全球大洋春季存在两种显著的海气耦合模态。第一模态表现为:在热带中东太平洋,海表温度增暖、降水增多;在热带大西洋和热带印度洋,降水呈现经向偶极型分布以及跨赤道的海表温度梯度异常;即伴随ENSO在春季消亡期的空间型态,大西洋出现经向模态,印度洋出现反对称模态。第二模态表现为:太平洋经向海表温度和降水模态,即太平洋经向模态。回归分析结果表明, ENSO盛期的大气环流调整引起了热带大西洋和印度洋降水辐合带异常,并通过海面风场异常激发海盆内部的海洋–大气反馈,引起春季经向模态。进一步研究发现,冬、春季大西洋和印度洋热带辐合带分别位于赤道以北和以南,导致两个海盆经向模态的降水异常相对赤道呈反对称分布。在春季,太平洋经向模态的暖中心延伸到赤道上,引起西风异常,为后续El Ni?o的发展提供了有利条件。文章揭示了...  相似文献   

10.
热带太平洋海洋-大气耦合系统对全球变暖的响应是气候变化的热点问题。前人研究发现,气候模式的模拟偏差对于全球变暖响应结果有重要影响。本文利用美国大气研究中心(National Center for Atmospheric Research, NCAR)的地球系统模式(The Community Earth System Model,CESM)中的大气模式(Community Atmosphere Model version 5, CAM5)设计数值试验,在相同的SST(Sea Surface Temperature)增暖强迫下,通过改变海洋SST的年际变化振幅,来分析热带海洋年际变化强度的模拟对未来热带海区降水和大气环流场未来变化的影响。试验结果表明,随着SST年际变化强度的增加,全球变暖后热带太平洋降水变化的东西不对称性,以及向暖池区域辐合的风场变化等特征都逐渐减弱。进一步的分析发现,不同年际变化信号导致的大气场变化差异主要发生在冬季,是由于热带太平洋SST年际变化主模态ENSO(El Niňo-Southern Oscillation)的不对称性造成的:在厄尔尼诺年,强(弱)的年际变化信号会造成降水在东太平洋产生较大(小)的变化;而在拉尼娜年和正常年份,年际变化信号的强弱对热带降水变化的影响则不大。当热带海温的年际变化较大时,厄尔尼诺年的海温异常更强,造成的降水和风场的变化特征也会更加显著。  相似文献   

11.
基于第五次国际间耦合模式比较计划(The phase 5 of the Coupled Model Intercomparison Project,CMIP5)中在4.5 W/m^2的典型浓度路径(Representative Concentration Pathway,RCP4.5)试验结果,本文通过能量框架分析方法研究了全球变暖不同阶段热带辐合带(Intertropical Convergence Zone,ITCZ)的南北移动及其主要机制,发现在温室气体持续增加的海洋快响应和温室气体达到稳定后的海洋慢响应两个阶段,ITCZ的移动都和跨赤道的大气能量输送(Atmosphere Heat Transport,AHT)变化显著相关,但两者变化的原因在两个阶段中是不同的。在快响应阶段,ITCZ位置的移动以及跨赤道AHT受大气层顶(Top of the Atmosphere,TOA)的能量变化驱动,主要与南大洋云短波辐射响应、北半球中高纬度云和地表的短波辐射响应有关,气溶胶减少引起的辐射响应变化使得ITCZ在大多数模式中表现出向北移动的特征。在慢响应下辐射强迫保持稳定,ITCZ在大多数模式中表现出向南移动的特征。这一时期ITCZ的移动由大气表面能量通量变化驱动,主要与潜热通量变化的南北半球差异有关。全球变暖不同阶段ITCZ移动与大气能量输送变化的关系差异反映了海洋对于气候变化的重要调控作用。  相似文献   

12.
Threatening millions of people and causing billions of dollars in losses, tropical cyclones(TCs) are among the most severe natural hazards in the world, especially over the western North Pacific. However, the response of TCs to a warming or changing climate has been the subject of considerable research, often with conflicting results. In this study, the abilities of Coupled Model Intercomparison Project(CMIP) Phase 6(CMIP6) models to simulate TC genesis are assessed through historical simulation...  相似文献   

13.
Seventeen models participating in the Coupled Model Intercomparison Project phase 5(CMIP5) activity are compared on their historical simulation of the South China Sea(SCS) ocean heat content(OHC) in the upper 300 m. Ishii's temperature data, based on the World Ocean Database 2005(WOD05) and World Ocean Atlas 2005(WOA05), is used to assess the model performance by comparing the spatial patterns of seasonal OHC anomaly(OHCa) climatology, OHC climatology, monthly OHCa climatology, and interannual variability of OHCa. The spatial patterns in Ishii's data set show that the seasonal SCS OHCa climatology, both in winter and summer, is strongly affected by the wind stress and the current circulations in the SCS and its neighboring areas. However, the CMIP5 models present rather different spatial patterns and only a few models properly capture the dominant features in Ishii's pattern. Among them, GFDL-ESM2 G is of the best performance. The SCS OHC climatology in the upper 300 m varies greatly in different models. Most of them are much greater than those calculated from Ishii's data. However, the monthly OHCa climatology in each of the 17 CMIP5 models yields similar variation and magnitude as that in Ishii's. As for the interannual variability, the standard deviations of the OHCa time series in most of the models are somewhat larger than those in Ishii's. The correlation between the interannual time series of Ishii's OHCa and that from each of the 17 models is not satisfactory. Among them, BCC-CSM1.1 has the highest correlation to Ishii's, with a coefficient of about 0.6.  相似文献   

14.
The mean seasonal variability of turbulent heat fluxes in the tropical Atlantic Ocean is examined using the Woods Hole Oceanographic Institution(WHOI) flux product.The most turbulent heat fluxes occur during winter seasons in the two hemispheres,whose centers are located at 10°~20°N and 5°~15°S respectively.In climatological ITCZ,the turbulent heat fluxes are the greatest from June to August,and in equatorial cold tongue the turbulent heat fluxes are the greatest from March to May.Seasonal variability of sensible heat flux is smaller than that of latent heat flux and mainly is dominated by the variations of air-sea temperature difference.In the region with larger climatological mean wind speed(air-sea humidity difference),the variations of air-sea humidity difference(wind speed) dominate the variability of latent heat flux.The characteristics of turbulent heat flux yielded from theory analysis and WHOI dataset is consistent in physics which turns out that WHOI's flux data are pretty reliable in the tropical Atlantic Ocean.  相似文献   

15.
南太平洋副热带偶极子模式模拟评估   总被引:1,自引:1,他引:0  
为研究模式模拟南太平洋副热带偶极子的能力,本文利用CMIP5(CoupledModel IntercomparisonProjectPhase5)模式的模拟数据评估了15种模式模拟南太平洋副热带偶极子(South Pacific Subtropical Dipole, SPSD)时空分布的效果,并予以评分。结果表明:其中10种模式可以模拟出完整的SPSD生成发展过程,且SPSD的主要区域与观测较为接近,但其余5种模式在模拟强度、位置与观测有较大出入;所有模式在模拟SPSD生成阶段时比观测提前一个月出现偶极模态,1/4的模式海表面温度(sea surface temperature, SST)偶极异常可以追溯到6个月之前;潜热通量与SST的时空分布显示,潜热通量是影响偶极模态生成发展的主要因素。模态的变化主要受大气环流的调制,在模态发展最强时部分模式的正极上方有正潜热通量异常,即海洋向大气传递热量。分析显示模式模拟海气耦合过程中的SST模拟强度较观测偏强,气压方面与观测较为接近。  相似文献   

16.
地球系统模式FIO-ESM对北极海冰的模拟和预估   总被引:5,自引:3,他引:2  
评估了地球系统模式FIO-ESM(First Institute of Oceanography-Earth System Model)基于CMIP5(Coupled Model Intercomparison Project Phase 5)的历史实验对北极海冰的模拟能力,分析了该模式基于CMIP5未来情景实验在不同典型浓度路径(RCPs,Representative Concentration Pathways)下对北极海冰的预估情况。通过与卫星观测的海冰覆盖范围资料相比,该模式能够很好地模拟出多年平均海冰覆盖范围的季节变化特征,模拟的气候态月平均海冰覆盖范围均在卫星观测值±15%范围以内。FIO-ESM能够较好地模拟1979-2005年期间北极海冰的衰减趋势,模拟衰减速度为每年减少2.24×104 km2,但仍小于观测衰减速度(每年减少4.72×104 km2)。特别值得注意的是:不同于其他模式所预估的海冰一直衰减,FIO-ESM对21世纪北极海冰预估在不同情景下呈现不同的变化趋势,在RCP2.6和RCP4.5情景下,北极海冰总体呈增加趋势,在RCP6情景下,北极海冰基本维持不变,而在RCP8.5情景下,北极海冰呈现继续衰减趋势。  相似文献   

17.
This paper is focused on the seasonality change of Arctic sea ice extent(SIE) from 1979 to 2100 using newly available simulations from the Coupled Model Intercomparison Project Phase 5(CMIP5).A new approach to compare the simulation metric of Arctic SIE between observation and 31 CMIP5 models was established.The approach is based on four factors including the climatological average,linear trend of SIE,span of melting season and annual range of SIE.It is more objective and can be popularized to other comparison of models.Six good models(GFDL-CM3,CESM1-BGC,MPI-ESM-LR,ACCESS-1.0,Had GEM2-CC,and Had GEM2-AO in turn) are found which meet the criterion closely based on above approach.Based on ensemble mean of the six models,we found that the Arctic sea ice will continue declining in each season and firstly drop below 1 million km~2(defined as the ice-free state) in September 2065 under RCP4.5 scenario and in September 2053 under RCP8.5 scenario.We also study the seasonal cycle of the Arctic SIE and find out the duration of Arctic summer(melting season) will increase by about 100 days under RCP4.5 scenario and about 200 days under RCP8.5 scenario relative to current circumstance by the end of the 21 st century.Asymmetry of the Arctic SIE seasonal cycle with later freezing in fall and early melting in spring,would be more apparent in the future when the Arctic climate approaches to "tipping point",or when the ice-free Arctic Ocean appears.Annual range of SIE(seasonal melting ice extent) will increase almost linearly in the near future 30–40 years before the Arctic appears ice-free ocean,indicating the more ice melting in summer,the more ice freezing in winter,which may cause more extreme weather events in both winter and summer in the future years.  相似文献   

18.
To assess the performances of state-of-the-art global climate models on simulating the Arctic clouds and surface radiation balance, the 2001–2014 Arctic Basin surface radiation budget, clouds, and the cloud radiative effects(CREs) in 22 coupled model intercomparison project 6(CMIP6) models are evaluated against satellite observations. For the results from CMIP6 multi-model mean, cloud fraction(CF) peaks in autumn and is lowest in winter and spring, consistent with that from three satellite observation products(Cloud Sat-CALIPSO, CERESMODIS, and APP-x). Simulated CF also shows consistent spatial patterns with those in observations. However,almost all models overestimate the CF amount throughout the year when compared to CERES-MODIS and APP-x.On average, clouds warm the surface of the Arctic Basin mainly via the longwave(LW) radiation cloud warming effect in winter. Simulated surface energy loss of LW is less than that in CERES-EBAF observation, while the net surface shortwave(SW) flux is underestimated. The biases may result from the stronger cloud LW warming effect and SW cooling effect from the overestimated CF by the models. These two biases compensate each other,yielding similar net surface radiation flux between model output(3.0 W/m~2) and CERES-EBAF observation(6.1 W/m~2). During 2001–2014, significant increasing trend of spring CF is found in the multi-model mean,consistent with previous studies based on surface and satellite observations. Although most of the 22 CMIP6 models show common seasonal cycles of CF and liquid water path/ice water path(LWP/IWP), large inter-model spreads exist in the amounts of CF and LWP/IWP throughout the year, indicating the influences of different cloud parameterization schemes used in different models. Cloud Feedback Model Intercomparison Project(CFMIP)observation simulator package(COSP) is a great tool to accurately assess the performance of climate models on simulating clouds. More intuitive and credible evaluation results can be obtained based on the COSP model output. In the future, with the release of more COSP output of CMIP6 models, it is expected that those inter-model spreads and the model-observation biases can be substantially reduced. Longer term active satellite observations are also necessary to evaluate models' cloud simulations and to further explore the role of clouds in the rapid Arctic climate changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号