首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We present the derivation of the discrete Euler–Lagrange equations for an inverse spectral element ocean model based on the shallow water equations. We show that the discrete Euler–Lagrange equations can be obtained from the continuous Euler–Lagrange equations by using a correct combination of the weak and the strong forms of derivatives in the Galerkin integrals, and by changing the order with which elemental assembly and mass averaging are applied in the forward and in the adjoint systems. Our derivation can be extended to obtain an adjoint for any Galerkin finite element and spectral element system.We begin the derivations using a linear wave equation in one dimension. We then apply our technique to a two-dimensional shallow water ocean model and test it on a classic double-gyre problem. The spectral element forward and adjoint ocean models can be used in a variety of inverse applications, ranging from traditional data assimilation and parameter estimation, to the less traditional model sensitivity and stability analyses, and ensemble prediction. Here the Euler–Lagrange equations are solved by an indirect representer algorithm.  相似文献   

2.
厦门海域浅水三维潮流场动力学模型   总被引:2,自引:0,他引:2       下载免费PDF全文
基于Casulli的三维浅水模型,改进浅滩处理方法,并入简化的紊流闭合模型,形成完整的海洋动力学基本方程组,改进了紊流闭合模型的求解方法,动力学模拟结果与实测结果符合良好,海域中大量浅滩的干出与淹没的面积和位置与实际情况吻合良好.本模型是厦门海域海洋动力学理论研究中第一个完全的三维斜压潮流场模型,全部程序用FORTRAN语言独立开发和编写.  相似文献   

3.
《Ocean Modelling》2003,5(1):37-63
A stabilized finite-element (FE) algorithm for the solution of oceanic large scale circulation equations and optimization of the solutions is presented. Pseudo-residual-free bubble function (RFBF) stabilization technique is utilized to enforce robustness of the numerics and override limitations imposed by the Babuška–Brezzi condition on the choice of functional spaces. The numerical scheme is formulated on an unstructured tetrahedral 3d grid in velocity–pressure variables defined as piecewise linear continuous functions. The model is equipped with a standard variational data assimilation scheme, capable to perform optimization of the solutions with respect to open lateral boundary conditions and external forcing imposed at the ocean surface. We demonstrate the model performance in applications to idealized and realistic basin-scale flows. Using the adjoint method, the code is tested against a synthetic climatological data set for the South Atlantic ocean which includes hydrology, fluxes at the ocean surface and satellite altimetry. The optimized solution proves to be consistent with all these data sets, fitting them within the error bars.The presented diagnostic tool retains the advantages of existing FE ocean circulation models and in addition (1) improves resolution of the bottom boundary layer due to employment of the 3d tetrahedral elements; (2) enforces numerical robustness through utilization of the RFBF stabilization, and (3) provides an opportunity to optimize the solutions by means of 3d variational data assimilation. Numerical efficiency of the code makes this a desirable tool for dynamically constrained analyses of large datasets.  相似文献   

4.
We describe the development and preliminary application of the inverse Regional Ocean Modeling System (ROMS), a four dimensional variational (4DVAR) data assimilation system for high-resolution basin-wide and coastal oceanic flows. Inverse ROMS makes use of the recently developed perturbation tangent linear (TL), representer tangent linear (RP) and adjoint (AD) models to implement an indirect representer-based generalized inverse modeling system. This modeling framework is modular. The TL, RP and AD models are used as stand-alone sub-models within the Inverse Ocean Modeling (IOM) system described in [Chua, B.S., Bennett, A.F., 2001. An inverse ocean modeling system. Ocean Modell. 3, 137–165.]. The system allows the assimilation of a wide range of observation types and uses an iterative algorithm to solve nonlinear assimilation problems. The assimilation is performed either under the perfect model assumption (strong constraint) or by also allowing for errors in the model dynamics (weak constraints). For the weak constraint case the TL and RP models are modified to include additional forcing terms on the right hand side of the model equations. These terms are needed to account for errors in the model dynamics.Inverse ROMS is tested in a realistic 3D baroclinic upwelling system with complex bottom topography, characterized by strong mesoscale eddy variability. We assimilate synthetic data for upper ocean (0–450 m) temperatures and currents over a period of 10 days using both a high resolution and a spatially and temporally aliased sampling array. During the assimilation period the flow field undergoes substantial changes from the initial state. This allows the inverse solution to extract the dynamically active information from the synthetic observations and improve the trajectory of the model state beyond the assimilation window. Both the strong and weak constraint assimilation experiments show forecast skill greater than persistence and climatology during the 10–20 days after the last observation is assimilated.Further investigation in the functional form of the model error covariance and in the use of the representer tangent linear model may lead to improvement in the forecast skill.  相似文献   

5.
Baroclinic terms have been implemented in a three-dimensional fully hydrodynamic model developed by Badiei et al. [2008. A three-dimensional non-hydrostatic boundary fitted model for free surface flows. International Journal for Numerical Methods in Fluids, 56(6), 607-627] modifying its momentum equations to account for density gradients and utilizing the scalar (salinity, temperature, etc.) conservation equation (SCE) and a state equation for the calculation of density. In the solution of advection-diffusion terms of the governing Navier-Stokes equations (NSE) and SCE, a symmetric splitting method was applied to ensure the long-term stability of simulations. Correction terms proposed by Ruddic et al. (1995) were applied to SCE to ensure the conservation of the scalar quantity. In the presence of baroclinic terms, the zero gradient pressure in the vertical direction in the vicinity of surface and bottom boundaries assumed by Badiei et al. [2008. A three-dimensional non-hydrostatic boundary fitted model for free surface flows. International Journal for Numerical Methods in Fluids, 56(6), 607-627] created spurious currents. This problem was solved by assuming a hydrostatic pressure variation at those boundaries. The ability of extended model was validated by comparing its results with an experimental test case. The simulation of hydrodynamic and salt intrusion at Anzali Port located at the southern coasts of Caspian Sea in Iran was carried out by the model with both barotropic and baroclinic modes. The simulated results with baroclinic mode show a better agreement with measured data as compared to the results of barotropic mode that clearly demonstrate the significance of baroclinic terms in the simulation of cyclic intrusion of salt wedge into the Port Basin.  相似文献   

6.
关于二阶伴随模型的理论研究   总被引:9,自引:2,他引:7  
Hesse矩阵-目标函数关于控制变量的二阶偏导数形成的矩阵,在变分数据同化过程中以及敏感性分析等方面起着重要的作用;它可以通过建立数学模型的一阶和二阶伴随模型求得.以浅水方程模型为例,利用泛函的Gâteaux微分和Hilbert空间上伴随算子的概念,导出了一阶和二阶伴随模型并由此得到Hesse矩阵.改进了Zhi Wang等(1992)建立的二阶伴随模型理论.  相似文献   

7.
特征线计算格式下共轭方程两种导出途径的比较   总被引:1,自引:0,他引:1  
共轭方程的导出是建立资料同化模型的关键,其导出方式有两种途径:AFD形式与FDA形式。在特征线计算格式基础上针对一类较广泛海洋动力控制方程分析了其两种共轭方程(AFD形式与FDA形式)之间的关系,并将理论结果应用于波谱共轭方程的讨论。  相似文献   

8.
9.
A consistency between seasonal fluctuation of actual sea surface height (SSH) and those caused by mass and density variations in gyre-scale regions is examined. The SSH obtained from satellite altimetry (altimetric SSH) is adopted as the actual SSH. SSH caused by mass variation (mass-related SSH) is simulated using a barotropic global ocean model forced by water flux, wind stress and surface pressure. SSH caused by density variation (steric SSH) is calculated from water density profile, i.e. temperature and salinity profiles. The model SSH well represents mass-related SSH for gyre-scale regional means, and seasonal fluctuation of the altimetric SSH corrected for the model SSH is similar to that of steric SSH above a pressure level larger than 300 dbar. The results indicate that the mass-related SSH does not much respond to the baroclinic adjustment to the seasonally varying wind stress curl. The mass-related SSH forced by wind stress and surface pressure should be accounted for regional evaluation, though it is not necessary for global mean evaluation. Detection of steric SSH from altimetric SSH would be useful for assimilation approaches in which the altimetric SSH is treated as the variable reflecting subsurface temperature and salinity.  相似文献   

10.
Cong  L. Z.  Ikeda  M. 《Journal of Oceanography》1995,51(3):301-326
The variational assimilation method has been examined for ability of reconstructing mesoscale features in altimeter data using a simple dynamic model. A one-dimensional, two-layer Rossby wave model in a cross-track channel has been chosen. The simulated data are constructed from a theoretical solution, which is composed of any combination of two normal vertical (barotropic and baroclinic) modes. The data are collected along tracks and with repeat periods similar to those of the Geosat altimeter. The phase space of control variables is composed of initial and boundary conditions. A cost function is defined to measure differences between the simulated data and the model solution. Regularization (smoothing) terms are also included in the cost function in the form of secon-order spatial and time derivatives of the solution. In this paper, two potential problems existing in the altimeter data assimilation are addressed: one is low cross-track resolution, and the other is vertical projection of the data measured at the sea surface. A succesful metho is developed for reconstructing Rossby waves with wavelengths as short as twice the track intervals for any combination of two vertical modes. A key component to efficient assimilation is a preparation step prior to the actual variational assimilation: a uniform ratio of pressure amplitudes in the two layers is included as an optimization parameter. Starting with the first guess from the preparation step, the variational method is carried out based on adjoint equations without such constraint. Separation of the control variables into the two subsets of the initial and the boundary conditions is found useful. Characteristics of the Hessian matrix are related to the performance of this technique. The method developed for the linear system implies steps to be included in data assimilation for nonlinear meanders and eddies in a major current system as well.  相似文献   

11.
Using satellite altimetry measurement data for 1993–2013, we study the spectral characteristics of Rossby waves in the Northwestern Pacific (25°–50° N, 140°–180° E). For each latitude degree, we draw integral plots of spectral power density calculated with a two-dimensional Fourier transform (2D-FFT). We compare the dispersion equations of Rossby waves calculated from the WKB-approximation and an approximation of a two-layer ocean model with the empirical velocities determined by the slope of isopleths by the Radon method; also, we compare the dispersion equations with the spectral distributions of level variations. It is shown that the main energy of Rossby waves in the Northwestern Pacific corresponds to the first baroclinic mode. At almost all latitudes, there is good agreement between the empirical phase velocities calculated by isopleths by the Radon method and the theoretical values; also, the spectral peaks correspond to graphs of the dispersion equations for the first baroclinic mode Rossby waves, except for the Kuroshio region, where some peaks correspond to the second mode.  相似文献   

12.
The response of the thermocline to changes in atmospheric forcing are explored in two 50-year hindcast North Pacific model runs. The model runs only differ in their resolution and horizontal viscosity values. The thermocline response is explored through a modal decomposition. The first baroclinic mode response is qualitatively similar in both model runs, with a somewhat smaller response in the lower resolution model. This mode is primarily wind driven. The second baroclinic mode shows a larger response at midlatitudes in the low-resolution model than in the higher resolution model. This is consistent with the presence of very large-scale baroclinic instability in the return flow of the subtropical gyre at low-resolution, and represents a spurious response of the ocean model to large horizontal viscosity. This spurious mode of decadal variability in the thermocline is maintained even when there is variability in atmospheric forcing. This result suggests that care must be taken in interpretation of the realism of mid-latitude modes of variability centered in western boundary current extensions of coupled ocean–atmosphere models.  相似文献   

13.
Rapid changes of the oceanic circulation in a hierarchy of ocean models   总被引:1,自引:0,他引:1  
The response time of the large-scale oceanic circulation due to freshwater perturbations is investigated with models of different complexity. A three-dimensional ocean general circulation model (OGCM) and a zonally averaged ocean model are employed. In order to distinguish advection and diffusion from fast baroclinic processes (e.g. waves in the OGCM) a color tracer is injected at the same time and location as the freshwater discharges. In spite of the inability of the zonally averaged model to represent wave processes in a realistic way similarities with the OGCM are found for the propagation patterns of density anomalies and of color tracer. In the OGCM as well as in the zonally averaged model, density anomalies propagate faster than anomalies of a passive color tracer in the case of vertical density stratification. The progression of density anomalies leads to changes of the oceanic circulation, and both oceanic models exhibit circulation changes in areas distant from the discharge places long before the passively entrained color tracer has reached these regions. The fact that a zonally averaged model simulates baroclinic processes faster than advection even if internal gravity waves are not represented due to neglected acceleration terms, is clarified with a conceptual box model.  相似文献   

14.
15.
贾彬鹤  李威  梁康壮 《海洋学报》2021,43(10):61-69
传统的四维变分数据同化方法在同化观测资料的同时可以对数值模式参数进行优化,然而传统的四维变分方法需要针对不同的数值模式编写特有的伴随模式,因此算法的可移植性差,同时计算时耗费大量资源。本文提出了一种新的基于解析四维集合变分的参数优化方法,该方法以迭代搜索得到的模式参数为基准展开扰动并构建样本集合,由此显式地计算协方差矩阵,并得到代价函数极小值的解析解,从而避免了伴随模式的使用。基于Lorenz-63模型对该方法进行单参数和多参数数值试验和优化效果检验,并在不同的同化时间窗口长度和观测采样间隔情况下,采用传统四维变分方法与之进行对比,结果显示,新方法表现出与传统四维变分相同的优化性能,都能有效收敛到真值,而新方法不需要计算伴随模式,可移植性好。本文还测试了不同的集合成员个数和模式参数真值的情况下新方法的同化效果,结果表明,新方法对集合样本个数及模型参数真值不敏感,采用较少的集合样本即可完成数据同化。  相似文献   

16.
The adjoint approach, one of the variational data assimilation (VDA) methods, is now widely used for fitting numerical models of meteorology and oceanography tO the observaions. The fundamental idea is to minimize a cost function, which is sum of Squares in the differences betweenthe data and their model counterparts, by adjllsting the independent model variables such as initialvalue, boundary value and Parameters. The numerical model is an operator maPPing the independent model variables i…  相似文献   

17.
J. L. Mead   《Ocean Modelling》2005,8(4):369-394
We implement an approach for the accurate assimilation of Lagrangian data into regional general ocean circulation models. The forward model is expressed in Lagrangian coordinates and simulated float data are incorporated into the model via four-dimensional variational data assimilation. We show that forward solutions computed in Lagrangian coordinates are reliable for time periods of up to 100 days with phase speeds of 1 m/s and deformation radius of 35 km. The position and depth of simulated floats are assimilated into the viscous, Lagrangian shallow water equations. The weights for the errors in the model and data are varied and the assimilation results react appropriately. We show the effect of different spatial and temporal samplings of float data on all Lagrangian trajectories in the computational domain. At the end of the assimilation period, results from the Lagrangian shallow water equations could be interpolated and used as initial and boundary conditions in an Eulerian general ocean circulation model.  相似文献   

18.
The problem of variational assimilation of satellite observational data on the ocean surface temperature is formulated and numerically investigated in order to reconstruct surface heat fluxes with the use of the global three-dimensional model of ocean hydrothermodynamics developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), and observational data close to the data actually observed in specified time intervals. The algorithms of the numerical solution to the problem are elaborated and substantiated, and the data assimilation block is developed and incorporated into the global three-dimensional model. Numerical experiments are carried out with the use of the Indian Ocean water area as an example. The data on the ocean surface temperature over the year 2000 are used as observational data. Numerical experiments confirm the theoretical conclusions obtained and demonstrate the expediency of combining the model with a block of assimilating operational observational data on the surface temperature.  相似文献   

19.
Problems of the variational assimilation of satellite observational data on the temperature and level of the ocean surface, as well as data on the temperature and salinity of the ocean from the ARGO system of buoys, are formulated with the use of the global three-dimensional model of ocean thermodynamics developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS). Algorithms for numerical solutions of the problems are developed and substantiated, and data assimilation blocks are developed and incorporated into the global three-dimensional model. Numerical experiments are performed with the use of the Indian Ocean or the entire World Ocean as examples. These numerical experiments support the theoretical conclusions and demonstrate that the use of a model with an assimilation block of operational observational data is expedient.  相似文献   

20.
An approximate variational method is proposed to assimilate an oceanographic data set with a numerical ocean model. In the approximate method, the adjoint equation to a governing equation is derived and then converted to a finite difference form, in contrast to the ordinary, exact variational method which is composed of a finite difference equation adjoint to the finite difference governing equation. A cumbersome derivation of the adjoint equation is avoided, and finite difference schemes used for the original governing equation are easily utilized for the adjoint equation. This method has been verified with twin experiments. The flow field in the twin experiments is composed of dipole eddies in a two-layer quasi-geostrophic model. Initial and boundary conditions are control variables. The descent converges towards the exact field within 50 iterations, showing that the fundamental problem of the method (an unstable descent with a large number of iterations) does not appear. The approximate method is promising and should be tried with real data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号