首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Compared to the northern South China Sea continental margin, the deep structures and tectonic evolution of the Palawan and Sulu Sea and ambient regions are not well understood so far. However, this part of the southern continental margin and adjacent areas embed critical information on the opening of the South China Sea (SCS). In this paper, we carry out geophysical investigations using regional magnetic, gravity and reflection seismic data. Analytical signal amplitudes (ASA) of magnetic anomalies are calculated to depict the boundaries of different tectonic units. Curie-point depths are estimated from magnetic anomalies using a windowed wavenumber-domain algorithm. Application of the Parker–Oldenburg algorithm to Bouguer gravity anomalies yields a 3D Moho topography. The Palawan Continental Block (PCB) is defined by quiet magnetic anomalies, low ASA, moderate depths to the top and bottom of the magnetic layer, and its northern boundary is further constrained by reflection seismic data and Moho interpretation. The PCB is found to be a favorable area for hydrocarbon exploration. However, the continent–ocean transition zone between the PCB and the SCS is characterized by hyper-extended continental crust intruded with magmatic bodies. The NW Sulu Sea is interpreted as a relict oceanic slice and the geometry and position of extinct trench of the Proto South China Sea (PSCS) is further constrained. With additional age constraints from inverted Moho and Curie-point depths, we confirm that the spreading of the SE Sulu Sea started in the Early Oligocene/Late Eocene due to the subduction of the PSCS, and terminated in the Middle Miocene by the obduction of the NW Sulu Sea onto the PCB.  相似文献   

2.
2015—2018年, 国家自然科学基金重大研究计划“南海深海过程演变”的重点支持项目“南海东部马尼拉俯冲带深部结构探测与研究”以马尼拉俯冲带为研究重点, 从深部地球物理的角度探索南海形成演化史与运行规律。项目执行期间, 在国家基金委共享航次协助下, 先后开展和参与5次综合地球物理探测, 共投放海底地震仪(Ocean Bottom Seismometer, OBS)台站73台次, 海底电磁仪(Ocean Bottom ElectroMagnetometers, OBEM)仪器5台次, 累积放炮达13872炮, 成功获得了60台OBS数据和5台OBEM数据。同时, 取得了一系列创新性研究成果: (1)基于人工地震探测及天然地震层析成像结果, 确定南海东北部的地壳属性为受到张裂后期岩浆活动影响的减薄陆壳(12~15km), 划分了南海北部陆缘洋陆边界(Continent-Ocean Boundary, COB); (2)根据多道地震反射剖面, 划分了马尼拉俯冲带北部增生楔前缘的精细结构; (3)圈定了南海停止扩张时洋壳范围; (4)初步构建了南海与菲律宾海板块构造演化模型。本项目为重大研究计划“南海深海过程演变”核心科学问题(海底扩张的年代与过程)提供了实质性的证据, 同时为南海构造演化生命史的“骨架”提供了重要的基础数据, 具有深远的科学意义。  相似文献   

3.
The seafloor spreading of the South China Sea (SCS) was previously believed to take place between ca. 32 and 15 Ma (magnetic anomaly C11 to C5c). New magnetic data acquired in the northernmost SCS however suggests the existence of E–W trending magnetic polarity reversal patterns. Magnetic modeling demonstrates that the oldest SCS oceanic crust could be Late Eocene (as old as 37 Ma, magnetic anomaly C17), with a half-spreading rate of 44 mm/yr. The new identified continent–ocean boundary (COB) in the northern SCS generally follows the base of the continental slope. The COB is also marked by the presence of a relatively low magnetization zone, corresponding to the thinned portion of the continental crust. We suggest that the northern extension of the SCS oceanic crust is terminated by an inactive NW–SE trending trench-trench transform fault, called the Luzon–Ryukyu Transform Plate Boundary (LRTPB). The LRTPB is suggested to be a left-lateral transform fault connecting the former southeast-dipping Manila Trench in the south and the northwest-dipping Ryukyu Trench in the north. The existence of the LRTPB is demonstrated by the different patterns of the magnetic anomalies as well as the different seafloor morphology and basement relief on both sides of the LRTPB. Particularly, the northwestern portion of the LRTPB is marked by a steep northeast-dipping escarpment, along which the Formosa Canyon has developed. The LRTPB probably became inactive at ca. 20 Ma while the former Manila Trench prolonged northeastwards and connected to the former Ryukyu Trench by another transform fault. This reorganization of the plate boundaries might cause the southwestern portion of the former Ryukyu Trench to become extinct and a piece of the Philippine Sea Plate was therefore trapped amongst the LRTPB, the Manila Trench and the continental margin.  相似文献   

4.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   

5.
TAIGER project deep-penetration seismic reflection profiles acquired in the northeastern South China Sea (SCS) provide a detailed view of the crustal structure of a very wide rifted continental margin. These profiles document a failed rift zone proximal to the shelf, a zone of thicker crust 150 km from the shelf, and gradually thinning crust toward the COB, spanning a total distance of 250–300 km. Such an expanse of extended continental crust is not unique but it is uncommon for continental margins. We use the high-quality images from this data set to identify the styles of upper and lower crustal structure and how they have thinned in response to extension and, in turn, what rheological variations are predicted that allow for protracted crustal extension. Upper crustal thinning is greatest at the failed rift (βuc ≈ 7.5) but is limited farther seaward (βuc ≈ 1–2). We interpret that the lower crust has discordantly thinned from an original 15–17 km to possibly less than 2–3 km thick beneath the central thick crust zone and more distal areas. This extreme lower crustal thinning indicates that it acted as a weak layer allowing decoupling between the upper crust and the mantle lithosphere. The observed upper crustal thickness variations and implied rheology (lower crustal flow) are consistent with large-scale boudinage of continental crust during protracted extension.  相似文献   

6.
The Cenozoic margins of the Norwegian-Greenland Sea offer ideal conditions for passive margin studies. A series of structural elements, first observed on these margins, led to the concept of volcanic passive margins. Questions still remain about the development of such features and the location of the boundary between oceanic and continental crust. Despite the thin sediment cover of the margins, seismic reflection data are not able to image the deeper structures due to the occurrence of igneous rocks at shallow depth.This paper presents a 320-km long profile perpendicular to the strike of the main structural units of the Lofoten Margin in Northern Norway. A geological model is proposed, based on observations made with ocean bottom seismographs, which recorded seismic refraction data and wide angle reflections, along with a seismic reflection profile covering the same area. Ray-tracing was used to calculate a geophysical model from the shelf area into the Lofoten basin. The structures typical of a volcanic passive margin were found, showing that the Lofoten Margin was influenced by increased volcanic activity during its evolution. The ocean/continent transition is located in a 30-km wide zone landwards of the Vøring Plateau escarpment.The whole margin is underlain by a possibly underplated, high velocity layer. Evidence for a pre-rift sediment basin landwards of the escarpment, overlain by basalt flows, was seen. These structural features, related to extensive volcanism on the Lofoten Margin, are not as distinct as further south along the Norwegian Margin. Viewed in the light of the hot-spot theory of White and McKenzie (1989) the Lofoten Margin can be interpreted as a transitional type between volcanic and non-volcanic passive margin.  相似文献   

7.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   

8.
本文根据拖网取样和多道反射地震资料,结合前人工作,分析南海新生代裂离地体──中-西沙地体与南沙地体的特征、亲缘性及成因。  相似文献   

9.
The Mozambique Ridge (MOZR) is one of the basement high structures located in the Southwest Indian Ocean, parallel to the Southeast African continental margin. It was formed as a result of the tectono-magmatic evolution of the Gondwana breakup. The origin of the MOZR has been highly debated, with models suggesting either continental or oceanic origin. With new free-air gravity anomaly and multichannel seismic (MCS) reflection data, we present results of 2D density modeling along two seismic profiles acquired by R/V Xiangyanghong 10 at the northern Mozambique Ridge (N-MOZR) between 26°S and 28°S. We observed high free-air gravity anomaly and strong positive magnetic anomaly related to the emplaced seaward dipping reflectors (SDR) and high density lower crustal body (HDLCB), and high Bouguer gravity anomaly associated with the thinning of the continental crust underneath the N-MOZR over a distance of ~82 km. This suggests a thinned and intruded continental crust bound by the Mozambique Fracture Zone (MFZ) that is characterized by gravity low and negative magnetic anomaly. This fracture zone marks the continent-ocean boundary (COB) while the N-MOZR is the transform margin high, i.e., marks the continent-ocean transition (COT) of the Southern Mozambique margin, following the definition of transform margins. We suggest that the N-MOZR was formed by continental extension and subsequent breakup of the MFZ, accompanied by massive volcanism during the southward movement of the Antarctica block. The presence of SDR, HDLCB, and relatively thick oceanic crust indicates the volcanic nature of this transform margin.  相似文献   

10.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

11.
Igneous rocks in the northern margin of the South China Sea (SCS) have been identified via high resolution multi-channel seismic data in addition to other geophysical and drilling well data. This study identified intrusive and extrusive structures including seamounts and buried volcanoes, and their seismic characteristics. Intrusive features consist of piercement and implicit-piercement type structures, indicating different energy input associated with diapir formation. Extrusive structures are divided into flat-topped and conical-topped seamounts. Three main criteria (the overlying strata, the contact relationship and sills) were used to distinguish between intrusive rocks and buried volcanos. Three criteria are also used to estimate the timing of igneous rock formation: the contact relationship, the overlying sedimentary thickness and seismic reflection characteristics. These criteria are applied to recognize and distinguish between three periods of Cenozoic magmatism in the northern margin of the SCS: before seafloor spreading (Paleocene and Eocene), during seafloor spreading (Early Oligocene–Mid Miocene) and after cessation of seafloor spreading (Mid Miocene–Recent). Among them, greater attention is given to the extensive magmatism since 5.5 Ma, which is present throughout nearly all of the study area, making it a significant event in the SCS. Almost all of the Cenozoic igneous rocks were located below the 1500 m bathymetric contour. In contrast with the wide distribution of igneous rocks in the volcanic rifted margin, igneous rocks in the syn-rift stage of the northern margin of the SCS are extremely sporadic, and they could only be found in the southern Pearl River Mouth basin and NW sub-sea basin. The ocean–continent transition of the northern SCS exhibits high-angle listric faults, concentrated on the seaward side of the magmatic zone, and a sharply decreased crust, with little influence from a mantle plume. These observations provide further evidence to suggest that the northern margin of the SCS is a magma-poor rifted margin.  相似文献   

12.
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26–28 km under the Gunnerus Ridge, 12–17 km under the Astrid Ridge, and 9.5–10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22–M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.  相似文献   

13.
The continental margins of the southwest subbasin in the South China Sea mark a unique transition from multi-stages magma-poor continental rifting to seafloor spreading. We used reflection and refraction profiles across the margins to investigate the rifting process of the crust. Combining with the other seismic profiles acquired earlier, we focused on the comparative geological interpretation from the result of multichannel seismic analysis and wide-angle seismic tomography. Our result provides the evidence of upper crustal layer with abundant fractures below the acoustic basement with a P-wave velocity from 4.0 to 5.5 km s?1. It indicates extensive deformation of the brittle crust during the continental rifting and can make a good explanation for the observed extension discrepancy in the rift margins of the South China Sea. The seismic chronostratigraphic result shows the possibility of the intra-continental extension center stayed focused for quite a long time in Eocene. Additionally, our evidence suggested that continental margin of the southwest subbasin had experienced at least three rifting stages and the existence of the rigid blocks is an appropriate explanation to the asymmetric rifting of the South China Sea.  相似文献   

14.
 Results of a detailed geophysical transect across the transform continental margin off Ghana, at the eastern end of the Romanche Fracture Zone in the Equatorial Atlantic, are presented. Seismic refraction, single-channel seismic reflection, gravity, and magnetic data were collected, and seismic, gravity, and magnetic models along the transect are shown. The 6- to 11-km-wide ocean–continent transition (OCT) is characterized by a high-velocity, high-density, high-magnetization crustal zone. The models show no evidence for any underplating of the continental crust adjacent to the margin but minor melting and intrusion of the continental crust may have occurred in the vicinity of the OCT. Received: 6 February 1995/Revision received: 24 July 1995  相似文献   

15.
The Southwest Subbasin (SWSB) is an abyssal subbasin in the South China Sea (SCS), with many debates on its neotectonic process and crustal structure. Using two-dimensional seismic tomography in the SWSB, we derived a detailed P-wave velocity model of the basin area and the northern margin. The entire profile is approximately 311-km-long and consists of twelve oceanic bottom seismometers (OBSs). The average thickness of the crust beneath the basin is 5.3 km, and the Moho interface is relatively flat (10–12 km). No high velocity bodies are observed, and only two thin high-velocity structures (~7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. By analyzing the P-wave velocity model, we believe that the crust of the basin is a typical oceanic crust. Combined with the high resolution multi-channel seismic profile (MCS), we conclude that the profile shows asymmetric structural characteristics in the basin area. The continental margin also shows asymmetric crust between the north and south sides, which may be related to the large scale detachment fault that has developed in the southern margin. The magma supply decreased as the expansion of the SWSB from the east to the west.  相似文献   

16.
During TAiwan Integrated GEodynamics Research of 2009, we investigated data from thirty-seven ocean-bottom seismometers (OBS) and three multi-channel seismic (MCS) profiles across the deformation front in the northernmost South China Sea (SCS) off SW Taiwan. Initial velocity-interface models were built from horizon velocity analysis and pre-stack depth migration of MCS data. Subsequently, we used refracted, head-wave and reflected arrivals from OBS data to forward model and then invert the velocity-interface structures layer-by-layer. Based on OBS velocity models west of the deformation front, possible Mesozoic sedimentary rocks, revealed by large variation of the lateral velocity (3.1–4.8 km/s) and the thickness (5.0–10.0 km), below the rift-onset unconformity and above the continental crust extended southward to the NW limit of the continent–ocean boundary (COB). The interpreted Mesozoic sedimentary rocks NW of the COB and the oceanic layer 2 SE of the COB imaged from OBS and gravity data were incorporated into the overriding wedge below the deformation front because the transitional crust subducted beneath the overriding wedge of the southern Taiwan. East of the deformation front, the thickness of the overriding wedge (1.7–5.0 km/s) from the sea floor to the décollement decreases toward the WSW direction from 20.0 km off SW Taiwan to 8.0 km at the deformation front. In particular, near a turn in the orientation of the deformation front, the crustal thickness (7.0–12.0 km) is abruptly thinner and the free-air (?20 to 10 mGal) and Bouguer (30–50 mGal) gravity anomalies are relatively low due to plate warping from an ongoing transition from subduction to collision. West of the deformation front, intra-crustal interfaces dipping landward were observed owing to subduction of the extended continent toward the deformation front. However, the intra-crustal interface near the turn in the orientation of the deformation front dipping seaward caused by the transition from subduction to collision. SE of the COB, the oceanic crust, with a crustal thickness of about 10.0–17.0 km, was thickened due to late magmatic underplating or partially serpentinized mantle after SCS seafloor spreading. The thick oceanic crust may have subducted beneath the overriding wedge observed from the low anomalies of the free-air (?50 to ?20 mGal) and Bouguer (40–80 mGal) gravities across the deformation front.  相似文献   

17.
Berndt  C.  Mjelde  R.  Planke  S.  Shimamura  H.  Faleide  J.I. 《Marine Geophysical Researches》2001,22(3):133-152
Ocean bottom seismograph (OBS), multichannel seismic and potential field data reveal the structure of the Vøring Transform Margin (VTM). This transform margin is located at the landward extension of the Jan Mayen Fracture Zone along the southern edge of the Vøring Plateau. The margin consists of two distinctive segments. The northwestern segment is characterized by large amounts of volcanic material. The new OBS data reveal a 30–40 km wide and 17 km thick high-velocity body between underplated continental crust to the northeast and normal oceanic crust in the southwest. The southeastern segment of the mar is similar to transform margins elsewhere. It is characterized by a 20–30 km wide transform margin high and a narrow continent-ocean transition. The volcanic sequences along this margin segment are less than 1 km thick. We conclude from the spatial correspondence of decreased volcanism and the location of the fracture zone, that the amount of volcanism was influenced by the tectonic setting. We propose that (1) lateral heat transport from the oceanic lithosphere to the adjacent continental lithosphere decreased the ambient mantle temperature and melt production along the entire transform margin and (2) that right-stepping of the left-lateral shear zone at the northwestern margin segment caused lithospheric thinning and increased volcanism. The investigated data show no evidence that the breakup volcanism influenced the tectonic development of the southeastern VTM.  相似文献   

18.
The Uruguayan continental margin comprises three sedimentary basins: the Punta del Este, Pelotas and Oriental del Plata basins, the genesis of which is related to the break-up of Gondwana and the opening of the Atlantic Ocean. Herein the continental margin of Uruguay is studied on the basis of 2D multichannel reflection seismic data, as well as gravity and magnetic surveys. As is typical of South Atlantic margins, the Uruguayan continental margin is of the volcanic rifted type. Large wedges of seaward-dipping reflectors (SDRs) are clearly recognizable in seismic sections. SDRs, flat-lying basalt flows, and a high-velocity lower crust (HVLC) form part of the transitional crust. The SDR sequence (subdivided into two wedges) has a maximum width of 85 km and is not continuous parallel to the margin, but is interrupted at the central portion of the Uruguayan margin. The oceanic crust is highly dissected by faults, which affect post-rift sediments. A depocenter over oceanic crust is reported (deepwater Pelotas Basin), and volcanic cones are observed in a few sections. The structure of continental crust-SDRs-flat flows-oceanic crust is reflected in the magnetic anomaly map. The positive free-air gravity anomaly is related to the shelf-break, while the most prominent positive magnetic anomaly is undoubtedly correlated to the landward edge of the SDR sequence. Given the attenuation, interruption and/or sinistral displacement of several features (most notably SDR sequence, magnetic anomalies and depocenters), we recognize a system of NW-SE trending transfer faults, here named Río de la Plata Transfer System (RPTS). Two tectono-structural segments separated by the RPTS can therefore be recognized in the Uruguayan continental margin: Segment I to the south and Segment II to the north.  相似文献   

19.
The structure of the oceanic crust adjacent to the Côte d’Ivoire–Ghana transform margin is deduced from multichannel seismic reflection and seismic wide-angle data, showing crustal heterogeneities within oceanic basement; the oceanic crust adjacent to the transform margin is half as thick as standard Atlantic oceanic crust. Refraction data indicate a gradual velocity transition towards typical mantle velocities. Such an abnormal oceanic crustal structure appears quite similar to crustal structures known along transform faults. This crustal thinning may be related to thermal effects of the nearby continental crust, on the oceanic accretion processes. We did not find geophysical evidence for oceanic crust contamination by continental lithosphere.  相似文献   

20.
The Pelotas Basin is the classical example of a volcanic passive margin displaying large wedges of seaward-dipping reflectors (SDR). The SDR fill entirely its rifts throughout the basin, characterizing the abundant syn-rift magmatism (133–113 Ma). The Paraná–Etendeka Large Igneous Province (LIP), adjacent to west, constituted the pre-rift magmatism (134–132 Ma). The interpretation of ultra-deep seismic lines showed a very different geology from the adjacent Santos, Campos and Espírito Santo Basins, which constitute examples of magma-poor passive margins. Besides displaying rifts totally filled by volcanic rocks, diverse continental crustal domains were defined in the Pelotas Basin, such as an outer domain, probably constituted by highly stretched and permeated continental igneous crust, and a highly reflective lower crust probably reflecting underplating.The analysis of rifting in this portion of the South Atlantic is based on seismic interpretation and on the distribution of regional linear magnetic anomalies. The lateral accretion of SDR to the east towards the future site of the breakup and the temporal relationship between their rift and sag geometries allows the reconstitution of the evolution of rifting in the basin. Breakup propagated from south to north in three stages (130–127.5; 127.5–125; 125–113 Ma) physically separated by oceanic fracture zones (FZ). The width of the stretched, thinned and heavily intruded continental crust also showed a three-stage increase in the same direction and at the same FZ. Consequently, the Continental-Oceanic Boundary (COB) shows three marked shifts, from west to east, from south to north, resulting into rift to margin segmentation. Rifting also propagated from west to east, in the direction of the final breakup, in each of the three segments defined. The importance of the Paraná–Etendeka LIP upon the overall history of rupturing and breakup of Western Gondwanaland seems to have been restricted in time and in space only to the Pelotas Basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号