首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2018年北极太平洋区域夏季海冰物理及光学性质的研究   总被引:2,自引:1,他引:1  
The reduction in Arctic sea ice in summer has been reported to have a significant impact on the global climate. In this study, Arctic sea ice/snow at the end of the melting season in 2018 was investigated during CHINARE-2018, in terms of its temperature, salinity, density and textural structure, the snow density, water content and albedo, as well as morphology and albedo of the refreezing melt pond. The interior melting of sea ice caused a strong stratification of temperature, salinity and density. The temperature of sea ice ranged from –0.8℃ to 0℃, and exhibited linear cooling with depth. The average salinity and density of sea ice were approximately 1.3 psu and 825 kg/m~3, respectively, and increased slightly with depth. The first-year sea ice was dominated by columnar grained ice. Snow cover over all the investigated floes was in the melt phase, and the average water content and density were 0.74% and 241 kg/m~3, respectively. The thickness of the thin ice lid ranged from 2.2 cm to 7.0 cm, and the depth of the pond ranged from 1.8 cm to 26.8 cm. The integrated albedo of the refreezing melt pond was in the range of 0.28–0.57. Because of the thin ice lid, the albedo of the melt pond improved to twice as high as that of the mature melt pond. These results provide a reference for the current state of Arctic sea ice and the mechanism of its reduction.  相似文献   

2.
Sea-ice physical characteristics were investigated in the Arctic section of 143°-180°W during August and early September 2008. Ship-based observations show that both the sea-ice thickness and concentration recorded during southward navigation from 30 August to 6 September were remarkably less than those recorded during northward navigation from 3 to 30 August, especially at low latitudes. Accordingly, the marginal ice zone moved from about 74.0°N to about 79.5°N from mid-August to early September. Melt-pond coverage increased with increasing latitude, peaking at 84.4°N, where about 27% of ice was covered by melt ponds. Above this latitude, melt-pond coverage decreased evidently as the ice at high latitudes experienced a relatively short melt season and commenced its growth stage by the end of August. Regional mean ice thickness increased from 0.8 (±0.5) m at 75.0°N to 1.5 (±0.4) m at 85.0°N along the northward navigation while it decreased rapidly to 0.6 (±0.3) m at 78.0°N along the southward navigation. Because of relatively low ice concentration and thin ice in the investigated Arctic sector, both the short-term ice stations and ice camp could only be set up over multiyear sea ice. Observations of ice properties based on ice cores collected at the short-term ice stations and the ice camp show that all investigated floes were essentially isothermal with high temperature and porosity, and low density and salinity. Most ices had salinity below 2 and mean density of 800-860 kg/m~3 . Significant ice loss in the investigated Arctic sector during the last 15 a can be identified by comparison with the previous observations.  相似文献   

3.
《Ocean Modelling》2002,4(2):137-172
A new sea ice model, GELATO, was developed at Centre National de Recherches Météorologiques (CNRM) and coupled with OPA global ocean model. The sea ice model includes elastic–viscous–plastic rheology, redistribution of ice floes of different thicknesses, and it also takes into account leads, snow cover and snow ice formation. Climatologies of atmospheric surface parameters are used to perform a 20-year global ocean–sea ice simulation, in order to compute surface heat fluxes from diagnosed sea ice or ocean surface temperature. A surface salinity restoring term is applied only to ocean grid cells with no sea ice to avoid significant surface salinity drifts, but no correction of sea surface temperature is introduced. In the Arctic the use of an ocean model substantially improves the representation of sea ice, and particularly of the ice edge in all seasons, as advection of heat and salt can be more accurately accounted for than in the case of, for example, a sea ice–ocean mixed layer model. In contrast, in the Antarctic, a region where ocean convective processes bear a much stronger influence in shaping sea ice characteristics, a better representation of convection and probably of sea ice (for example, of frazil sea ice, brine rejection) would be needed to improve the simulation of the annual cycle of the sea ice cover. The effect of the inclusion of several ice categories in the sea ice model is assessed by running a sensitivity experiment in which only one category of sea ice is considered, along with leads. In the Arctic, such an experiment clearly shows that a multicategory sea ice model better captures the position of the sea ice edge and yields much more realistic sea ice concentrations in most of the region, which is in agreement with results from Bitz et al. [J. Geophys. Res. 106 (C2) (2001) 2441–2463].  相似文献   

4.
The variability of the total alkalinity in the sea ice of the high-latitudinal Arctic from November 2005 to May 2006 is considered. For the bulk of the one- and two-year sea ice, the alkalinity dependence on the salinity is described as TA = k × Sal, where k is the salinity: alkalinity ratio in the under-ice water. The given relationship is valid within a wide salinity range from 0.1 psu in the desalinated fraction of two-year ice to 36 psu in the snow on the young ice surface. Geochemically significant deviations from the relationship noted were observed exclusively in the snow and the upper layer of one-year ice. In the upper layer of one-year ice, an alkalinity deficiency is observed (ΔTA ~ ?0.07 mequiv/kg, or ?15%). In the snow on the surface of the one-year ice, an alkalinity excess is formed under the desalination (ΔTA is as high as 1.3 mequiv/kg, 380%). The deviations registered are caused by the possibility of carbonate precipitation in the form of CaCO3 · 6H2O under the seawater freezing. It is shown that the ice formation and the following melting might cause a loss of the atmospheric CO2 of up to 3 × 1012 g C/year.  相似文献   

5.
Short-lived halocarbons were measured in Arctic sea–ice brine, seawater and air above the Greenland and Norwegian seas (~81°N, 2–5°E) in mid-summer, from a melting ice floe at the edge of the ice pack. In the ice floe, concentrations of C2H5I, 2-C3H7I and CH2Br2 showed significant enhancement in the sea ice brine, of average factors of 1.7, 1.4 and 2.5 times respectively, compared to the water underneath and after normalising to brine volume. Concentrations of mono-iodocarbons in air are the highest ever reported, and our calculations suggest increased fluxes of halocarbons to the atmosphere may result from their sea–ice enhancement. Some halocarbons were also measured in ice of the sub-Arctic in Hudson Bay (~55°N, 77°W) in early spring, ice that was thicker, colder and less porous than the Arctic ice in summer, and in which the halocarbons were concentrated to values over 10 times larger than in the Arctic ice when normalised to brine volume. Concentrations in the Arctic ice were similar to those in Antarctic sea ice that was similarly warm and porous. As climate warms and Arctic sea ice becomes more like that of the Antarctic, our results lead us to expect the production of iodocarbons and so of reactive iodine gases to increase.  相似文献   

6.
Recent changes in climate and environmental conditions have had great negative effects such as decreasing sea ice thickness and the extent of Arctic sea ice floes that support ice-related organisms. However, limited field observations hinder the understanding of the impacts of the current changes in the previously ice-covered regions on sea ice algae and other ice-related ecosystems. Our main objective in this study was to measure recent primary production of ice algae and their relative contribution to total primary production (ice plus pelagic primary production). In-situ primary productivity experiments with a new incubation system for ice algae were conducted in 3 sea ice cores at 2 different ice camps in the northern Chukchi Sea, 2014, using a 13C and 15N isotope tracer technique. A new incubation system was tested for conducting primary productivity experiments on ice algae that has several advantages over previous incubation methods, enabling stable carbon and nitrogen uptake experiments on ice algae under more natural environmental conditions. The vertical C-shaped distributions of the ice algal chl-a, with elevated concentrations at the top and bottom of the sea ice were observed in all cores, which is unusual for Arctic sea ice. The mean chl-a concentration (0.05 ± 0.03 mg chl-a m?3) and the daily carbon uptake rates (ranging from 0.55 to 2.23 mg C m?2 d?1) for the ice algae were much lower in this study than in previous studies in the Arctic Ocean. This is likely because of the late sampling periods and thus the substantial melting occurring. Ice algae contributed 1.5–5.7% of the total particulate organic carbon (POC) contents of the combined euphotic water columns and sea ice floes. In comparison, ice algae contributed 4.8–8.6% to the total primary production which is greater than previously reported in the Arctic Ocean. If all of the ice-associated productions were included, the contributions of the sea ice floes to the total primary production would be greater in the Arctic Ocean and their importance would be greater in the arctic marine ecosystems.  相似文献   

7.
Close interactions among vertically stacked pairs of counter-rotating eddies under sea ice were investigated in numerical experiments. The numerical model contains a stratified ocean capped by an ice layer. Under the ice layer, a shallow brine source produces a top cyclone and a submerged anticyclone, while a shallow freshening source generates a top anticyclone and a submerged cyclone. Ice-exerted friction would dissipate the top eddy, leaving the submerged one in lone existence. In this work the winning vorticity is sought from group settings. Arrays of equally spaced salinity sources and sinks, alternate in sign but equal in strength, are employed to produce rows of vertically stacked eddy pairs. Fission occurs when adjacent vortex centers are separated by less than one Rossby radius. This process ejects parcels of density anomalies to the ambient ocean in upper depths. Low salinity anomalies are quickly dispersed into a thin surface layer and are unable to regenerate submerged eddies. High salinity parcels, being difficult to disperse, often maintain or regenerate submerged anticyclones below. Fission is particularly effective if a single row of salinity forcing is used. With multiple rows, fission is active only in the outer rows. The strong interaction among closely packed eddies operates in time scales of tens of days, helping explain the predominance of submerged anticyclones under Arctic sea ice.  相似文献   

8.
利用加拿大环极冰间水道系统研究项目,作者对2007年11月24日至2008年1月26日北极群岛阿蒙森湾海域秋冬季节一年冰的物理和光学性质进行了观测研究。结果显示,观测期间的海冰厚度整体在27~108 cm范围内变化,积雪厚度仅为0~6 cm。海冰温度、盐度和密度在冰内的分布特征为:海冰表层最低温度为–22.4℃,底层最高温度为–2.2℃,冰内温度随深度单调增大;盐度变化范围为3.30~11.70,冰内盐度剖面呈现“C”形,即表层和底层盐度较大,而中间层盐度较小;海冰的平均密度略大,为(0.91±0.03)g/cm3。通过观测人造光源在海冰中的透射辐射谱分布,发现一年冰的光谱透射辐射在490 nm和589 nm处呈明显的双峰结构,但随着海冰厚度的增加,双峰结构逐渐减弱,体现了海冰对于不同谱段辐射能衰减作用的差异。在可见光范围内,裸冰和雪覆冰的吸收率最小值出现在490 nm,在443~490 nm范围内二者的吸收率随波长增大而降低,在490~683 nm范围内二者的吸收率随波长增大而升高,但雪覆冰的吸收率在可见光范围内基本保持不变,体现了雪覆冰吸收率的光谱独立性。一年冰的谱衰减系数随波长呈“U”字形分布,紫光和红光谱段的衰减系数较大,中间谱段的衰减系数较小,589 nm波长的衰减系数最小,为1.7 m–1。将谱衰减系数在可见光范围内积分,得到一年冰的积分漫射衰减系数约为2.3 m–1,略高于多年浮冰的漫射衰减系数1.5 m–1。阿蒙森湾一年冰与加拿大海盆北部多年浮冰辐射光学性质的差异,主要源于陆源物质输入引起的海冰内含物组分的改变,而不同组分对光谱的吸收和散射性质不同,进一步导致了光学性质的整体变化。  相似文献   

9.
10.
The general properties of sea ice and overlying snow in the southern Sea of Okhotsk were examined during early February of 2003 to 2005 with the P/V “Soya”. Thin section analysis of crystal structure revealed that frazil ice (48% of total core length) was more prevalent than columnar ice (39%) and that stratigraphic layering was prominent with a mean layer thickness of 12 cm, indicating that dynamic processes are essential to ice growth. The mean thickness of ice blocks and visual observations suggest that ridging dominates the deformation process above thicknesses of 30 to 40 cm. As for snow, it was found that faceted crystals and depth hoar are dominant (78%), as which is also common in the Antarctic sea ice, and is indicative of the strong vertical temperature gradients within the snow. Stable isotope measurements (δ18O) indicate that snow ice occupies 9% of total core length and that the mass fraction of meteoric ice accounts for 1 to 2% of total ice volume, which is lower than the Antarctic sea ice. Associated with this, the effective fractionation coefficient during the freezing of seawater was also derived. Snow ice was characterized by lower density, higher salinity, and nearly twice the gas content of ice of seawater origin. In addition, it is shown that the surface brine volume fraction and freeboard are well correlated with ice thickness, indicating some promise for remote sensing approaches to the estimation of ice thickness.  相似文献   

11.
本文详细介绍了SIS海冰模式中引进两种盐度参数化方案即等盐度方案和盐度廓线方案对海冰模拟所存在的差异。利用盐度廓线方案导出的表征盐度与海冰温度间关系的方程比等盐度方案多出一项,将定义为盐度差异项。盐度差异项对海冰厚度的热力作用表现为:在海冰厚度增长季节(11月到次年5月),盐度差异项通过升高海冰内部温度,抑制海冰增长;在消融的第一阶段(6.8月),盐度差异项通过升高海冰内部温度加快海冰消融;在消融的第二阶段(9.10月),盐度差异项通过降低海冰内部的温度抑制海冰消融。但尺度分析表明,盐度差异项要比方程中队海冰温度作用最大项小1.2个量级,如果采用一级近似,可以略去盐度差异项,因此盐度差异项对海冰增长和消融影响很小。同时利用冰洋耦合模式(ModularOceanModel,MOM4),分别采用两种盐度参数化方案模拟北极海冰厚度和海冰密集度的季节性变化,模拟结果也表明两种方案模拟得到的海冰厚度和海冰密集度的季节性变化相差甚小。  相似文献   

12.
《Ocean Modelling》2001,3(1-2):127-135
The high-latitude freezing and melting cycle can variously result in haline convection, freshwater capping or freshwater injection into the interior ocean. An example of the latter process is a secondary salinity minimum near 800 m-depth within the Arctic Ocean that results from the transformation on the Barents Sea shelf of Atlantic water from the Norwegian Sea and its subsequent intrusion into the Arctic Ocean. About one-third of the freshening on the shelf of that initially saline water appears to result from ice melt, although the actual sea ice flux is small, only about 0.005 Sv. A curious feature of this process is that water distilled at the surface of the Arctic Ocean by freezing ends up at mid-depth in the same ocean. This is a consequence of the ice being exported southward onto the shelf, melted, and then entrained into the northward Barents Sea throughflow that subsequently sinks into the Arctic Ocean. Prolonged reduction in sea ice in the region and in the concomitant freshwater injection would likely result in a warmer and more saline interior Arctic Ocean below 800 m.  相似文献   

13.
2006年冬末春初,在德国POLARSTERN科学考察船执行南极威德尔海西北海域考察期间,调查了考察区海冰物理和海洋生物。本文观测了航线上钻取的27支海冰冰芯的组构和71个冰晶体薄片;分析得到393组冰温数据;348组盐度、密度数据和311组叶绿素a和脱镁叶绿素含量数据;通过302组冰内相同深度孔隙率和叶绿素a含量数据分析,发现海冰物理参数影响冰内叶绿素a含量的新证据;利用收集的雪、冰厚度数据以及环境容量制约生态平衡的规律,建立了雪、冰厚度对冰底叶绿素繁荣的影响以及;确立了南极粒状冰和柱状冰内叶绿素a上限含量同卤水体积的关系。从而表达了冰晶体对卤水排泄的效应和冰物理性质对南极春季冰底和冰-水界面叶绿素a增长的贡献。此外,还得出海冰物理性质影响冰藻,并且是南极冰区水体浮游植物繁荣的关键控制因素。  相似文献   

14.
The ability to use radar to discriminate Arctic Sea ice types has been investigated using surface-based and helicopter-borne scatterometer systems. The surface-based FM/CW radar operated at 1.5 GHz and at multiple frequencies in the 8-18-GHz region. Measurements were made at angles of10degto70degfrom nadir. The helicopter-based radar operated at the 8-18-GHz frequencies with incidence angles of0degto60deg. Extensive surface-truth measurements were made at or near the time of backscattar measurement to describe the physical and electrical properties of the polar scene. Measurements in the 8-18-GHz region verify the ability to discriminate multiyear, thick first-year, thin first-year, and pressure-ridged sea ice and lake ice. The lowest frequency, 9 GHz, was found to provide the greatest contrast between these ice categories, with significant levels of separation existing between angles from15degto70deg. The radar cross sections for like antenna polarizations, VV and HH, were very similar in absolute level and angular response. Cross-polarization, VH and HV, provided the greatest contrast between ice types, The 1.5-GHz measurements showed that thick first-year, thin first-year, and multiyear sea ice cannot be distinguished at10degto60degincidence angles with like polarization, VV, by backscatter alone; but that undeformed sea ice can be discriminated from pressure-ridged ice and lake ice. The effect of snow cover on the backscatter from thick first-year ice was also investigated. It contributes on the order of 0 to 4 dB, depending on frequency and incidence angle; the contribution of the snow layer increased with increasing frequency. Snow cover on smooth lake ice was found to be a major backscatter mechanism. Summer measurements demonstrate the inability to extend the knowledge of the backscatter from sea ice under spring conditions to all seasons.  相似文献   

15.
大气输送的放射性核素7Be、210Po和210Pb,可以作为研究北冰洋大气沉降通量、海洋现代沉积以及海冰中物质传输的重要示踪剂,已被广泛应用于包括气团运动、土壤侵蚀以及水系统中颗粒物循环过程的研究。本文报道了2018年北极高纬度浮冰区表层积雪中7Be、210Po和210Pb的活度特征。7Be、210Po和210Pb的比活度变化范围分别为33.6~632.68 mBq/L、36.2~87.5 mBq/L、30.9~194.49 mBq/L。本文的研究发现,北冰洋表层积雪中7Be和210Pb比活度小于中纬度大陆地区。研究区域表层积雪中7Be的比活度随着纬度的增加而增加。此外,表层积雪中210Po/210Pb活度比值范围为0.70~1.48 (平均为0.93),210Po与210Pb活度已基本达到平衡,表明积雪样品年龄可能较“老”。  相似文献   

16.
A comprehensive analysis of sea ice and its snow cover during the summer in the Arctic Pacific sector was conducted using the observations recorded during the 7th Chinese National Arctic Research Expedition(CHIANRE-2016) and the satellite-derived parameters of the melt pond fraction(MPF) and snow grain size(SGS)from MODIS data. The results show that there were many low-concentration ice areas in the south of 78°N, while the ice concentration and thickness increased significantly with the latitude above the north of 78°N during CHIANRE-2016. The average MPF presented a trend of increasing in June and then decreasing in early September for 2016. The average snow depth on sea ice increased with latitude in the Arctic Pacific sector. We found a widely developed depth hoar layer in the snow stratigraphic profiles. The average SGS generally increased from June to early August and then decreased from August to September in 2016, and two valley values appeared during this period due to snowfall incidents.  相似文献   

17.
通过计算机图像测定系统测定、计算获得海冰细菌的大小、面积和碳含量,研究了北极巴伦支海和拉普捷夫海的浮冰中细菌大小、丰度和生物量的垂直分布及其与海冰微藻生物量的关系.细菌在冰心中是非均匀分布的,至少有两种不同分布类型:第一类有单一的丰度峰值,在冰心底部或在冰心中部;第二类有两个丰度峰值.海冰中细菌的丰度为0.4×105~36.7×105个/cm3.不同类型海冰中的细菌大小变化极大,在多年冰中,最大的细菌与叶绿素a最大值出现在同一层,而在一年冰中,细菌大小几乎没有垂直变化.整柱冰心的细菌生物量变化为19.2~79.2mg/cm2,细菌与海冰微藻生物量之比为0.43~10.00.对固定冰比较和研究的结果发现,海冰冰心中细菌大小、丰度和生物量的垂直分布差别极大.据此,分析了对目前海冰研究采样方法的局限性,并提出了规范采样方法的设想.  相似文献   

18.
A high resolution one-dimensional thermodynamic snow and ice(HIGHTSI) model was used to model the annual cycle of landfast ice mass and heat balance near Zhongshan Station, East Antarctica. The model was forced and initialized by meteorological and sea ice in situ observations from April 2015 to April 2016. HIGHTSI produced a reasonable snow and ice evolution in the validation experiments, with a negligible mean ice thickness bias of(0.003±0.06) m compared to in situ observations. To further examine the impact of different snow conditions on annual evolution of first-year ice(FYI), four sensitivity experiments with different precipitation schemes(0, half, normal, and double) were performed. The results showed that compared to the snow-free case,the insulation effect of snow cover decreased bottom freezing in the winter, leading to 15%–26% reduction of maximum ice thickness. Thick snow cover caused negative freeboard and flooding, and then snow ice formation,which contributed 12%–49% to the maximum ice thickness. In early summer, snow cover delayed the onset of ice melting for about one month, while the melting of snow cover led to the formation of superimposed ice,accounting for 5%–10% of the ice thickness. Internal ice melting was a significant contributor in summer whether snow cover existed or not, accounting for 35%–56% of the total summer ice loss. The multi-year ice(MYI)simulations suggested that when snow-covered ice persisted from FYI to the 10 th MYI, winter congelation ice percentage decreased from 80% to 44%(snow ice and superimposed ice increased), while the contribution of internal ice melting in the summer decreased from 45% to 5%(bottom ice melting dominated).  相似文献   

19.
浮冰界面融化速率参数化方案的实验室研究   总被引:2,自引:2,他引:0  
融冰季节时天然浮冰表面、底面和侧向融化共存,三者融化速率是底面大于侧向,侧向大于表面。而且浮冰尺寸越小,侧向速率占比越高。为了解决将小尺度浮冰块尺度指标计入融化参数化方案,在低温环境实验室无辐射、无流速、控制气温和水温条件下对天然海冰和人工冻结淡水冰的圆盘试样,开展了不同初始水温和不同初始直径的圆盘试样融化过程实验,获得了圆盘试样直径、厚度和质量融化过程。依据这些实验数据,构建试样直径厚度比这一新指标,通过物理分析和数学统计手段,建立了海冰和淡水冰试样表面、底面融化速率同温度梯度,侧向融化速率和温差以及直径厚度比的关系式。这些关系式能够应用于天然直径100 m范围内浮冰的融化参数化方案,期望能解决北冰洋海冰和入海口近岸淡水冰夏季融化季节能量和质量平衡数值模拟的需求。  相似文献   

20.
2017年夏季中国第八次北极科学考察期间,"雪龙"号极地考察船首次成功穿越北极中央航道,期间全程开展了海冰要素的人工观测。中央航道走航期间的平均海冰密集度和平均冰厚分别为0.64和1.5 m,海冰密集度时空变化大且以厚当年冰为主,高纬密集冰区的浮冰大小显著高于海冰边缘区。基于"雪龙"号的船基走航观测海冰密集度评估比较了国际上常用的5种常用的微波遥感反演海冰密集度产品,同走航目测海冰密集度点对点的比较,误差最大的为德国不来梅大学AMSR2基于Bootstrap算法的产品,平均误差和均方根误差分别为0.19和0.28;误差最小的为欧洲气象卫星应用组织基于AMSR2数据和OSHD和TUD两种不同算法的产品,平均误差分别为-0.02和0.01,均方根误差均为0.20。从日平均比较来看,AMSR2基于Bootstrap算法的误差最大,平均误差和均方根误差分别为0.15和0.20;AMSR2/OSI SAF(TUD)的误差最小,平均误差和均方根误差分别为0.0和0.11,OSI SAF产品更接近人工观测结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号