首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用1979—2020年逐时的ERA5再分析数据,研究了南海区域大气边界层高度的气候特征及其影响因子。结果表明:南海区域平均大气边界层高度为500~800 m,空间上呈中间高、四周低的分布特征。南海大气边界层高度具有显著的季节变化特征,总体按照冬季、秋季、夏季、春季依次递减,日变化较小,大部分区域边界层高度的日变化幅度小于300 m,日循环比较平缓。南海大气边界层高度显著的季节变化特征主要受海气温差、海表面风、感热通量、潜热通量和稳定度的共同影响。较大的海气温差和强风速使海表热通量增加,下垫面不稳定性增加,海气相互作用加强,湍流活动增强,导致秋冬季边界层高度较高。过去42 a南海区域年平均大气边界层高度显著增高,年平均增高率约为0.8 m/a,且边界层高度变化存在显著的季节差异。海表面温度升高、潜热通量增加以及稳定度减小有利于边界层的发展,可能是导致南海边界层高度增加的主要原因。  相似文献   

2.
春季南海南部上混合层数值模拟与数值实验   总被引:1,自引:1,他引:1  
采用一维湍动能模式对南海南部的 SST及混合层进行数值模拟和数值试验。结果表明 :TKE模式能够模拟南海南部的海表面温度 SST以及除南海南部 5月中旬以外的上混合层深度随时间变化基本特征。在 5~ 6月 ,SST的日振荡主要依赖于短波辐射的日变化 ,风的混合作用抑制了 SST的日周期振荡。春季夏季风爆发期间 ,南海海面潜热通量和感热通量与短波辐射和风应力相比较 ,是一个对 SST和混合层影响较小的量。在春季南海南部 ,短波辐射作用能使 SST升高的最大值约为 4℃ ;潜热和感热通量能使 SST的下降的最大值为 3℃。风应力对南海混合层深度随时间变化趋势起着决定的作用 ,并能使其深度加深 2 0~ 30 m,而短波辐射则使混合层的深度变浅2~ 3m,潜热和感热通量会使混合层的深度加深 1~ 2 m。在春季南海南部 ,热通量对混合层深度的影响与风应力相比要小得多  相似文献   

3.
收集整理了中国近海18个浮标2011年全年的高时频实时观测资料,对中国近海SST日变化时空分布规律进行了分析,并利用一个改进了的一维海洋混合层模式对中国近海浮标资料进行了模拟。分析表明,中国近海SST日变化具有明显的季节变化特征。按照各季节SST日变化的明显程度,可以把近海海域分为两季型与四季型。两季型海域的SST日变化在春夏季非常明显,且变化幅度一致,而秋冬季日变化明显减小,如渤海、黄海北部和东海北部。而东海南部和南海北部等四季型海域的SST日变化幅度在各个季节均不相同,具有四季分明的特征。各个海域的短波辐射等热力通量、海面风应力等动量通量,以及上层海流等因素是造成上述分布特征的主要原因。文中使用的海洋混合层模式在对不同浮标观测SST的逐日演变过程中表现良好,对平均日变化的模拟比较合理,可以模拟出连续的、完整的SST日变化周期,并且与观测基本一致,该模式在中国近海区域具有良好的应用前景。  相似文献   

4.
春季南海北部上混合层的数值模拟与数值实验   总被引:5,自引:0,他引:5  
根据 1 998年南海季风实验 (SCSMEX)北部“实验 3号”调查船的观测资料 ,采用一维湍动能模式 (TKE模式 ) ,对春季南海北部的SST及混合层随时间变化特征进行了数值模拟和数值试验。结果表明 ,TKE模式能够很好地模拟南海北部的海表面温度SST和上混合层深度随时间变化基本特征。在南海 5— 6月 ,SST的日振荡主要依赖于短波辐射的日变化 ,短波辐射是SST的主要维持机制 ;短波辐射会使SST升高 1— 4℃ ;风的垂直混合作用主要是抑制了SST的日周期振荡。春季南海海面潜热通量和感热通量与短波辐射和风应力相比较 ,是一个对SST影响较小的量。南海北部 5月份混合层深度的变化趋势和振荡特征受风应力和短波辐射共同控制 ,风应力使混合层深度加深 5— 1 0m ,短波辐射使混合层深度平均变浅 5— 1 0m。而 6月份南海北部 ,在夏季风爆发后短波辐射较小 ,短波辐射的作用只能使混合层深度变浅1— 2m ,潜热通量和感热通量对混合层的作用会使混合层的深度加深 1— 2m ,混合层深度主要受风应力控制。  相似文献   

5.
田永青  潘爱军 《台湾海峡》2012,31(4):540-548
利用OAFLUX气候态月平均热通量资料及TMI云量、降雨、SST和QuikScat风场资料,对南海、特别是巴拉望岛西北海域净热通量的时空特征进行了深入分析.研究发现,夏季在巴拉望岛西北海域存在一局域净热通量极小值区,在7月份该海域海洋甚至呈现失热达20 W/m2情况.分析认为该局地净热通量异常可能与南海暖水的发生、发展有关,即由于西南季风爆发,巴拉望岛西北海域对流加强,一方面,蒸发增大使得潜热增大、云量增多,导致入射太阳短波辐射的减少;另一方面,降水的增大使得该海域出现障碍层现象,障碍层导致的局地海温正反馈进一步增强了局地对流,从而加剧海洋失热过程,促成了巴拉望岛西北海域净热通量局地异常的出现.进一步的经验正交模态(EOF)分析表明,在季节变化尺度上,南海净热通量的第一模态(89.1%)呈同位相变化,反映了南海受冬、夏季风的交替驱动特征;其中南海北部(海南岛至台湾海峡南段的带状海域)为振幅最大区,这与该海域存在年平均最大风速有关;第二模态(10.0%)以吕宋岛至雷州半岛一线为界,南北两侧反相,并具有显著的局域特征;不仅反映了黑潮入侵与南海环流的季节变化,而且还发现巴拉望岛西北海域存在一局地极值域,对应夏季净热通量异常区.  相似文献   

6.
南海北部海区温跃层分布特征及成因的初步分析   总被引:8,自引:1,他引:8  
陈希  沙文钰  李妍 《海洋预报》2001,18(4):9-17
利用二十一层海温再分析资料,详细分析了我国南海北部海区温跃层的强度、深度及厚度的季节变化特征。结果表明:在南海陆架浅水区域内,存在着随季节变化明显的辐射型温跃层;3-5月是温跃层的成长期:6-8月是该海域温跃层的强盛期;而9-11月温跃层开始减弱,到了冬季(12月到次年2月)温跃层变得最终,趋于消亡。结合本海区温跃层的这种变化特征,分析了该海域净辐射通量的分布状况及随季节的变化特征,证明了净辐射通量是影响该海域温跃层季节性分布特征的最重要因素之一。  相似文献   

7.
2000年南海季风爆发前后西沙海域海-气热量交换特征   总被引:14,自引:3,他引:14       下载免费PDF全文
利用2000年5月6日至6月17日在西沙海域进行的第二次南海海-气通量观测资料,计算了南海季风爆发前后海洋-大气间的辐射收支、感热通量、潜热通量及海洋热量净收支;发现季风爆发后海-气热量交换突然发生变化,其中潜热通量、海洋热量净收支变化尤为显著。讨论了季风爆发前后各种天气过程影响下海-气热量、水汽交换特点和海洋热量净收支变化,说明季风爆发前海洋是一个能量积累过程,季风爆发期海洋是一个能量释放过程,季风中断期海洋是一个能量再积累过程;季风爆发后西南大风期持续时间和强度,强烈影响水汽蒸发量大小,进而影响我国大陆上夏季降水,通过南海与阿拉伯海、孟加拉湾、西太平洋暖池等不同海域资料对比,分析了它们在海-气热量交换上的差别,指出这种差别是爆发后南海SST基本稳定而阿拉伯海、孟加拉湾SST明显降低的主要原因。  相似文献   

8.
针对海表面温度日变化幅度,基于观测数据,建立经验诊断模型。利用30 a再分析数据计算得到时间跨度为30 a、水平分辨率约为0.3°的DSST逐日数据集,并对DSST时空变化规律进行了分析。分析表明:DSST空间变化明显,北半球的平均DSST高于南半球。DSST具有明显的季节变化,西太平洋暖池区域在秋季DSST值域较大,东太平洋则四季均具有较大的DSST;热带大西洋全年整体DSST变化不明显;印度洋由于受季风影响,阿拉伯海和孟加拉湾的DSST值域夏季小于冬季。太阳短波辐射和风速因素是造成上述特征的主要原因。DSST 30 a的异常值长期变化不大,但年际振荡明显,整体年际变化异常趋势存在下降趋势。DSST与ENSO事件具有较好的相关性。  相似文献   

9.
热带印度洋SST的日变化幅度受到大气季节内振荡(Madden-Julian Oscillation,MJO)的调制,其在MJO对流最强(弱)位相达到极小(大)值,并且在MJO对流增强位相显著强于其对流减弱位相。本文利用逐时的再分析海表通量强迫一维海洋混合层模式,定量地诊断了MJO事件中SST日变化的差异成因。结果表明,SST日变化在MJO对流最强与最弱位相的显著差异主要是由短波辐射的季节内变化所致(40%),其次是风应力(38%)和潜热通量(14%),其他要素的影响较小。而SST日变化在MJO对流增强与减弱位相所呈现的不对称特征,主要是由纬向风应力的不对称性所致,这是MJO扰动结构与背景环流相互作用的结果。  相似文献   

10.
2004年秋季冷空气活动对南海海表温度的影响   总被引:1,自引:2,他引:1  
利用航次观测和网上的有关资料对南海2次强度不同的冷空气活动及其对南海SST的影响进行了分析.结果显示,9月22日弱冷空气过程南下速度慢,在陆地上变性较明显,未造成南海SST的明显变化;而10月2日前后的强冷空气过程南下速度快,陆地上变性比较弱,造成南海SST明显下降.通过对南海海表热收支分析,发现南海北部SST下降主要是冷空气造成净热通量急剧增加,海洋失去热量,而南部SST下降可能是南部海面气旋式风应力引起的下层冷水上涌.初步解释了2004年秋季冷空气活动对南海SST的影响.  相似文献   

11.
厄尔尼诺期间和后期南海海面温度的两次显著增暖过程   总被引:5,自引:0,他引:5  
通过分析ICOADS海洋气象资料,结合ISCCP短波辐射和OISST海面温度,研究并探讨了ENSO等大尺度海气相互作用过程背景下南海海表面温度(SST)的年际变化。研究表明,南海SSTA的年际变化和ENSO关系密切,并且分为两个阶段。以增暖事件为例,在厄尔尼诺(El Nino)发生年的冬季和消亡年的夏季,南海出现了两次显著增暖。第一次增暖出现在El Nino盛期,是El Nino影响的一部分,这时南海云量减少,净太阳辐射通量增加,SST上升。第二次增暖出现在El Nino结束后的夏季,不是El Nino直接作用的结果;这时夏季风减弱,一方面使得海洋的潜热损失减少,另一方面减弱了越南东部沿岸的上升流,两者的共同作用导致SST增加。  相似文献   

12.
卫星遥感南海海表面日增温的时空变化特征   总被引:1,自引:0,他引:1       下载免费PDF全文
利用搭载在Aqua和Terra卫星上的MODIS(moderate resolution imaging spectroradiometer)、AMSR-E(advanced microwave scanning radiometer for the earth observing system)传感器测量反演的昼夜海表温度(SST),计算海表面日增温(sea surface diurnal warming),分析南海海表面日增温的短期和年变动特征。受观测平台过境时间、传感器测量SST方式、反演算法等影响,MODIS/Aqua计算的日增温幅度略大于AMSR-E/Aqua和MODIS/Terra,但在表征南海海表面日增温的时空分布特征以及变化趋势上三者并未见显著性差异。南海海表面日增温在时间分布上以冬季为最小,春季为最大;在空间分布上则是南部海域大于中部和北部海域,东部海域大于西部海域。春夏之交的吕宋海峡西北部尤其容易发生日增温事件。海表面日增温与太阳辐射、风速、云量等影响有关,其中风速与海表面日增温显著负相关。  相似文献   

13.
基于2003—2015年的国产自主SST多源遥感融合数据,以中国南海及邻近海域为研究区,开展了SST时空分布和变化特征分析,结果表明:SST的空间分布总体呈现南高北低的特点,在研究区内,纬度每降低1°,SST增大约0.19℃,在近赤道区域,纬度每降低1°,SST约增大0.30℃;SST区域极大值的季节变化特征明显,冬季SST极大值均分布于5°N以南海域,夏季多分布于15°N以北海域,春秋两季分布介于冬春两季之间,秋季略偏向南海北部,春季略偏向南海南部。从时间变化上看,研究区SST呈现震荡上升趋势,上升速率约0.04℃/a;南海南部SST变化比较平缓,SST年变化速率一般小于0.04℃/a;近岸海域受人类活动的影响,SST年变化速率一般在0.05℃/a以上;在河口沿岸海域,受温度较低的冲淡水影响,SST升温不明显。  相似文献   

14.
南海珊瑚礁区34年卫星遥感海表温度变化的时空特征分析   总被引:2,自引:3,他引:2  
选取NOAA OISST数据集的1982-2015年南海月平均海洋表面温度(SST),先对东沙、西沙和南沙礁区海域的多年SST进行时间尺度上的统计,然后对该数据集进行距平场的经验正交函数(EOF)分解,研究南海海表温度的时间和空间年际变化特征。研究显示:(1)不同的礁区海域SST升温趋势不同,东沙礁区海域SST升温趋势最明显(0.216℃/(10 a)),西沙和南沙礁区SST的升温趋势分别为0.180℃/(10 a)和0.096℃/(10 a);(2)西沙和南沙礁区全年处于珊瑚生长的最适海温范围内,东沙一年中有4个月海温较低,SST最高的月份分别集中在7月(东沙礁区)、6月(西沙礁区)和5月(南沙礁区);(3) EOF第一模态的空间分布显示南海SST变化是同相位的,由西北—东南振幅量值递减,在礁区振幅从大到小依次为东沙、西沙、南沙;(4) EOF第一模态时间系数显示南海SST变化与El Niño事件相关。南海海表温度异常场与Niño3.4指数的相关性分析显示两者关联度最高为0.723,平均关联度也高达0.655;南海SST的变化滞后Niño3.4区7~8个月。综上,在全球变暖背景下,南海SST的变化不仅受到El Niño事件的影响,其不断上升也在悄然威胁珊瑚的正常生长。  相似文献   

15.
基于南沙群岛海域综合科学考察11个航次的实测资料,研究了南沙群岛海域的混合层深度季节变化特征。研究结果表明,南沙群岛海域混合层深度存在明显的季节变化,并且与季风和海表热通量的变化密切相关。春季,风速较小且风向不稳定,海面得到的净热通量全年最大,上层水体层结稳定,混合层深度较小;夏季,南海西南季风盛行,上层为反气旋式环流,海面得到的净热通量减少,混合层呈加深的趋势;秋季,海面净热通量继续减少,混合层深度达到最大值;冬季,东北季风驱动下形成的上层气旋式环流引起深层冷水的上升,限制了混合层的加深。  相似文献   

16.
大气低层风场对南海海温的影响及其与季风的关系   总被引:3,自引:0,他引:3       下载免费PDF全文
林爱兰  张人禾 《海洋科学》2009,33(1):95-100
利用1960-1999年月平均海表温度资料和大气低层风场资料,分析了南海海表温度与局地风场之间的关系及其季节变化特征,讨论了局地风场对南海海温的影响与季风的联系.结果表明,南海海表温度异常与局地风场异常之间的关系具有明显的季节变化特征,南海海表温度异常在夏季与纬向风异常呈明显的负相关,在冬季与经向风异常呈明显的正相关,这种季节变化与东亚季风特性(即盛行风存在明显的季节变化)密切相关.为南海海表温度监测预测提供气候背景,从而也解释了过去在大气低层风速与南海海表温度异常相关性方面不同研究结果存在差异的原因.  相似文献   

17.
南海表层水温年际变化的大尺度特征   总被引:24,自引:2,他引:22  
通过对COADS海洋气象资料的分析,得出南海表层水温(SST)年际变化的若干大尺度特征.结果表明:南海SST年际具有一定的准周期性,其显著周期为24~30个月;南海SST年际变化与年循环之间有着一种锁相关系,关键位相在于北半球冬春季节;南海典型冷暖年份合成SST距平场的时空结构十分相似;在年际时间尺度上,南海SST和南方涛动指数有反相关系,与经向风海面热收支之间有同位相关系;南海暖池面积指数的年际变化与南海SST年际变化一致.  相似文献   

18.
利用 Sea WiFS卫星遥感叶绿素质量浓度及TRMM微波遥感海表温度产品, 研究了南海海表叶绿素a的季节变化特征及其同海表温度的关系。研究结果表明, 南海叶绿素质量浓度具有很强的季节变化:通常低叶绿素质量浓度(<0.12 mg·m-3)出现在弱风高海表温度(>28°C)的春、夏季节;高叶绿素质量浓度(>0.13 mg·m-3)通常出现在有较强风速和较低海表温度(<27°C)的冬季。线性回归分析显示, 南海叶绿素质量浓度同海表温度呈显著负相关。尽管在南海南部、南海中部、南海西部及吕宋西北部4个代表子区域的显著性有所差异, 但都暗示温度变化所反映的垂向层化调控了营养盐质量浓度和浮游植物量变化。可见, 温度可能是影响海洋上层稳定程度及垂向交换强度的重要指标, 从而可能调控营养盐及浮游植物的变化。  相似文献   

19.
南海暖池作为影响我国东南部地区气候变化的重要因素,研究其多时间尺度变化特征及动力机制对于更加准确预报我国天气变化具有重要意义。结合海表面温度卫星观测资料和海表面再分析数据,识别和研究了南海民都洛岛西南暖池的季节变化特征,并利用数值模式探讨了其强迫机制。暖池位于民都洛岛西南方向约100 km范围内,中心位置在120.5°E, 12.5°N。暖池整个季节变化过程可分为发展期(10~11月)、成熟期(12~2月)、衰退期(3~5月)、消失期(6~9月)4个阶段:11月份暖池与南北两侧冷水温差达到0.5°C,暖池结构初步形成; 2月份温差达到1.1°C (南侧)和0.7°C (北侧),暖池最强;3月份暖池开始衰退,到6月份完全消失。进一步研究表明,该暖池的形成与地形引起的民都洛岛附近海域潜热通量的空间差异有关:冬季盛行的东北季风被民都洛岛上的高海拔山脉阻挡,在民都洛岛西南背风侧形成低风速区,而在南北两侧形成风激流(风速极大值区)。风速的空间差异引起了海表面潜热通量的差异,导致民都洛岛背风侧的潜热通量较周围海域要小,海表面温度较周围海域要高,从而导致了暖池的形成。  相似文献   

20.
利用 SeaWiFS卫星遥感叶绿素质量浓度及TRMM微波遥感海表温度产品,研究了南海海表叶绿素a的季节变化特征及其同海表温度的关系。研究结果表明,南海叶绿素质量浓度具有很强的季节变化:通常低叶绿素质量浓度(<0.12 mg. m-3)出现在弱风、高海表温度(>28 °C)的春、夏季节;高叶绿素质量浓度(>0.13 mg·m-3)出现在有较强风速和较低海表温度(<27 °C)的冬季。线性回归分析显示,南海叶绿素质量浓度同海表温度呈显著负相关关系。尽管在南海南部、南海中部、南海西部及吕宋西北部4个代表子区域的显著性有所差异,但都暗示温度变化所反映的垂向层化调控了营养盐质量浓度和浮游植物量变化。可见,温度可能是影响海洋上层稳定程度及垂向交换强度的重要指标,从而可能调控营养盐及浮游植物的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号