首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
夏季,黑潮在台湾东北向东海陆架的入侵表现为黑潮次表层水的强烈涌升,并在陆架上形成明显的冷穹。本研究利用ROMS(Regional Ocean Modeling System)模式,模拟了夏季黑潮入侵所形成的冷穹及上升流的三维结构,并讨论了上升流形成的动力机制。结果表明,冷穹中心在50 m以上的深度位于25.5°N,122.5°E附近,最大降温5 ℃以上;在50 m以下的深度,冷穹的中心位于台湾岛北缘。表层黑潮在台湾北缘不存在明显入侵,在陆坡东向转向附近则以气旋式环流入侵至陆架以上。此外,上升流主要位于陆坡坡度最大的区域,且黑潮次表层水的涌升存在两个较为明显的路径,分别位于台湾岛以北的100 m与200 m等深线之间以及东向转向的陆坡区域。在上层,平流作用是上升流产生的主要机制;而在近底层,平流作用与底摩擦都对上升流有贡献。  相似文献   

2.
Properties of the dense ice shelf water plume emerging from the Filchner Depression in the southwestern Weddell Sea are described, using available current meter records and CTD stations. A mean hydrography, based on more than 300 CTD stations gathered over 25 yr points to a cold, relatively thin and vertically well-defined plume east of the two ridges cross-cutting the continental slope about 60 km from the Filchner sill, whereas the dense bottom layer is warmer, more stratified and much thicker west of these ridges. The data partly confirm the three major pathways suggested earlier and agree with recent theories on topographic steering by submarine ridges. A surprisingly high mesoscale variability in the overflow region is documented and discussed. The variability is to a large extent due to three distinct oscillations (with periods of about 35 h, 3 and 6 d) seen in both temperature and velocity records on the slope. The oscillations are episodic, barotropic and have a horizontal scale of ∼20–40 km across the slope. They are partly geographically separated, with the longer period being stronger on the lower part of the slope and the shorter on the upper part of the slope. Energy levels are lower west of the ridges, and in the Filchner Depression. The observations are discussed in relation to existing theories on eddies, commonly generated in plumes, and continental shelf waves.  相似文献   

3.
Episodic outflow of suspended sediments from the Kii Channel to the Pacific Ocean in winter was observed by the sediment traps experiment above the shelf slope. When the current speed was weak and its direction was south or southwestward above the shelf slope the sinking sediment flux was nearly zero but the sinking sediment flux increased to 22g m–2 day–1 after the current speed was strong, its direction changed to south-west or westward and water temperature fell. Such intermitten sinking sediment flux above the shelf slope is considered to be related to the intermittent intrusion of the turbid and cold shelf water into the sub-surface layer of the transparent and warm slope water. Such episodic events may play a very important role in the material transport from the coastal sea to the open ocean.  相似文献   

4.
The generation and propagation mechanisms of a Kyucho and a bottom intrusion in the Bungo Channel, Japan, have been studied numerically using the hydrostatic primitive equations by assuming density stratification during summer. The experiments are designed to generate a Kuroshio small meander in Hyuga-Nada, which acts as a trigger for these disturbances. After the current speed of the Kuroshio is changed, a small meander is generated. At the head of the small meander, warm Kuroshio water is engulfed, and encounters the southwest coast of Shikoku. However, convergence of heat flux on the bump off Cape Ashizuri suppresses the generation of a warm disturbance, if the current speed is large. As the cold eddy associated with the small meander approaches Cape Ashizuri, the heat flux diverges on the bump. This heat source forces a warm disturbance, which intrudes along the east coast of the Bungo Channel as a baroclinic Kelvin wave (a Kyucho). After the cold eddy passes off Cape Ashizuri, the Kuroshio approaches the bump again. Strong convergence of heat flux then occurs on the bump, which forces a cold disturbance. This disturbance propagates as a topographic Rossby wave along the shelf break at the mouth of the channel. After the topographic wave reaches the west end of the shelf break, it intrudes along the bottom layer of the channel as a density current (a bottom intrusion). These results suggest that a Kyucho and a bottom intrusion are successive events associated with the propagation of the small meander.  相似文献   

5.
We studied the behavior of chemical substances in the upper 300 m of the water column across the continental shelf–slope interface in the East China Sea off the Okinawa Trough. The behaviors of iron, inorganic nutrients, and humic-like fluorescent dissolved organic matter were strongly influenced by the extensive water exchange between the East China Sea and the Kuroshio Current across the shelf break and slope via upwelling and frontal processes. We attributed the high humic-like fluorescent intensity at the subsurface of the shelf break and slope regions to the lateral supply of humic-like fluorescent dissolved organic matter from the shelf sediments to the outer shelf region due to the intrusion of shelf water into Kuroshio subsurface water. We found that the behavior of iron at the continental shelf–slope was remarkably different from the conservative mixing of inorganic nutrients and humic-like fluorescent dissolved organic matter. In deep and bottom waters at the shelf–slope, high total iron concentrations, which were closely related to water transmittance, possibly resulted from the swept transport of iron-rich resuspended sediments over the shelf floor from the slope by the invading Kuroshio Intermediate Water close to the bottom.  相似文献   

6.
During the summer of 1981 a large scale sampling effort took place in the shelf waters of the southeastern United States. The goal of this effort was to quantify the effect of the intrusion of deep Gulf Stream water into these shallow, euphotic waters. By making repeated hydrographic measurements over the entire shelf area, the actual volume of the intrusions was determined. Two main intrusion events were observed: one in June and early July and a second in late July and early August. The intruding water entered the shelf in the region south of St Augustine and was transported northward by the mean northward shelf circulation. The subsurface cold water mass was isolated from the Gulf Stream by a ridge of warmer water along the shelf break.The intrusions resulted in increased stability in shelf waters with vertical temperature gradients as high as 10°C m−1. The potential energy in the stratified shelf waters typically ranged from 1000 to 2000 J m−2 that would require 2 to 4 mW m−2 to mix. However, since only 0.1 to 1.0mW m−2 was available from wind and tidal mixing, the water column stayed stratified in most cases.The amount of nitrate transported onto the shelf was determined by two methods: direct observation by synoptic cruises and transport measurements using current meter arrays. Both methods gave similar results with about 18,000 tons nitrogen in the large June/July intrusion. On a seasonal basis, 40,000 tons of nitrogen could be advected into shelf waters which could result in 200,000 to 400,000 tons carbon production.  相似文献   

7.
Transport mechanism of suspended matter above the shelf slope is investigated with the use of the moorings of time-series sediment trap, current meter and nephelometer at three stations at the mouth of Tokyo Bay, Japan during 21 to 25 August 1993. Tidal pump mechanism is effective for the transport of suspended matter at the shelf edge, but the boring-like flood tidal current resuspends the settled suspended matter, on the bottom of shelf slope and the resuspended matter is resulted to be moved upslope in one tidal cycle at 10 m above the bottom of shelf slope.  相似文献   

8.
Mooring observations using ADCP, electromagnetic current meters and thermometers were performed to clarify the vertical and horizontal structure of coastal-trapped waves (CTWs) on continental shelf and slope on the eastern side of Sagami Bay, Japan, in August and September 2003. A strong inflow associated with CTW caused by Typhoon 0315 (CTW15) was observed with remarkable downwelling. The maximum current due to CTW15 was over 100 cm s−1, confined to the upper layer shallower than 90 m. The CTW (CTW10) induced by Typhoon 0310, was associated with the coastal upwelling and maximum outflow was 33 cm s−1; the currents were extended near the bottom at 230 m depth. Remarkable discrepancies were found between the current structures of CTWs. CTW15 was explained by superposing the second CTW mode on the first CTW mode, whereas CTW10 was explained by the first CTW mode. The generation and propagation processes of both CTWs were reproduced by numerical experiments using a three-dimensional level model. The model results indicated that the difference of modal characteristics between CTW15 and CTW10 already exists in the CTW generation region and are due to difference of the wind direction, i.e., the typhoon’s path.  相似文献   

9.
北部湾东北部水团分布及季节变化分析   总被引:2,自引:0,他引:2  
基于2016年9月—2017年8月北部湾海域棕囊藻调查9个航次的温度、盐度和密度等水文数据,通过K-mean动态聚类分析方法分析了研究海域水团的分布及季节变化过程。根据温盐资料将研究海域的海水类型分为低温高盐的陆架底层水团、陆架表层混合水团和低盐沿岸水团。通过20°10′N断面上多期次的温盐分布特征揭示了北部湾整体上逆时针环流在北部湾东侧陆坡的存在;通过大面水文调查的结果揭示琼州海峡的余流特征,并结合卫星漂流浮标运动轨迹揭示了珠江冲淡水对研究海区水团分布的影响。本研究丰富了对北部湾东北部水团分布和季节变化的认知,对研究该海域赤潮发生、发展规律有指导意义。  相似文献   

10.
Hydrographic observations collected by conductivity-temperature-depth(CTD) and instrumented elephant seals on the Prydz Bay continental shelf during 2012 and 2013 are used to characterize the intrusion of modified circumpolar deep water.As a regular occurrence,modified circumpolar deep water(MCDW) intrudes onto the shelf mainly between 150–300 m layer of 73°–75°E and then turns southeast affected by the cyclonic gyre of the Prydz Bay.The southernmost point of the warm water signal is captured on the east front of Amery Ice Shelf during March 2012.In terms of vertical distribution,MCDW occupies the central layer of 200 m with about 100 m thickness in the austral summer,but when to winter transition,the layer of MCDW deepens with time on the central shelf.  相似文献   

11.
In the summer seasons of 2004–2007, the intensive runoff (cascading) of the Antarctic shelf water (ASW) down the shelf and continental slope was revealed thanks to the recording of numerous thermohaline profiles across the shelf and continental slope of the Commonwealth Sea and Prydz Bay. The quickly executed profiles (4–10 h) with submesoscale resolution (near the shelf’s edge, the scale was even eddy-determinative, i.e., within 1.9–5.6 km), in combination with the fine-structure sounding and fine vertical resolution of the near-bottom boundary layer, provided a qualitatively new level of understanding the natural data. The detailed analysis of the temperature, salinity, and density patterns revealed the regularities and peculiarities of the ASW shelf and slope cascading. The intensive ASW cascading near the shelf break and lower part of the slope can be forced (appearing as discrete frontal meanders) or free (appearing as discrete plumes) and often has a wave-eddy character. The field observational data confirmed the obtained representative estimates of the elements of the ASW slope cascading. The basic area of the ASW formation is near the Amery Shelf Ice, from where the ASW spreads to the northwest, goes around the Fram Bank, and flows down the continental slope. The evaluative contribution of the ASW slope cascading to the ventilation of the deep and slope water of the Southern Ocean (near the shelf break 70 km long where the ASW cascading was observed) is Q K = 0.04–0.24 Sv, which agrees well with the analogous estimates obtained in other regions of the Antarctic.  相似文献   

12.
Hydrographic surveys were carried out four times in the western channel of the Korea Strait in March and August 2003 and in June and November 2004. The bottom cold water, which was lower than 10°C, appeared in the channel trough except in March 2003. It flowed southwestward along the shelf of Korean coasts in August 2003 and in November 2004. The width and the maximum speed of the intrusion current were about 20 km and approximately 25 cm s-1, respectively, off Ulsan, Korea. The volume transport of the bottom cold water was estimated 0.019 Sv (Sv≡106 m3 s-1) in August 2003 and 0.026 Sv in November 2004.  相似文献   

13.
《Journal of Sea Research》2002,47(3-4):209-222
Velocity and temperature measurements obtained with acoustic Doppler current profilers and thermistor strings are used to evaluate the production of internal wave band kinetic energy mainly in the frequency band σ>15 cpd. Results from a flat 19 m deep, vigorous tidal environment in a shelf sea are compared with energy production in a bottom boundary layer above a continental slope. In the tidal environment, maximum production occurs in the near-bottom and near-surface layers. A distinct mid-depth maximum in KE production occurs during a period when wind speeds exceed 10 m s−1 and significant wave height ∼2 m. At the same time, no significant changes in the along-shore current speed take place but the cross-shore current, generated by strong stratification, is weakened. This suggests a direct energy input from the wind via surface waves into the water column turbulence. Maximum kinetic energy production in the frequency band σ>1.9 cpd, thus including the semidiurnal tide, occurs at mid-depth when strong stratification is present. The overall magnitude of internal wave band kinetic energy production agrees well with independent dissipation estimates obtained from microstructure profilers. Above the sloping bottom, KE production is somewhat larger than observed in the shallow tidal environment, despite rms currents being ∼50% smaller and wind effects being small. Above the sloping bottom KE shear production was comparable to buoyancy production. The latter was negligible at the shelf sea site.  相似文献   

14.
海山是富钴结壳主要的成矿载体,结壳成矿分布不仅受到海洋最低含氧带、碳酸盐补偿深度、生物生产力、物质来源、海水氧含量等大尺度宏观因素的影响,同时也受到海山地形、沉积作用和底层海流冲刷等小尺度微观因素的控制。通过对以中太平洋R海山为主的水下结壳成矿与分布的深入研究,发现结壳富集区以海山浅水区域为主;地形地貌上的尖顶高地区、顶坡过渡带、山体鞍部、山脊、斜坡上部等区域结壳质量较好,覆盖率高;下斜坡、山谷、山顶平坦区和斜坡区平缓台地是结壳贫乏区,结壳厚度小、覆盖率也低;15°以下的小坡度地形结壳成矿较好,3°~7°最佳,15°以上的大坡度区质量有所下降,陡崖区最差。地形对结壳分布和成矿起基础性影响作用,沉积作用和底流冲刷分别起到阻滞和促进作用,海流是保持低坡度区结壳长期稳定生长的关键因素,地形控矿本质上是和底层流联合对抗沉积堆积作用的过程。  相似文献   

15.
Temperature, salinity and density structures were observed on Sept. 23 and 24, 1986 at one vertical section across the East China Sea shelf edge by an advanced type of towed vehicle with CTD sensors which was developed by the Japan Marine Science and Technology Center. The vehicle was towed at a speed of 2.5 m s−1 down to 150 m depth and at intervals of 170–500 m width. The observed profile was 50 km long on Sept. 23 and 70 km long on Sept. 24 along the cross-shelf section. An on-ship acoustic Doppler current profiler was simultaneously used to measure current velocities at depths of 20, 50 and 100 m.Interesting features were noticed. Firstly, there was a vertical displacement of pycnoclines at the lower edge of the surface mixed layer accompanied by vertical inversion of the salinity and temperature in the vicinity of the shelf edge. Pycnoclines were displaced upward by 12 m toward the outer edge on Sept. 23 and by 20 m on Sept. 24. On Sept. 23, the salinity inversion took place in a layer 20 m thick and 8 km wide, whereas the temperature inversion took place in a layer 8 m thick and 1.5 km wide. These vertical inversions were probably generated by vertical shear of tidal currents which was observed by the Doppler current profiler. These results throw light on understanding the vertical mixing process of stratified water on the continental shelf edge. Secondly, an intrusion of the shelf water into the Kuroshio water was observed along pycnoclines below the surface mixed layer 60 to 70 m deep in the Kuroshio region outer break. The measurement was successful in showing a horizontal mixing process of the shelf water and the Kuroshio water which could not be found out by standard CTD observations.  相似文献   

16.
A hydrographic survey and a 25-hour stationary observation were carried out in the western part of Suo-Nada in the summer of 1998 to elucidate the formation mechanism of the oxygen-deficient water mass. A steep thermocline and halocline separated the upper layer water from the bottom water over the observational area except for near the Kanmon Strait. The bottom water, in comparison with the upper layer water, indicated lower temperature, higher salinity, lower dissolved oxygen, higher turbidity, and higher chlorophyll a. Turbidity in the upper layer water changed with semi-diurnal period while the bottom water turbidity showed a quarter-diurnal variation, though the M2 tidal current prevailed in both waters. From the turbidity distribution and the current variation, it is revealed that the turbidity in the upper layer water is controlled by the advection due to the M2 tidal current. On the other hand, the quarter-diurnal variation in the bottom water turbidity is caused by the resuspension of bottom sediments due to the M2 tidal current. The steep thermocline and halocline were maintained throughout the observation period in spite of the rather strong tidal currents. This implies an active intrusion of the low temperature and high salinity water from the east to the bottom of Suo-Nada. Based on the observational results, a hypothesis on the oxygen-deficient water mass formation was proposed; the periodical turbidity variation in the bottom water quickly modifies the oxygen-rich water in the east to the oxygen-deficient bottom water in Suo-Nada in a course of circulation.  相似文献   

17.
Regularities in the structure and variability of the acoustic characteristics of Guinean shelf waters during the rainy season have been identified as a result of the generalization of the sound speed fields derived from temperature and salinity observations. Three areas with qualitatively different hydroacoustic properties have been revealed, namely, (i) near-shore shallow waters, where a near-surface haline acoustic channel occurs by virtue of intensive seawater freshening; (ii) a discharge front accommodating an intermediate acoustic waveguide in the temperature jump layer; and (iii) off-shore shelf areas displaying a characteristic alteration of the sound speed vertical gradient sign at thec(z) profile.Translated by Vladimir A. Puchkin.  相似文献   

18.
Comprehensive field observations of hydrological processes in the region of the continental slope of Severnaya Zemlya in the Laptev Sea allowed us to reveal descending dense (cold) shelf water over the slope (cascading) and to determine the spatiotemporal variability of the cascading [2]. The observations represented a series of polygon surveys in the autumn-winter-spring period. The estimates of the characteristics of the slope convection of the shelf water (cascading) were based on the results of laboratory and theoretical studies of the descending of the dense water over a sloping bottom in a rotating fluid with sources of different geometry. It was shown that the cascading of dense shelf water over the continental slope mainly corresponds to a smooth (geostrophic) regime. An analysis of some thermohaline and density sections indicates, however, the possibility of the development of a wave-eddy regime of cascading and/or generation of fast gravity waves in the upper part of the continental slope. The most representative estimation of the contribution of the cascading of dense shelf water on the northern continental slope of Severnaya Zemlya to the ventilation of the intermediate waters in the Nansen Basin for five winter months is ≈0.0614 Sv.  相似文献   

19.
A thermohaline front is located at the southeastern entrance of the Yellow Sea in winter, and it is generated by the intrusion of warm saline water into the Yellow Sea caused by a strong northerly wind. Recently, a westward transversal current traveling away from the west coast of Korea toward the open sea area along the front was reported. The westward transversal current is dominant in the surface layer during the temperature inversion period. The formation and structure of this current are examined using a numerical vertical ocean-slice model. When two different water masses meet, a front is formed and adjusted geostrophically. In this frontal zone, a horizontal pressure gradient flow by the vertically inclined isopycnal occurs under the thermal wind process in a baroclinic effect, and the cold fresh coastal water moves westward along the front in the upper layer. The barotropic effect across the front and the bottom friction effect strengthen the westward component of the velocity. The velocity of the bottom layer decreases remarkably in the increase of the bottom drag coefficient. This means that the bottom friction with the strong background tidal current causes a reduction in the current in the bottom layer.  相似文献   

20.
As a fundamental study to evaluate the contribution of the Kuroshio to primary production in the East China Sea (ECS), we investigated the seasonal pattern of the intrusion from the Kuroshio onto the continental shelf of the ECS and the behavior of the intruded Kuroshio water, using the RIAM Ocean Model (RIAMOM). The total intruded volume transport across the 200m isobath line was evaluated as 2.74 Sv in winter and 2.47 Sv in summer, while the intruded transport below 80m was estimated to be 1.32 Sv in winter and 1.64 Sv in summer. Passive tracer experiments revealed that the main intrusion from the Kuroshio to the shelf area of the ECS, shallower than 80m, takes place through the lower layer northeast of Taiwan in summer, with a volume transport of 0.19 Sv. Comparative studies show several components affecting the intrusion of the Kuroshio across the 200 m isobath line. The Kuroshio water intruded less onto the shelf compared with a case without consideration of tide-induced bottom friction, especially northeast of Taiwan. The variations of the transport from the Taiwan Strait and the east of Taiwan have considerable effects on the intrusion of the Kuroshio onto the shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号