首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybrid model testing technique is widely used in verification of a deepwater floating structure and its mooring system,but the design of the truncated mooring systems which can reproduce both static and dynamic response same as the full-depth mooring system is still a big challenge,especially for the mooting systems with large truncation.A Cell-Tress Spar operated in 1500 m water depth is verified in a wave basin with 4 m water depth.A large truncation factor arises even though a small model scale 1:100 is adopted.Computer program modules for analyzing the static and frequency domain dynamic response of mooting line are combined with multi-objective genetic algorithm NSGA-II to optimize the truncared mooting system.Considering the asymmetry of layout of mooring hnes,two different truncated mooring systems are respectively designed for both directions in which the restoring forces of the.mooting system are quite,different.Not only the static characteristics of the mooting systems are calibrated,but also the dynamic responses of the single truncated mooting line are evaluated through time domain numerical simulation and model tests.The model test results of 100-year storm in the GOM are reconstructed and extrapolated to a full depth.It is found that the experimental and numerical resuits of Spar wave frequency motion agree well,and the dynamic responses of the full-depth mooring lines are better reproduced,but the low frequency surge motion is overestimated due to the smaller mooring-induced damping.It is a feasible method adopting different truncated mooring systems for different directions in which the restoring force characteristics are quite different and cannot be simulated by one truncated mooring system.Hybrid verification of a deepwater platform in wave basin with shallow water depth is still feasible if the truncated mooring systems are properly designed,and numerical extrapolation is necessary.  相似文献   

2.
The real-time computer-controlled actuators are used to connect the truncated parts of moorings and risers in the active hybrid model testing system. This must be able to work in model-scale real time, based on feedback input from the floater motions. Thus, mooring line dynamics and damping effects are artificially simulated in real time, based on a computer-based model of the problem. In consideration of the nonlinear characteristics of the sea platform catenary mooring line, the equations of the mooring line motion are formulated by using the lumped-mass method and the dynamic response of several points on the mooring line is investigated by the time and frequency domain analysis method. The dynamic response of the representative point on the mooring line is analyzed under the condition of two different corresponding upper endpoint movements namely sine wave excitation and random wave excitation. The corresponding laws of the dynamic response between the equivalent water depth truncated points at different locations and the upper endpoint are obtained, which can provide technical support for further study of the active hybrid model test.  相似文献   

3.
等效水深截断是混合模型试验中非常重要的一步,合理的截断方案是模型试验成功的前提。现有的研究大多忽略对平台转动的考虑,该文在静态相似准则的基础上增加对平台转动的考虑,推导了系泊系统回复力和转矩的计算公式,建立了满足静态一致性的目标函数,进而采用粒子群算法进行等效水深截断优化设计。以某深水半潜式平台为例,首先在不考虑转动的情况下对其系泊系统进行等效截断,研究发现截断水深的变化对转矩的优化结果影响较大,从而证明了平台转动是应该考虑的。其次在考虑转动的情况下对系泊系统进行等效截断,通过水动力软件验证所优化的结果,证明该方法的可行性,为后续的等效水深截断优化设计的研究提供参考。  相似文献   

4.
Hydrodynamic performance of an ultra deep turret-moored Floating Liquefied Natural Gas(FLNG) system is investigated.Hydrodynamic modeling of a turret-moored FLNG system,in consideration of the coupling effects of the vessel and its mooring lines,has been addressed in details.Based on the boundary element method,a 3-D panel model of the FLNG vessel and the related free water surface model are established,and the first-order and second-order mean-drift wave loads and other hydrodynamic coefficients are calculated.A systematic model test program consisting of the white noise wave test,offset test and irregular wave test combined with current and wind,etc.is performed to verify the numerical model.Owing to the depth limit of the water basin,the model test is carried out for the hydrodynamics of the FLNG coupled with only the truncated mooring system.The numerical simulation model features well the hydrodynamic performance of the FLNG system obtained from the model tests.The hydrodynamic characteristics presented in both the numerical simulations and the physical model tests would serve as the guidance for the ongoing project of FLNG system.  相似文献   

5.
应用数值模拟与模型试验相结合的方法研究半潜式生产平台系泊状态下的耦合动力特性。建立耦合分析模型,时域内计算求解平台的动力响应,选取缩尺比为1∶60,采用等效截断模型方法对数值模拟结果进行验证。通过对比模型试验与数值模拟结果发现:等效截断系泊系统可以较好地模拟平台的位移响应,但在系泊张力方面却差异较大,此外极端海况下平台的甲板上浪问题也必须得到充分重视。  相似文献   

6.
A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and potential deck impact to the semi-submersible platform. It is important to predict air gap response of platforms accurately in order to check the strength of local structures which withstand the wave slamming due to negative air gap. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Furthermore, full scale simulation of the mooring system in model test is still a tuff work especially the stiffness of the mooring system. Owing to the above mentioned problem, the model test results are not accurate enough for air gap evaluation. The aim of this paper is to present sensitivity analysis results of air gap motion with respect to the mooring system and wind load for the design of semi-submersible platform. Though the model test results are not suitable for the direct evaluation of air gap, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. In the presented design example, a numerical model is tuned and validated by ANSYS AQWA based on the model test results with a simple 4 line symmetrical horizontal soft mooring system. According to the tuned numerical model, sensitivity analysis studies of air gap motion with respect to the mooring system and wind load are performed in time domain. Three mooring systems and five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design.  相似文献   

7.
The present research aims at clarifying the effects of freak wave on the motion and dynamic responses of a semisubmersible. To reveal the effects of mooring stiffness, two mooring systems were employed in the model tests and time-domain simulations. The 6-DOF motion responses and mooring tensions have been measured and the 3-DOF motions of fairleads were calculated as well. From the time series, trajectories and statistics information, the interactions between the freak wave and the semisubmersible have been demonstrated and the effects of mooring stiffness have been identified. The shortage of numerical simulations based on 3D potential flow theory is presented. Results show that the freak wave is likely to cause large horizontal motions for soft mooring system and to result in extremely large mooring tensions for tight mooring system. Therefore, the freak wave is a real threat for the marine structure, which needs to be carefully considered at design stage.  相似文献   

8.
The motion response prediction of offshore structures may be carried out using time domain or frequency domain models or model tests. The frequency domain analysis uses the simplified, linearised form of the motion equations and it is very economical. The time domain analysis, unlike frequency domain models, is adequate to deal with non-linearities such as viscous damping and mooring forces, but it requires sophisticated solution techniques and it is expensive to employ. For moored semisubmersibles time domain techniques must be employed since there are strong nonlinearities in the system due to mooring line stiffness and damping and viscous drag forces. In the first part of this paper a time domain model to predict the dynamic response of a semi-submersibles are developed and the effect of thrusters and mooring line damping are incorporated into the time domain model. In the second part time domain simulations are carried out to find the total extreme motions and mooring forces.  相似文献   

9.
随着海上风能的开发向深水发展,支撑风机的载体平台越来越受到关注。在经济性与安全性、稳定性的多重要求下,张力腿平台(TLP)在海洋风能资源的开发中体现出了重要地位。采用基于开源平台OpenFOAM开发的计算流体动力学(CFD)水动力学求解器naoe-FOAM-SJTU对一座处于中等水深下的风机基础水下TLP(STLP)的运动响应进行了数值模拟与研究。文中使用弹簧锚链模型模拟STLP的垂向系泊锁链系统,模拟该平台在不同波浪环境下的运动响应情况。首先将STLP单自由度自由衰减CFD模拟结果与已有全耦合时域分析结果进行对比,验证了naoe-FOAM-SJTU求解器及使用弹簧模型模拟STLP系泊系统的准确性与可靠性。随后在考虑非线性波浪载荷的情况下研究极端海况下与一般作业海况下STLP的运动响应情况,计算工况中的风机基础所受弯矩及锚链受力情况,并详细展示流场、速度场信息,分析高阶波浪成分、不同海况等条件对于STLP运动性能的影响。研究结果表明,TLP在中等水深中具有良好的运动性能,naoe-FOAM-SJTU求解器可以有效模拟水中生产平台在波浪环境下的水动力问题,并可以对整个流场进行可视化展示与分析。  相似文献   

10.
以工作水深为320 m的转塔式FPSO为例,研究了等效水深截断的混合模型试验方法。选择截断水深为160 m,先后进行了截断水深系统和全水深系统模型试验,并进行了相应截断水深试验的数值重构和全水深系统的数值计算。结果证明混合模型试验技术是切实可行的,可用于深海平台的模型试验。  相似文献   

11.
In this paper, the impact analysis of air gap concerning the parameters of mooring system for the semi-submersible platform is conducted. It is challenging to simulate the wave, current and wind loads of a platform based on a model test simultaneously. Furthermore, the dynamic equivalence between the truncated and full-depth mooring system is still a tuff work. However, the wind and current loads can be tested accurately in wind tunnel model. Furthermore, the wave can be simulated accurately in wave tank test. The full-scale mooring system and the all environment loads can be simulated accurately by using the numerical model based on the model tests simultaneously. In this paper, the air gap response of a floating platform is calculated based on the results of tunnel test and wave tank. Meanwhile, full-scale mooring system, the wind, wave and current load can be considered simultaneously. In addition, a numerical model of the platform is tuned and validated by ANSYS AQWA according to the model test results. With the support of the tuned numerical model, seventeen simulation cases about the presented platform are considered to study the wave, wind, and current loads simultaneously. Then, the impact analysis studies of air gap motion regarding the length, elasticity, and type of the mooring line are performed in the time domain under the beam wave, head wave, and oblique wave conditions.  相似文献   

12.
The responses of a spar constrained by slack mooring lines to steep ocean waves and tensions in the mooring lines are simulated using two different numerical schemes: a quasi-static approach (SMACOS) and a coupled dynamic approach (COUPLE). The two approaches are the same in computing wave loads on the structure. Their difference is in modeling dynamic forces of mooring lines; that is the dynamic forces are included in the computation of COUPLE but neglected in SMACOS. The numerical simulation is examined against the laboratory measurements of the JIP Spar in a water depth of 318 m. The dynamic coupling effects between the JIP Spar and its mooring lines in different water depths (318, 618 and 1018 m) are investigated by the comparison of numerical simulations obtained using the quasi-static and coupled dynamic approaches. It is found that the damping of mooring lines reduces the slow-drift surge and pitch of the Spar, especially in deep water. The reduction in the amplitude of slow-drift surge can reach about 10% in a water depth of 1018 m. The tension in mooring lines may greatly increase in the wave frequency range when dynamic forces in mooring lines are considered. The mooring-line tension in the wave frequency range predicted by the coupled dynamic approach can be eight times as great as the corresponding prediction by the quasi-static approach in a water depth of 1018 m. This finding may have important implications for the estimation of the fatigue strength and life span of the mooring lines deployed in deep water oceans.  相似文献   

13.
The highest similarity degree of static characteristics including both horizontal and vertical restoring force-displacement characteristics of total mooring system, as well as the tension-displacement characteristics of the representative single mooring line between the truncated and full depth system are obtained by annealing simulation algorithm for hybrid discrete variables (ASFHDV, in short). A“baton” optimization approach is proposed by utilizing ASFHDV. After each baton of optimization, if a few dimensional variables reach the upper or lower limit, the boundary of certain dimensional variables shall be expanded. In consideration of the experimental requirements, the length of the upper mooring line should not be smaller than 8 m, and the diameter of the anchor chain on the bottom should be larger than 0.03 m. A 100000 t turret mooring FPSO in the water depth of 304 m, with the truncated water depth being 76 m, is taken as an example of equivalent water depth truncated mooring system optimal design and calculation, and is performed to obtain the conformation parameters of the truncated mooring system. The numerical results indicate that the present truncated mooring system design is successful and effective.  相似文献   

14.
作为浮式结构最常采用的两种系泊方式,悬链式系泊和张紧式系泊皆存在不足。本文提出了一种新型系泊系统,并以一深水FPSO为例,采用完全时域耦合分析方法,对不同工作水深情况下的浮体及新型系泊系统的运动性能进行了数值模拟,并将该新型系泊系统的仿真结果与传统的张紧式系泊系统进行了比较,分析了新型系泊系统在浮体运动性能、缆索张力等方面的改善,同时探讨了该新型系泊系统的最佳工作水深。  相似文献   

15.
两层流体中内波作用下Spar平台运动响应   总被引:1,自引:1,他引:0  
研究两层流体中Spar平台在内波作用下的运动响应问题。在线性势流理论框架,提出在内波作用下Spar平台运动响应及分段式悬链线系泊张力特性的计算方法。数值分析两层流体内界面位置、入射内波的波长以及系泊索初始预张力对Spar平台运动响应及其系泊索张力特性的影响规律,结果表明内波对Spar平台纵摇运动响应的影响是小的,但对Spar平台纵荡与垂荡运动响应及其系泊索张力的影响是不可忽视的。因此,在Spar平台的设计中,考虑内波的影响是重要的。  相似文献   

16.
Analyzed are the merits and demerits of catenary mooring system and taut mooring system, which are commonly used nowadays. As falling somewhere between these two systems, a new mooring system integrating catenary with taut mooring is proposed. In order to expound and prove the advantages of this new system, the motion performance of a semi-submersible platform is simulated by employing full time domain coupled analysis method. A comparison of the result of new mooring system with that of taut mooring system shows that the movement of the platform using the new type mooring system is smaller than that using the taut mooring system, which ensures a better working condition. Furthermore, the new mooring system is also compatible with the characteristics of catenary mooring system, which eliminates the requirement of anti-uplift capacity of the anchors.  相似文献   

17.
针对深海半潜式平台及其系泊系统的水动力特性,运用时域耦合的分析方法,对一座水深为1 000 m的半潜式平台,及其悬链线式系泊系统的水动力性能进行探索,获得频域和时域响应结果。同时阐述了平台系泊系统的设计流程,并通过系泊系统参数的变化,研究其特性寻找影响系泊系统作用的一般规律,为平台及其系泊系统设计提供参考。  相似文献   

18.
The drag-induced damping in a mooring cable due to combined first- and second-order wave excited motion of a moored vessel has been determined by statistical linearisation. A dynamic stiffness approach developed elsewhere is used to deal with the dynamics of the mooring cables. The power spectral densities of low- and wave-frequency responses are obtained which clearly show the influence of mooring line damping. The non-Gaussian probability density functions (pdf) and expected crossing rates of vessel responses and dynamic cable tensions are determined using the Kac–Seigert technique, and the influence of drag damping is highlighted.  相似文献   

19.
为研究顺应式海洋平台慢漂运动的影响因素,以截断圆柱和漂浮方箱为例进行了不规则波作用下的慢漂运动模型试验。测量了不同系泊刚度条件下的漂浮方箱以及相同系泊刚度条件下的截断圆柱和漂浮方箱在静水中自由衰减运动和在不规则波中的运动响应,并将运动响应分解成一阶波频运动响应和二阶低频运动响应,分析了系泊刚度和浮体形状对浮体运动的影响。通过物理模型试验发现了系泊刚度及浮体形状对顺应式系泊浮体一阶运动标准差和二阶低频运动平均漂移值和标准差的关系。结果表明由于顺应式浮体的固有周期远离波浪谱峰周期时,系泊刚度以及浮体形状对慢漂运动的一阶运动响应影响不大;二阶低频运动相对偏离平衡位置的平均值和标准差均随系泊刚度增大而减小,浮体形状同样对慢漂运动的二阶低频纵荡运动响应影响较大。试验结果为实际海洋工程的外形选择和系泊刚度选择提供数据支持。  相似文献   

20.
The coupled hull, mooring and riser analysis techniques in time domain are widely recognized as the unique approach to predict the accurate global motions. However, these complex issues have not been perfectly solved due to a large number of nonlinear factors, e.g. forces nonlinearity, mooring nonlinearity, motion nonlinearity and so on. This paper investigates the coupled effects through the numerical uncoupled model, mooring coupled model and fully coupled model accounting mooring and risers based on a novel deep draft multi-spar which is especially designed for deepwater in 2009. The numerical static-offset, free-decay, wind-action tests are executed, and finally the three hours simulations are conducted under 100-year return period of GOM conditions involving wave, wind and current actions. The damping contributions, response characteristics and mooring line tensions are emphatically studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号