首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
极值风速和极值波高是海洋工程、海洋能开发、防灾减灾等极为关注要素。文章基于来自欧洲中期天气预报中心(ECMWF)的ERA-interim 海浪再分析资料、ERA 阵风资料,计算了“21世纪海上丝绸之路”涉及海域的年极值风速、极值波高,并首次计算了不同季节的极值。结果表明:①南海的50年一遇年极值风速大于孟加拉湾,孟加拉湾大于阿拉伯海;极值波高的分布特征与极值风速大体一致。②南海的极值风速在各个季节都大于孟加拉湾,孟加拉湾大于阿拉伯海;南海- 北印度洋的极值风速在JJA 和SON 期间明显大于MAM 期间,DJF期间最小。③南海各个季节的极值波高都大于北印度洋,阿拉伯海的极值波高在MAM和JJA 期间明显大于孟加拉湾;南海的极值波高在JJA 和SON 期间明显大于MAM 和DJF期间;北印度洋的极值波高在JJA 期间最大,MAM 次之,DJF最小。  相似文献   

2.
利用1999年8月-2009年7月具有高精度的QuikSCAT/NCEP混合风场,对中国海海表风场的风速风向、极值风速、大风频率等特征进行分析,研究发现:MAM和SON的风速大值中心位于台湾海峡,JJA位于南海西南部海域,DJF大值区主要位于琉球群岛-台湾海峡-东沙群岛-平顺海岛一带,风向也具有明显的季节特征;极值风速...  相似文献   

3.
1988—2009年中国海波候、风候统计分析   总被引:3,自引:0,他引:3  
利用高精度、高时空分辨率、长时间序列的CCMP(Cross-Calibrated,Multi-Platform)风场,驱动国际先进的第三代海浪模式WAVEWATCH-Ⅲ(WW3),得到中国海1988年1月~2009年12月的海浪场。对中国海的波候(风候)进行精细化的统计分析,分析了海表风场和浪场的季节特征、极值风速与极值波高、风力等级频率和浪级频率、海表风速和波高的逐年变化趋势,结果显示:(1)中国海的海浪场与海表风场具有较好的一致性,尤其是在DJF(December,January,February)期间;海表风速和波高在MAM(March,April,May)期间为全年最低,在DJF期间达到全年最大;MAM和JJA(June,July,August)期间,中国海大部分海域的波周期在3~5.5s,SON(September,October,November)和DJF期间为4.5~6.5s。(2)中国海极值风速、极值波高的大值区分布于渤海中部海域、琉球群岛附近海域和台湾以东广阔洋面、台湾海峡、东沙群岛附近海域、北部湾海域、中沙群岛南部海域。(3)吕宋海峡在MAM、SON、DJF期间均为6级以上大风和4m以上大浪的相对高频海域,JJA期间,6级以上大风的高频海域位于中国南半岛东南部海域,4m以上大浪主要出现在10°N以北。(4)在近22a期间,中国海大部分海域的海表风速、有效波高呈显著性逐年线性递增趋势,风速递增趋势约0.06~0.15m.s-1.a-1,波高递增趋势约0.005~0.03m.a-1。  相似文献   

4.
张磊  郑崇伟  李庆红 《海洋通报》2012,31(5):575-580
利用具有较高时空分辨率的1988-2009年的CCMP(Cross-Calibrated,?Multi-Platform)风场资料,对北印度洋海域的风候特征进行深入统计分析,为防灾减灾、航海、海洋能开发等提供参考。研究发现:(1)北印度洋受季风影响显著,MAM期间阿拉伯海和孟加拉湾的风向呈顺时针旋转,JJA期间受西南季风影响显著,盛行西南风,SON期间为季风过渡季节,低纬度海域的西南季风仍未消退,而高纬度部分海域已经转受东北信风的影响,DJF期间整个北印度洋受东北信风影响显著。风速的大值区主要分布于索马里以东和阿拉伯半岛东南部海域、斯里兰卡东部海域和马纳尔湾。(2)6级以上大风的高频中心位于索马里和阿拉伯半岛东部海域。(3)近22年期间,北印度洋海域的海表风速整体上以0.0286m?s-1?a-1的速度显著性逐年线性递增,递增趋势较强的海域分布于中高纬海域:红海、马纳尔湾、孟加拉湾西部和北部海域、马六甲海峡、泰国湾、北部湾。  相似文献   

5.
文章利用来自ECMWF的ERA-interim海浪再分析资料,统计分析了21世纪海上丝路涉及海域的波候特征,结果表明:1 2月,南海的有效波高(SWH——significant wave height)在1.4m以上,明显大于北印度洋。南海的波向以NE向为主导;北印度洋以偏S、偏E向为主。5月,北印度洋以偏S向浪为主;南海中部为SE向,北部为偏E向。北印度洋的SWH在1.2m以上,明显大于南海。8月,南海—北印度洋以SW向的浪为主。阿拉伯海的SWH在2.2m以上,孟加拉湾为1.4~2.8m;南海的SWH相对最弱。11月,南海的波向以NE向为主,北印度洋以偏S、偏E向为主。南海的SWH明显大于北印度洋。2 2月,南海以偏NE向的浪出现频率最高,需要引起重视的有NE、NNE、ENE向的强浪。北印度洋主要以偏S向的浪为主,强浪出现频率很低。8月,南海—北印度洋以偏S、SW向的浪为主;需要注意的是SSW、SW、WSW向的强浪。3 2月、11月,北印度洋的大浪频率在10%以内,南海明显高于北印度洋。5月,南海—北印度洋在10%以内。8月,阿拉伯海的大浪频率在40%以上,孟加拉湾次之,南海的频率低于北印度洋。4 1979-2014年期间,南海大部分海域的SWH显著性递增,趋势在每年0.4cm/s以上。孟加拉湾、印度半岛西部海域没有显著的变化趋势。阿拉伯海西部、印度洋15°S-0°显著递增,趋势为每年0.1~0.4cm/s。仅部分零星海域表现出显著性递减。  相似文献   

6.
利用来自ECMWF的ERA-40海表10m风场资料,对西北太平洋海域海表风速的长期变化趋势等进行研究,研究发现:(1)1958-2001年期间,西北太平洋第一岛链以内海域的海表风速不存在显著的逐年变化趋势,第一岛链以外地广阔洋面则基本表现出显著性逐年线性递增趋势,递增趋势约0.005-0.02 m·s1·a-1,呈显著性逐年线性递减的海域主要分布于一些零星海域;(2)近44年期间,西北太平洋海域的海表风速整体上以0.0072m·s-1·a-1的速度显著性逐年线性递增,在1958-1974年期间,海表风速的递增趋势较强,1975-2001年期间,西北太平洋海域的海表风速整体上变化趋势较为平缓,尤其是在1976-1983年期间,海表风速的走势甚为平缓;(3)西北太平洋海域的海表风速不存在显著的逐MAM、逐JJA变化趋势,逐SON和逐DJF则表现出显著的线性递增趋势,逐SON的递增趋势为0.0047 m· s-1· a-1,逐DJF的递增趋势为0.0079m·s-1·a-1;(4)西北太平洋海域的海表风速存在多种尺度的变化周期,具有明显的2.0-2.4年、4.3-5.2年以及26年以上的长周期震荡.  相似文献   

7.
北印度洋-南海海域海浪场、风场的年际变化特征分析   总被引:3,自引:0,他引:3  
利用1957年9月~2002年8月共45年的逐6小时ERA40 10 m风场,驱动WAVEWATCHⅢ海浪模式,得出北印度洋-南海海域3小时一次,分辨率为0.5°×0.5°的海浪场;对上述海浪场和对应风场进行EOF分析,讨论它们的年际变化的特征。研究结果指出:亚丁湾以东洋面、孟加拉湾和南海都存在海浪和风速场的高值变化中心,尤其是亚丁湾以东洋面风力最强,有效波高最高;赤道印度洋中东部有效波高为高值区可能是南印度洋西风带产生的涌浪向北传播引起的;北印度洋-南海海域海面风速和有效波高呈线性增强趋势,海面风速还存在3年左右的周期变化现象。  相似文献   

8.
北印度洋是我国“海上丝绸之路”的重要通道,其每年热带气旋活动引起的风暴潮等严重威胁着船舶航行安全和沿岸国家人民生命财产安全。分析研究北印度洋风暴潮的特征,对我国经济发展及北印度洋沿岸国家防灾减灾具有重要的现实意义。利用美国联合预警中心(the Joint Typhoon Warning Center, JTWC)公布的1950~2020年热带气旋资料、美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)公布的1950~2020年热带气旋资料与1950~2020年的Niño3.4指数、夏威夷大学海平面中心(University of Hawaii Sea Level Center, UHSLC)公布的北印度洋每小时的水位数据进行分析,结果表明: (1)北印度洋大于1 m的风暴潮主要分布在孟加拉湾北部,少量分布在孟加拉湾其他区域与阿拉伯海; (2)孟加拉湾北部区域的年际最大热带风暴潮(annual maximum tropical cyclone storm surge, AMTSS)与当月Niño3.4指数、南方涛动指数(southern oscillation index, SOI)相关性较高、受厄尔尼诺-南方涛动(EI Niño-Southem Oscillation, ENSO)的影响明显; (3)北印度洋AMTSS月际分布呈现双峰分布,与热带气旋(tropical cyclone, TC)的月际分布基本一致; (4) La Niña期间影响孟加拉湾北部的热带气旋在数量与强度方面均超过El Niño期间影响孟加拉湾的热带气旋,是La Niña期间风暴潮极值大于EI Niño期间风暴潮极值的重要原因。研究表明, AMTSS对ENSO信号的响应可能为AMTSS提供了潜在的可预测性,这对早期预警和减少风暴潮灾害具有重要意义。  相似文献   

9.
用Gumbel极值分布推算气候极值的方法   总被引:1,自引:0,他引:1  
介绍了用Gumbel极值分布理论推算气候极值的矩法、Thomas曲线公式和最小二乘法。并计算多年一遇的年最高气温、年最大均风速、年最大日降雨量和年最大波高。指出,变率小的要素极值再现期短;变率大的要素极值再现期长;Thomas曲线公式的计算结果较其它两种方法接近历史实况,且计算简便。  相似文献   

10.
蔡丽 《海岸工程》2023,(1):61-74
为了给江苏滨海海域海上风电场的结构设计提供更为合理的设计参数,本文利用定量分析法对比分析了采用不同推算方法推算得到的工程海域极值波高,讨论了不同推算方法的差异及影响。结果表明:采用年极值法、条件极值法(包括风暴统计法、阈值上限法)和组合法推算出的工程海域极值波高受理论频率曲线、热带风暴年均频次、极端设计风速和特定水位的影响较大。其中,热带风暴年均频次主要影响风暴统计法推算的结果,当热带风暴年均频次不小于1时,推算的结果趋于稳定,相对偏差小于5%;极端设计风速和特定水位主要影响组合法推算的结果,极端设计风速的选择主要影响极值波高在各个方向上的分布,特定水位的叠加主要影响极值波高的幅值;对于非特定水位下的极值波高,利用条件极值法中的风暴统计法推算的结果最大,为6.55 m;利用年极值法中P-Ⅲ型曲线推算的结果最小,为5.48 m;两者相对偏差约20%;对于特定水位下的极值波高,利用组合法推算出的NW—SE方向极值波高与水位呈正相关,即叠加正水位时,极值波高增大,叠加负水位时,极值波高减小,幅值变化可达±15%;且极值波高的方向分布与所采用的极端设计风速的方向分布相同,利用极值波高对应的设计...  相似文献   

11.
首先介绍了耿贝尔逻辑模型,采用该模型对南海海域的涠州岛海洋站的风速和有效波高实测数据进行了分析,结果表明耿贝尔逻辑模型较好地描述了年极值风速和有效波高两随机变量的联合分布;采用得到的极值风浪联合概率分布推算了不同重现期的极值风速和波高,表明考虑风速和波高相关性对设计荷载的确定有显著影响。由于耿贝尔逻辑模型具有函数结构简单,参数估计方便,因此有望成为极值风速和波高联合分布的较理想概率模型。  相似文献   

12.
利用ERA-40海表10 m风场驱动WAVEWATCH-Ⅲ(WW3)海浪模式,模拟得到南海-北印度洋1957年9月—2002年8月的海浪资料,采用一元线性回归方法,分析了该海域有效波高的长期趋势,以期为研究全球气候变化、波浪能资源开发、防灾减灾等提供参考。结果表明:(1)1958—2001年期间,该海域的SWH有线性递增趋势,递增率为0.0017 m/a,且变化趋势表现出很大的区域性差异:仅部分小范围海域呈显著性递减,其余大部分海域的SWH呈显著性递增;(2)SWH的变化趋势存在较大的季节性差异:各个季节呈显著性递减的区域范围都较小;低纬度的递增趋势主要体现在春季和冬季,尤其冬季几乎整个南海-北印度洋的SWH均呈显著性递增趋势;索马里以东一近似圆形海域的递增趋势主要体现在夏季。  相似文献   

13.
21世纪海上丝绸之路战略是中国“一带一路倡议”的重要组成部分。海上丝绸之路海域海洋环境的认知和调查是必不可少的,可以为航海、海洋工程、防灾减灾等领域提供科学依据。本文使用高分辨率多平台交叉定标风产品(CCMP)分析海上丝绸之路海域的大风特性。分析了大风天气的年平均速度、空间分布,以及风速和极端风速的频率和趋势。结果表明,在夏季,相对较高的大风场主要分布在阿拉伯海、索马里海、印度支那半岛海域和孟加拉湾海域。索马里海的大风频率超过90%。总体而言,南海大部分区域和北印度洋,大风天逐年增加,增加趋势在秋冬季节尤为明显。  相似文献   

14.
利用来自ECMWF的ERA-40风场资料,就北印度洋海表风速的长期变化趋势展开分析,以期可为海洋水文保障、防灾减灾、研究全球气候变化提供参考.结果表明:(1)1958-2001年期间,北印度洋低纬度海域、索马里至斯里兰卡一带的大范围海域的海表风速表现出显著的逐年线性递增趋势,基本在0.01-0.02 m·s-1·a-1;呈显著性递减的区域主要分布于亚丁湾、红海、波斯湾、斯里兰卡北部零星海域、以及缅甸仰光西南部近海等小范围海域,约-0.01-0.005m·s-1·a-1;阿拉伯海、孟加拉湾等海域的海表风速在近44年期间则无显著性变化趋势;(2)近44年期间,北印度洋海域的海表风速整体上以0.0061m·s-1 ·a-1的速度显著性震荡递增,震荡区间在5.0-5.5 m·S-1之间;(3)不同海域海表风速的变化趋势在不同季节表现出很大差异:冬季和夏季,大部分海域海表风速的变化趋势显著,春季次之,秋季仅在赤道附近一带海域呈显著性递增;(4)近44年期间,北印度洋的海表风速存在显著的2.0年、2.6-3.7年、5.2年的变化周期,以及26年以上的长周期震荡.  相似文献   

15.
本文基于第3代海浪模式WAVEWATCH Ⅲ (WW3)模拟的1996–2015年海浪后报数据,分析了南海北部有效波高及其极值的时空变化特征,并采用Pearson-Ⅲ和Gumbel两种极值分布方法对该区极值波高重现期进行了估算。结果表明,南海北部有效波高的季节变化和空间分布与季风风场基本一致,呈现秋冬高春夏低,并自吕宋海峡西侧向西南降低的特征,与ERA5再分析数据结果高度相似。有效波高极值(简称极值波高)的时空分布特征受时间分辨率强烈影响,采用极值数据的分辨率越高(如逐小时),所展现的台风型波浪特征越显著。扣除季节变化信号后的有效波高和年极值波高均体现出较强的线性增高趋势,近20年升高的比例分别为7.7%和31.6%,值得警惕和关注。该区多年一遇极值波高存在若干个大值区,且与台风的路径、强度有直接联系,表明台风是引发该区域极端大浪的最主要机制。对比Pearson-Ⅲ和Gumbel极值分布估算结果发现:若极值波高较低,频率随极值波高升高缓慢降低,此时两种极值分布的估算都比较准确,差异极小,可忽略不计;但当研究时间范围内,某年极值波高远超其他年份时,Pearson-Ⅲ极值分布估算结果明显高...  相似文献   

16.
利用来自ECMWF的ERA-40风场资料,采用EOF、线性回归等方法,分析了1958-2001年期间印度洋-南海海表风场的时空分布特征。结果表明:(1)该海域背景特征存在两个比较明显的高值区:索马里附近海域、南海海域,分别反映的是夏季索马里附近海域强劲的西南季风、南海冬季频繁的冷空气。(2)该海域海表风场的第二模态在空间分布特征上,北印度洋中纬度海域与赤道附近海域呈反位相分布,40°S 与60°S 海域也呈反位相分布;第三模态则整个北印度洋与南印度洋呈反位相分布。(3)1958-2001年期间,印度洋-南海的海表风速整体上呈显著性逐年线性递增,尤其以1975-1980年期间的递增趋势最为强劲,1975年的年平均风速为近44年的最低点。  相似文献   

17.
利用SeaFlux再分析数据和经验模型研究了热带印度洋海表日增温年循环和半年循环的时空分布特征及其机理。研究结果表明,热带印度洋海表日增温年循环振幅在绝大部分海区都较大;而半年循环振幅仅在北印度洋较大。对年循环而言,在17°S以南海区以太阳辐射年循环的贡献为主,而在17°S以北海区以风速年循环的贡献为主;对于半年循环,在北印度洋以风速半年循环的贡献为主。本文还重点关注了以下两个海区:1)阿拉伯海西部,海表日增温年循环比半年循环振幅小;2)孟加拉湾中部,情况刚好相反。两海区相比,海表日增温年循环振幅在孟加拉湾中部较大;而半年循环振幅在阿拉伯海西部较大。这些差异都是由两海区不同的太阳辐射和风速年循环和半年循环造成的。  相似文献   

18.
近45 年北印度洋海表风、浪特征研究   总被引:1,自引:0,他引:1  
基于第三代海浪数值模式(WAVEWATCH-Ⅲ),以ERA-40海表风场为驱动场,得到北印度洋1957年9月~2002年8月的海浪场,并分析其特征.研究发现,北印度洋1958~2001年年平均海表风速和有效波高均呈缓慢递增趋势;北印度洋的海表风速、有效波高存在2.36~5.2 a左右的共同周期及26 a的长周期震荡;北印度洋海域年平均海表风速、有效波高的突变形势与冬季相似,突变期在20世纪80年代初.本研究可以为在北印度洋这一重要战略通道上作业的船只提供重要参考.  相似文献   

19.
根据月平均热通量(TropFlux)资料,使用相关分析和线性倾向估计以及经验正交分解(EOF)等方法,标记5个特征海区,以反映北印度洋净热通量的季节、年际和年代际变化特征。结果显示:冬季阿拉伯海失热区比孟加拉湾失热区失热多;夏季只有亚丁湾海域失热,斯科特拉区得热量值和赤道区相当。北印度洋净热通量季节分布呈现春季峰值大于秋季的双峰分布。近些年来,阿拉伯海和亚丁湾海域失热减小,孟加拉湾失热增多,赤道得热有下降的趋势。阿拉伯海、孟加拉湾和亚丁湾失热区净热通量的季节、年际和年代际变化主要由潜热和感热决定,亚丁湾夏季失热还与长波辐射有关。冬季净热通量异常场分解出3个独立模态,累计贡献率可达53.87%,第一模态为主模态,阿拉伯海失热区失热减少、孟加拉湾失热区失热增多的年代际变化特征。夏季净热通量异常场前3个模态的累计贡献率为57.42%,第一模态为主模态,北印度洋全场一致性得热,且以热带印度洋西部为最强的年代际变化。  相似文献   

20.
利用SWAN波浪数值模式和ECMWF的ERA-Interim风场数据建立模型,对中国南海地区1981-2012的波浪进行了计算。利用浮标实测波浪资料进行对比验证后发现,波浪的计算结果良好。利用计算的结果进行分析,得到如下的结论:1.有效波高距平场的EOF分解结果显示,第一模态解释了波浪变化的最主要形态,具有明显的季节性特征;第二模态反映了季风的季节转换对有效波高的影响;第三模态代表的可能是地形的某种变化对有效波高变化的影响。2.整个南海地区主体的常浪向为NE,强浪向以NE和N为主,这主要是由于风速大且持续时间长的冬季风造成的。3.南海冬季有效波高最大,主要是受冬季风影响;夏季西南季风对南海南部的影响大于北部。4.100年一遇重现期有效波高整体北大南小,北部接近17m,南部为9m左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号