首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 685 毫秒
1.
The Hikurangi Margin, east of the North Island of New Zealand, is known to contain significant deposits of gas hydrates. This has been demonstrated by several multidisciplinary studies in the area since 2005. These studies indicate that hydrates in the region are primarily located beneath thrust ridges that enable focused fluid flow, and that the hydrates are associated with free gas. In 2009–2010, a seismic dataset consisting of 2766 km of 2D seismic data was collected in the undrilled Pegasus Basin, which has been accumulating sediments since the early Cretaceous. Bottom-simulating reflections (BSRs) are abundant in the data, and they are accompanied by other features that indicate the presence of free gas and concentrated accumulations of gas hydrate. We present results from a detailed qualitative analysis of the data that has made use of automated high-density velocity analysis to highlight features related to the hydrate system in the Pegasus Basin. Two scenarios are presented that constitute contrasting mechanisms for gas-charged fluids to breach the base of the gas hydrate stability zone. The first mechanism is the vertical migration of fluids across layers, where flow pathways do not appear to be influenced by stratigraphic layers or geological structures. The second mechanism is non-vertical fluid migration that follows specific strata that crosscut the BSR. One of the most intriguing features observed is a presumed gas chimney within the regional gas hydrate stability zone that is surrounded by a triangular (in 2D) region of low reflectivity, approximately 8 km wide, interpreted to be the result of acoustic blanking. This chimney structure is cored by a ∼200-m-wide low-velocity zone (interpreted to contain free gas) flanked by high-velocity bands that are 200–400 m wide (interpreted to contain concentrated hydrate deposits).  相似文献   

2.
Jurassic-Cretaceous rift successions and basin geometries of the Sverdrup Basin are reconstructed from a review and integration of stratigraphy, igneous records, outcrop maps, and subsurface data. The rift onset unconformity is in the Lower Jurassic portion of the Heiberg Group (approximately 200–190 Ma). Facies transgress from early syn-rift sandstones of the King Christian Formation to marine mudstones of the Jameson Bay Formation. The syn-rift succession of marine mudstones in the basin centre, Jameson Bay to Deer Bay formations, ranges from Early Jurassic (Pleinsbachian) to Early Cretaceous (Valanginian). Early post-rift deposits of the lower Isachsen Formation are truncated by the sub-Hauterivian unconformity, which is interpreted as a break up unconformity at approximately 135–130 Ma. Cessation of rift subsidence allowed for late post-rift sandstone deposits of the Isachsen Formation to be distributed across the entire basin. Marine deposition to form mudstone of the Christopher Formation throughout the Canadian Arctic Islands and outside of the rift basin records establishment of a broad marine shelf during post-rift thermal subsidence at the start of a passive margin stage. The onset of the High Arctic Large Igneous Province at approximately 130 Ma appears to coincide with the breakup unconformity, and it is quite typical that magma-poor rifted margins have mainly post-rift igneous rocks. We extend the magma-poor characterization where rifting is driven by lithospheric extension, to speculatively consider that the records from Sverdrup Basin are consistent with tectonic models of retro-arc extension and intra-continental rifting that have previously been proposed for the Amerasia Basin under the Arctic Ocean.  相似文献   

3.
Our analysis of approximately 40,000 km of multichannel 2-D seismic data, reef oil-field seismic data, and data from several boreholes led to the identification of two areas of reef carbonate reservoirs in deepwater areas (water depth ≥ 500 m) of the Qiongdongnan Basin (QDNB), northern South China Sea. High-resolution sequence stratigraphic analysis revealed that the transgressive and highstand system tracts of the mid-Miocene Meishan Formation in the Beijiao and Ledong–Lingshui Depressions developed reef carbonates. The seismic features of the reef carbonates in these two areas include chaotic bedding, intermittent internal reflections, chaotic or blank reflections, mounded reflections, and apparent amplitude anomalies, similar to the seismic characteristics of the LH11-1 reef reservoir in the Dongsha Uplift and Island Reef of the Salawati Basin, Indonesia, which house large oil fields. The impedance values of reefs in the Beijiao and Ledong–Lingshui Depressions are 8000–9000 g/cc × m/s. Impedance sections reveal that the impedance of the LH11-1 reef reservoir in the northern South China Sea is 8000–10000 g/cc × m/s, whereas that of pure limestone in BD23-1-1 is >10000 g/cc × m/s. The mid-Miocene paleogeography of the Beijiao Depression was dominated by offshore and neritic environments, with only part of the southern Beijiao uplift emergent at that time. The input of terrigenous sediments was relatively minor in this area, meaning that terrigenous source areas were insignificant in terms of the Beijiao Depression; reef carbonates were probably widely distributed throughout the depression, as with the Ledong–Lingshui Depression. The combined geological and geophysical data indicate that shelf margin atolls were well developed in the Beijiao Depression, as in the Ledong–Lingshui Depression where small-scale patch or pinnacle reefs developed. These reef carbonates are promising reservoirs, representing important targets for deepwater hydrocarbon exploration.  相似文献   

4.
《Marine Geology》2006,225(1-4):265-278
The first seismic reflection data from the shallowest part of the submarine Lomonosov Ridge north of Arctic Canada and North Greenland comprise two parallel single channel lines (62 and 25 km long, offset 580 m) acquired from a 10 day camp on drifting sea ice. The top of southern Lomonosov Ridge is bevelled (550 m water depth) and only thin sediments (< 50 ms) cover acoustic basement. We suggest erosion of a former sediment drape over the ridge crest was either by a grounded marine ice sheet extending north from Ellesmere Island and/or deep draft icebergs. More than 1 km of sediments are present at the western entrance to the deep passage between southern Lomonosov Ridge and the Lincoln Sea continental margin. Here, the uppermost part (+ 0.3 s thick) of the section reflects increased sediment input during the Plio–Pleistocene. The underlying 0.7 s thick succession onlaps the slope of a subsiding Lomonosov Ridge. An unconformity at the base of the sedimentary section caps a series of NW–SE grabens and mark the end of tectonic extension and block faulting of an acoustic basement represented by older margin sediments possibly followed by minor block movements in a compressional regime. The unconformity may relate to termination of Late Cretaceous deformation between Lomonosov Ridge and Alpha Ridge or be equivalent to the Hauterivian break-up unconformity associated with the opening of the Amerasia Basin. A flexure in the stratigraphic succession above the unconformity is most likely related to differential compaction, although intraplate earthquakes do occur in the area.  相似文献   

5.
The Santos Basin, situated offshore southern Brazil, is one of nine marginal rift basins in the equatorial South Atlantic. It formed by the collapse of a thermal dome in the late Jurassic and by subsequent rifting and opening of the South Atlantic in the early Cretaceous. Rifting was accompanied by immense volcanic outpouring seen at the surface today throughout the onshore Paraná Basin and thought to underlie the entire Santos Basin, and the adjacent São Paulo Plateau. Vulcanism was followed by subsidence of up to 10 km from Aptian to Recent time, and a coastal hingeline coincides with the Serra do Mar uplift. The basin depocentre, which is 700 km long, is bounded to the north and south by basement and volcanic highs, respectively. A restricted water circulation in the ocean basin, which prevailed up to the Santonian stage, has important repercussions for the hydrocarbon potential of the area. The nine genetically related basins have collective reserves of ≈ 5 billion barrels of oil and associated gas. A stratigraphic framework, based largely on seismic data, has been erected for the Santos Basin. Seven regional unconformities, or ‘R’ reflections, can be traced throughout the basin and form the boundaries for seismic sequences. Isopaching the seismic sequences defines the principal depositional units in the basin and also shows how the basin depocentre shifted with time. Limited well control has enabled the seismic sequences to be correlated with litho-environmental sequences which more fully reflect the geological evolution and provide a working exploration model. Finally, an attempt has been made to recognize and map seismic facies within the seismic sequences and to predict the lithofacies in areas away from well control  相似文献   

6.
A combination of δ~(18)O and salinity data was employed to explore the freshwater balance in the Canada Basin in summer 2008.The Arctic river water and Pacific river water were quantitatively distinguished by using different saline end-members.The fractions of total river water,including the Arctic and Pacific river water,were high in the upper 50 m and decreased with depth as well as increasing latitude.In contrast,the fraction of Pacific river water increased gradually with depth but decreased toward north.The inventory of total river water in the Canada Basin was higher than other arctic seas,indicating that Canada Basin was a main storage region for river water in the Arctic Ocean.The fraction of Arctic river water was higher than Pacific river water in the upper 50 m while the opposite was true below 50 m.As a result,the inventories of Pacific river water were higher than those of Arctic river water,demonstrating that the Pacific inflow through the Bering Strait is the main source of freshwater in the Canada Basin.Both the river water and sea-ice melted water in the permanent ice zone were more abundant than those in the region with sea-ice just melted.The fractions of total river water,Arctic river water,Pacific river water increased northward to the north of 82°N,indicating an additional source of river water in the permanent ice zone of the northern Canada Basin.A possible reason for the extra river water in the permanent ice zone is the lateral advection of shelf waters by the Trans-Polar Drift.The penetration depth of sea-ice melted waters was less than 30 m in the southern Canada Basin,while it extended to 125 m in the northern Canada Basin.The inventory of seaice melted water suggested that sea-ice melted waters were also accumulated in the permanent ice zone,attributing to the trap of earlier melted waters in the permanent ice zone via the Beaufort Gyre.  相似文献   

7.
《Marine Geology》2001,172(1-2):91-115
The composition and distribution of ice-rafted glacial erratics in late Quaternary sediments define the major current systems of the Arctic Ocean and identify two distinct continental sources for the erratics. In the southern Amerasia basin up to 70% of the erratics are dolostones and limestones (the Amerasia suite) that originated in the carbonate-rich Paleozoic terranes of the Canadian Arctic Islands. These clasts reached the Arctic Ocean in glaciers and were ice-rafted to the core sites in the clockwise Beaufort Gyre. The concentration of erratics decreases northward by 98% along the trend of the gyre from southeastern Canada basin to Makarov basin. The concentration of erratics then triples across the Makarov basin flank of Lomonosov Ridge and siltstone, sandstone and siliceous clasts become dominant in cores from the ridge and the Eurasia basin (the Eurasia suite). The bedrock source for the siltstone and sandstone clasts is uncertain, but bedrock distribution and the distribution of glaciation in northern Eurasia suggest the Taymyr Peninsula-Kara Sea regions. The pattern of clast distribution in the Arctic Ocean sediments and the sharp northward decrease in concentration of clasts of Canadian Arctic Island provenance in the Amerasia basin support the conclusion that the modern circulation pattern of the Arctic Ocean, with the Beaufort Gyre dominant in the Amerasia basin and the Transpolar drift dominant in the Eurasia basin, has controlled both sea-ice and glacial iceberg drift in the Arctic Ocean during interglacial intervals since at least the late Pleistocene. The abruptness of the change in both clast composition and concentration on the Makarov basin flank of Lomonosov Ridge also suggests that the boundary between the Beaufort Gyre and the Transpolar Drift has been relatively stable during interglacials since that time. Because the Beaufort Gyre is wind-driven our data, in conjunction with the westerly directed orientation of sand dunes that formed during the last glacial maximum on the North Slope of Alaska, suggests that atmospheric circulation in the western Arctic during late Quaternary was similar to that of the present.  相似文献   

8.
High-resolution multichannel seismic data enables the discovery of a previous, undocumented submarine canyon(Huaguang Canyon) in the Qiongdongnan Basin, northwestern South China Sea. The Huaguang Canyon with a NW orientation is 140 km in length, and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach. The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the Central Canyon. This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(around 10.5 Ma). The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections, indicating that this ancient submarine canyon was filled with coarse-grained sediments. The sediment was principally scourced from the Xisha carbonate platform. In contrast to other buried large-scale submarine canyons(Central Canyon and Zhongjian Canyon) in the Qiongdongnan Basin, the Huaguang Canyon displays later formation time,smaller width and length, and single sediment supply. The coarse-grained deposits within the Huaguang Canyon provide a good environment for reserving oil and gas, and the muddy fillings in the Huaguang Canyon have been identified as regional caps. Therefore, the Huaguang Canyon is a potential area for future hydrocarbon exploration in the northwestern South China Sea. The result of this paper may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.  相似文献   

9.
10.
High-resolution multichannel seismic data enables the discovery of a previous, undocumented submarine canyon(Huaguang Canyon) in the Qiongdongnan Basin, northwest South China Sea. The Huaguang Canyon with a NW orientation is 140 km in length, and 2.5 km to 5 km in width in its upper reach and 4.6 km to 9.5 km in width in its lower reach. The head of the Huaguang Canyon is close to the Xisha carbonate platform and its tail is adjacent to the central canyon. This buried submarine canyon is formed by gravity flows from the Xisha carbonate platform when the sea level dropped in the early stage of the late Miocene(~10.5 Ma). The internal architecture of the Huaguang Canyon is mainly characterized by high amplitude reflections, indicating that this ancient submarine canyon was filled with coarse-grained sediments. The sediment was principally scourced from the Xisha carbonate platform. In contrast to other buried large-scale submarine canyons(central canyon and Zhongjian Canyon) in the Qiongdongnan Basin, the Huaguang Canyon displays later formation time, smaller width and length, and single sediment supply. The coarse-grained deposits within Huaguang Canyon provide a good environment for reserving oil and gas, and the muddy fillings in Huaguang Canyon have been identified as regional caps. Therefore, Huaguang Canyon is potential area for future hydrocarbon exploration in the northwest South China Sea. Our results may contribute to a better understanding of the evolution of submarine canyons formed in carbonate environment.  相似文献   

11.
The Mississippi Fan is a large, mud-dominated submarine fan over 4 km thick, deposited in the deep Gulf of Mexico during the late Pliocene and Pleistocene. Analysis of 19,000 km of multifold seismic data defined 17 seismic sequences, each characterized by channel, levee, and associated overbank deposits, as well as mass transport deposits. At the base of nine sequences are a series of seismic facies consisting of mounded, hummocky, chaotic, and subparallel reflections, which constitute 10–20% of the sediments in each the sequences. These facies are externally mounded and occur in two general regions of the fan: (1) in the upper and middle fan they are elongate in shape and mimic the channel's distribution; (2) in the middle fan to lower fan they are characterized by a fan-shaped distribution, increasing in width downfan. These facies are interpreted to have formed as disorganized slides, debris flows, and turbidites (informally called “mass transport complexes”). Overlying this basal interval, characteristic of all sequences, are well-developed channel-levee systems that constitute 80–90% of the fan's sediments. Channels consist of high amplitude, subparallel reflections, whereas the flanking levee sediments appear as subparallel reflections that have high amplitudes at the base changing upward to low amplitude. The vertical change in amplitude may reflect a decrease in grain size and bed thicknesses. Overbank sediments are characterized by interbedded subparallel to hummocky and mounded reflections, suggesting both turbidites from the channel, as well as slides and debris flows derived both locally and from the slope updip.  相似文献   

12.
Seismic characterization of Eocene-Oligocene heterozoan carbonate strata from the Browse Basin, Northwest Shelf of Australia, defines marked progradation of nearly 10 km. Stratal terminations and stacking subdivide the succession into mappable seismic units. Stratal architecture and seismic geomorphology varies systematically through the succession.Individual surfaces, discerned by toplap, onlap, and truncation, outline sigmoidal to tangential oblique clinoforms with heights of ranging from 350 to 650 m and maximum gradients between 8 and 18°. Sigmoidal clinoforms can include aggradation in excess of ∼200 m, prograde more than 500 m, and have slopes characterized by inclined, wavy to discontinuous reflectors that represent ubiquitous gullies and channels. In contrast, the overlying tangential oblique clinoforms include downstepped shelf margins, limited on-shelf aggradation (<100 m) and toplap, subdued progradation (<500 m), and continuous parallel inclined reflectors on the slope. Wedges of basinally restricted reflectors at toe of slope onlap surfaces of pronounced erosional truncation or syndepositional structural modification. The succession includes repeated patterns of seismic units that onlap, aggrade, and prograde, interpreted to represent sequence sets and composite sequences.The associations of shelf aggradation, shelf-margin progradation, and slope channeling within sigmoidal seismic units and the less marked progradation and channeling within tangential oblique seismic units contrast with the classic sequence model in which sediment delivery to the slope and pronounced progradation is favored by limited shelf accommodation. This distinct divergence is interpreted to reflect the prolific heterozoan production across the shelf during periods of rising and high base level when the shelf is flooded, perhaps enhanced by downwelling. Comparison with purely photozoan systems reveals similarities and contrasts in seismic stratigraphic heterogeneity and architecture, interpreted to be driven by distinct characteristics of heterozoan sedimentary systems.  相似文献   

13.
The Upper Cretaceous Chalk Group of the Anglo-Paris Basin is known to show wedging beds and channel-like features which disrupt the quietly deposited pelagic chalk that covered most of NW Europe in the Late Cretaceous. Two-D reflection seismic data from the Brie region, SE of Paris, show the presence of at least two distinct intra-chalk discordant reflections: a Top Santonian and a Mid-Campanian reflection. These reflections are in places associated with up to 120-m-deep channel-like structures trending preferentially N–S and NW–SE. The Mid-Campanian reflection is also sporadically associated with a massive secondary dolomite layer, the thicknesses of which may reach 110 m. Diagenesis does not seem to account for the formation of the discordant reflections, as there is neither a one-to-one relationship between the dolomite and discordant reflections, nor are there signs of systematic collapse of the Cenozoic succession over the channel-like features as a result of intra-chalk dissolution. Both reflections correlate with indurated chalk layers and hardgrounds, and represent real unconformities. The Mid-Campanian reflection is furthermore associated with a stratigraphic hiatus. A submarine origin is suggested due to the uninterrupted deep-marine chalk facies below and above both unconformities, and the unrealistically large sea-level drop of more than 200 m, which would be necessary for subaerial exposure of the central Paris Basin during the Campanian. The channels are oriented parallel to the margins of the basin, and important bathymetric elements which could induce erosion by slope failure are not observed. The channels are thus interpreted as having formed by strong, mainly slope-parallel bottom currents. Major channeling events are common in the Chalk Group throughout NW Europe and represent palaeoceanographic re-organization of bottom currents, probably driven by changes in sea level and water temperature.  相似文献   

14.
A double-halocline structure in the Canada Basin of the Arctic Ocean   总被引:4,自引:0,他引:4  
1IntroductionAs a particular hydrographic feature,the upperArctic Ocean is salinity-stratified.A year-round halo-cline exists between the fresher,colder mixed Layerand the saltier,warmer middle layer(the Atlantic Lay-er),which is important to the permanent sea ice coverin the Arctic Ocean for it insulates the ice pack fromthe heat in the Atlantic Layer throughout the Arctic O-cean(Maykut and Untersteiner,1971).Characterizedby its vertically uniform temperature near freezingpoint,the haloc…  相似文献   

15.
花东盆地晚中新世以来沉积演化特征   总被引:1,自引:0,他引:1  
利用近年来在台湾东部海域采集的多道地震和多波速测深资料,对该海域花东海盆区晚中新世以来的沉积充填演化特征进行描述和分析。通过对花东海盆区域地形特征描述、层序地层格架的建立和地震剖面的解译,在本区晚中新世以来的沉积充填中刻画出6种典型地震相类型,并分析其对应的沉积相类型,包括浊积扇、浊积水道充填、块体流、沉积物波、海底峡谷-伴生沉积物滑塌变形-充填、深水扇沉积。结合地震相平面分布及垂向沉积相叠置关系,将晚中新世-第四纪沉积充填演化划分为3个阶段:晚中新世晚期开始受到块体流冲蚀阶段,到海底峡谷冲刷-沉积物失稳-峡谷充填-再侵蚀阶段,到峡谷输送的大量沉积物在上新世以来主要堆积发育了沉积物波、浊积扇、深水扇等沉积体系阶段。  相似文献   

16.
The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydrographic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm AIW spreads in the Canada Basin during the observation time through the analysis of the AIW temperature spatial distribution in different periods. The results indicate that by 2006, the entire Canada Basin has almost been covered by the warming AIW. In order to study interannual variability of the AIW in the Canada Basin, the Canada Basin is divided into five regions according to the bottom topography. From the interannual variation of AIW temperature in each region, it is shown that a cooling period follows after the warming event in upstream regions. At the Chukchi Abyssal Plain and Chukchi Plateau, upstream of the Arctic Circumpolar Boundary Current (ACBC) in the Canada Basin, the AIW temperature reached maximum and then started to fall respectively in 2000 and 2002. However, the AIW in the Canada Abyssal Plain and Beaufort Sea continues to warm monotonically until the year 2006. Furthermore, it is revealed that there is convergence of the AIW depth in the five different regions of the Canada Basin when the AIW warming occurs during observation time. The difference of AIW depth between the five regions of the Canada Basin is getting smaller and smaller, all approaching 410 m in recent years. The results show that depth convergence is related to the variation of AIW potential density in the Canada Basin.  相似文献   

17.
北冰洋西部表层沉积物中生源组分及其古海洋学意义   总被引:4,自引:0,他引:4  
通过对中国首次和第二次北极科学考察在北冰洋西部所采取的66个表层沉积物中生源组分的分析,探讨了该海区表层生产力变化与水团的相互关系。楚科奇海西南部呈现出高的有机碳和生源蛋白石含量,而中部和东部哈罗德浅滩至阿拉斯加沿岸,以及楚科奇海台、北风脊和加拿大海盆表现出低的有机碳和生源蛋白石含量。楚科奇海陆架区表层沉积物以底栖有孔虫为主,丰度低;而楚科奇海台、北风脊和加拿大海盆则以浮游有孔虫占绝对优势,丰度较高。生源组分的分布特征显然与通过白令海峡进入楚科奇海的三股太平洋水和大西洋次表层水相关。楚科奇海西侧沿富营养的阿纳德尔流方向的区域呈现出高的表层生产力。而东侧受寡营养的阿拉斯加沿岸流及阿拉斯加西北沿岸陆源物质输入的影响,呈现出低的表层生产力。北纬75°以北及加拿大海盆受海冰覆盖影响,也表现出最低的表层生产力。而受北大西洋次表层水的影响,楚科奇海陆架外侧高纬海域表现出较高的钙质生物生产力。表层沉积物中Corg/N比值及其分布反映楚科奇海表层沉积物中的有机碳以海洋自身来源为主,且主要受生物泵过程控制。有机碳和生源蛋白石含量呈现高的正相关关系,说明硅藻等浮游植物的初级生产力可能控制着生物泵对碳的吸收和释放。  相似文献   

18.
This paper presents results of two-dimensional seismic mapping of the northern East China Sea Shelf Basin. Various igneous features such as sills, volcanic edifices and stocks were identified by the geophysical exploration. The sills are most common, and are observed at more than 90 locations. Most mapped sills in the study area are characterized by high-amplitude continuous reflections with distinct terminations. Saucer- and cup-shaped sills are observed locally. The stocks are discordant (nearly vertical) igneous bodies and they are characterized by seismic transparency, with upturned host rocks and uplifted overburden. The volcanic edifices and/or necks consist of irregular mounds and peaks and are characterized by strong positive top reflections with chaotic internal facies. The oldest igneous activity in the northern East China Sea Shelf Basin is Early Cretaceous (123.3 ± 3.7). This igneous activity coincides with those observed in eastern China which has been related mainly to the subduction of the Pacific Plate beneath Eurasia Plate. The Miocene igneous activity is well constrained based on seismic stratigraphic relationships within the folded stratigraphy, age dating, and the occurrence of igneous sills. The timing of this intrusion is coincident with the intensive igneous activity as previously suggested for the eastern China. Igneous rocks can produce hydrocarbon traps, reservoirs and they can act as a seal, and therefore are of great importance in petroleum study.  相似文献   

19.
In order to assess the controlling factors on the evolution of a shelf margin and the timing of sediment transfer to deep waters, a seismic stratigraphic investigation was carried out in the Eocene interval of northern Santos Basin, offshore Brazil. The studied succession configures a complex of prograding slope clinoforms formed in a passive margin and encompasses five seismic facies and their respective depositional settings: shelf-margin deltas/shorefaces, oblique slope clinoforms, sigmoidal slope clinoforms, continental to shelfal deposits and mass-transport deposits. These are stratigraphically arranged as seven depositional sequences recording a total shelf-edge progradation of about 35 km and a progradation rate of 1,75 km/My. Two main types of sequences can be recognized, the first one (type A) being dominated by oblique slope clinoforms and shelf-margin deltas/shorefaces in which shelf-edge trajectories were essentially flat to descending and extensive sandy turbidites were deposited on the foreset to bottomset zones. Sequences of this type are dominated by forced-regressive units deposited during extensive periods of relative sea-level fall. Type B comprises an upper part represented by aggradational shelfal deposits and a lower part composed of mass-transport deposits and high-relief sigmoidal clinoforms with descending shelf-edge trajectory. Steep slump scars deeply cut the shelfal strata and constitutes the boundary between the two intervals observed in type B sequences. Sandy turbidites occur at the same frequency in both forced- and normal-regressive units but are more voluminous within forced-regressive clinoforms associated with shelf-margin deltas/shorefaces. Major slope failures and mass-transport deposits, by the other hand, occurred exclusively in type B sequences during the onset of sea-level fall and their volume are directly related to the thickness of the shelfal sediments formed during the pre-failure normal regressions.  相似文献   

20.
Coalbed methane (CBM) is a worldwide exploration target of the petroleum industry. In Brazil, the most important coal-bearing succession is associated with the Permian Rio Bonito Formation of the Paraná Basin. The gas-prone areas are located at the southeastern margin of the Paraná Basin and possibly in the offshore region of the northern part of the Pelotas Basin. Coalfields end abruptly at the present day shoreline, a result of rifting of Gondwana and the evolution of the South Atlantic Ocean. All geologic indicators suggest that in pre-rift times the coal seams extended further eastwards, probably now lying deeply buried below the sedimentary succession of the Pelotas Basin. The present paper discusses structural, stratigraphic, seismic and aeromagenetic data that support the preservation of continental crust beneath ocean sediment. If the coal beds had similar lateral extent to known onshore coals, and coal beds extended across the projected extension of the Parana basin, and there was a conservative 5 m of cumulative coal thickness, then a potential methane volume can be estimated for this newly inferred resource. Average onshore coal gas content is 32 scf/ton (1.00 m3/ton). If this is similar in the offshore coal deposits, then the hypothetical methane volume in the offshore area could be in excess of 1.9 × 1012 scf (56 × 109 m3). Metamorphism from dikes associated with rifting are potential complicating factors in these deposits, and since no borehole reaching the deep-lying strata in the offshore area are available, this is a hypothetical gas resource with a certain level of uncertainty which should be tested in the future by drilling a deep borehole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号