首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A water-mass analysis is carried out in Fram Strait, between 77.15 and 81.15°N, based on three-dimensional large-scale potential temperature and salinity distributions reconstructed from the MIZEX 84 hydrographic data collected in summer 1984. Combining these distributions with the geostrophic flow field derived from the same data in a companion paper (Schlichtholz and Houssais, 1999), the heat, fresh water and volume transports are estimated for each of the water masses identified in the strait. Twelve water masses are selected based on their different origins. Among them, the Polar Water (PW) enters Fram Strait from the Arctic Ocean both over the Greenland Slope and over the western slope of the Yermak Plateau. In the Atlantic Water (AW) range, four modes with distinct geographical distributions are indentified. In the Deep Water range, the Eurasian Basin Deep Water (EBDW) is confined to the Lena Trough and to the Molloy Deep area where it is involved in a cyclonic circulation. The warm and shallower mode of the Norwegian Sea Deep Water (NSDW), concentrated to the west, is mainly seen as an outflow from the Arctic Ocean while the cold and deeper mode, essentially observed to the east, enters the strait from the Greenland Sea. Apart from the EBDW, there is a tendency for all water masses of polar origin to flow along the Greenland Slope. The two most abundant water masses, the AW and the NSDW, occupy as much as 67% of the total water volume. The southward net transport of PW through Fram Strait is about 1 Sv at 78.9°N. At the same latitude, the net transport of AW is southward and equal to about 1.7 Sv. Only the transport of the warm mode (AWw) is northward, amounting to 0.2 Sv. The overall net outflow of the Deep Waters to the Greenland Sea is about 2.6 Sv. Two upper water masses, the fresh (AWf) and the cold (AWc) mode of the AW, and one deep-water mass, the NSDW, appear to be produced in the strait, with production rates, between 77.6 and 79.9°N, of about 0.2, 1.0 and 1.7 Sv, respectively. A southward net fresh-water transport through the strait of about 2000 km3 yr−1 (relative to a salinity of 34.93) is mainly due to the PW. The net heat transport relative to −0.1°C is northward, but undergoes a rapid northward decrease, suggesting an area-averaged surface heat loss of 50–100 W m−2 in the strait.  相似文献   

2.
We investigated zooplankton distribution in September 2006/2007 at eight stations across Fram Strait in contrasting water masses ranging from cold Polar water to warm Atlantic water. Our main objectives were: (1) to describe the plankton community in the upper 200 m during autumn, and (2) to investigate the importance of small-sized copepods and protozooplankton in an arctic ecosystem when the majority of the large Calanus species had entered diapause. We sampled both with a WP-2 net and Go-Flo bottle and show that small copepods <1 mm are significantly undersampled using a WP-2 net with 90 μm mesh.Small copepods and protozooplankton made a significant contribution both in terms of abundance and total zooplankton biomass at all stations in September, when the large calanoid copepods had left the upper 200 m. The dominating group in the upper 60 m at all stations was Oithona spp. nauplii and their daily estimated grazing potential on the <10 μm phytoplankton ranged from 0.1% to 82% of the standing stock. Both Oithona copepodites and nauplii biomass showed a significantly positive relation with temperature, but not with potential food. Heterotrophic protozooplankton, on the other hand, were most likely bottom-up regulated by the availability of phytoplankton <10 μm. We hypothesise that Oithona nauplii and protozooplankton compete for food and conclude that there was a strong link between the zooplankton community and the microbial food web in Fram Strait.  相似文献   

3.
The first carbon budget constructed for the Barents Sea to study the fluxes of carbon into, out of, and within the region is presented. The budget is based on modelled volume flows, measured dissolved inorganic carbon (DIC) concentration, and literature values for dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations. The results of the budget show that ~5600±660×106 t C yr?1 is exchanged through the boundaries of the Barents Sea. If a 40% uncertainty in the volume flows is included in the error calculation it resulted in a total uncertainty of ±1600×106 t C yr?1. The largest part of the total budget flux consists of DIC advection (~95% of the inflow and ~97% of the outflow). The other sources and sinks are, in order of importance, advection of organic carbon (DOC+POC; ~3% of both in- and outflow), total uptake of atmospheric CO2 (~1% of the inflow), river and land sources (~0.2% of the inflow), and burial of organic carbon in the sediments (~0.2% of the outflow). The Barents Sea is a net exporter of carbon to the Arctic Ocean; the net DIC export is ~2500±660×106 t C yr?1 of which ~1700±650×106 t C yr?1 (~70%) is in subsurface water masses and thus sequestered from the atmosphere. The net total organic carbon export to the Arctic Ocean is ~80±20×106 t C yr?1. Shelf pumping in the Barents Sea results in an uptake of ~22±11×106 t C yr?1 from the atmosphere which is exported out of the area in the dense modified Atlantic Waters. The main part of this carbon was channelled through export production (~16±10×106 t C yr?1).  相似文献   

4.
The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.  相似文献   

5.
Surface concentrations and vertical fluxes of particulate organic carbon (POC) were assessed in the Amundsen Gulf (southeastern Beaufort Sea, Arctic Ocean) over the years 2004 to 2006 by using ocean color remote-sensing imagery and sequential sediment traps moored over the ca. 400 m isobath. Environmental conditions (sea ice, wind) and oceanographic variables (temperature, salinity, fluorescence and currents) were investigated to explain the variability of POC data. Annual downward POC fluxes in 2004, 2005 and 2006 cumulated, respectively, to 3.3, 4.2 and 6.0 g C m?2 yr?1 at ~100 m depth, and to 1.3, 2.2 and 3.3 g C m?2 yr?1 at ~210 m depth. The fraction of settling POC attributable to autochthonous processes occurring at or next to ice break-up was estimated to be 75–84% of the 100 m annual fluxes and to be 61–75% of the 210 m fluxes. Over the three ice-reduced seasons, distinct scenarios between ice conditions, surface POC pools and vertical POC export at 100 m were identified: (1) in 2004, despite a normal ice break-up, a weak primary production was measured and low vertical fluxes were collected as old ice moved across the region; (2) in 2005, a lengthened ice-free period allowed an extended season of surface POC production near-shore, while an intermediate increase of vertical fluxes was recorded offshore; and (3) in 2006, a late ice melt gave rise to a pulsed ice edge bloom and to large vertical fluxes also associated with extra ice-flushed material. Linear regressions of vertical POC fluxes against satellite-derived surface POC concentrations suggested that the pelagic POC retention in the upper 100 m of the Amundsen Gulf ranged from ca. 70% to 90% depending on the timing of ice cover melt. Regardless of the inter-annual variability, the estimated fraction of the surface POC reservoir reaching the 210 m water depth was reduced to ~5%. Therefore, as the Arctic Ocean warms up, our results support the expectation that the increasing extent of the seasonal ice zone will promote the POC pathways that benefit pelagic webs rather than benthic communities.  相似文献   

6.
Deep-sea benthic communities and their structural and functional characteristics are regulated by surface water processes. Our study focused on the impact of changes in water depth and food supplies on small-sized metazoan bottom-fauna (meiobenthos) along a bathymetric transect (1200–5500 m) in the western Fram Strait. The samples were collected every summer season from 2005 to 2009 within the scope of the HAUSGARTEN monitoring program. In comparison to other polar regions, the large inflow of organic matter to the sea floor translates into relatively high meiofaunal densities in this region. Densities along the bathymetric gradient range from approximately 2400 ind. 10 cm-2 at 1200 m to approximately 300 ind. 10 cm-2 at 4000 m. Differences in meiofaunal distribution among sediment layers (i.e., vertical profile) were stronger than among stations (i.e., bathymetric gradient). At all the stations meiofaunal densities and number of taxa were the highest in the surface sediment layer (0–1 cm), and these decreased with increasing sediment depth (down to 4–5 cm). However, the shape of the decreasing pattern differed significantly among stations. Meiofaunal densities and taxonomic richness decreased gradually with increasing sediment depth at the shallower stations with higher food availability. At deeper stations, where the availability of organic matter is generally lower, meiofaunal densities decreased sharply to minor proportions at sediment depths already at 2–3 cm. Nematodes were the most abundant organisms (60–98%) in all the sediment layers. The environmental factors best correlated to the vertical patterns of the meiofaunal community were sediment-bound chloroplastic pigments that indicate phytodetrital matter.  相似文献   

7.
Previous studies measuring biogenic silica production in the Sargasso Sea, all conducted when no phytoplankton bloom was in progress, have reported a mean rate of 0.4 mmol Si m?2 d?1 and maximum rate of 0.9 mmol Si m?2 d?1, the lowest rates yet recorded in any ocean habitat. During February/March of 2004 and 2005 we studied the effects of late-winter storms prior to seasonal stratification on the production rate, standing stock and vertical export of biogenic silica in the Sargasso Sea. In 2004, alternating storm and stratification events provided pulsed input of nutrients to the euphotic zone. In contrast, nearly constant storm conditions in 2005 caused the mixed layer to deepen to ~350 m toward the end of the cruise. Biogenic silica production rates in the upper 140 m were statistically indistinguishable between years, averaging ~1.0 mmol Si m?2 d?1. In early March 2004, a storm event entrained nutrients into the euphotic zone and, upon stabilization, vertically integrated biogenic silica in the upper 140 m nearly doubled in 2 days. Within 4 days, 75–100% of the accumulated biogenic silica was exported, sustaining a flux to 200 m of ~0.5 mmol Si m?2 d?1 (4× greater than export measured during February and March in the mid-1990s). In 2005, destabilization without stratification increased biogenic silica flux at 200 m up to two-fold above previously measured export in late winter, with little or no increase in water-column biogenic silica. Despite comprising <5% of total chlorophyll, diatoms accounted for an estimated 25–50% of the nitrate uptake in the upper 140 m and 35–97% of the particulate organic nitrogen export from the upper 200 m during both cruise periods. These previously unobserved brief episodes of diatom production and export in response to late-winter storms increase the estimated production and export of diatom-derived material in the Sargasso Sea in late winter by >150%, and increase estimated annual biogenic silica production in this region by ~8%.  相似文献   

8.
Microzooplankton grazing impact on phytoplankton was assessed using the Landry–Hassett dilution technique in the Western Arctic Ocean during spring and summer 2002 and 2004. Forty experiments were completed in a region encompassing productive shelf regions of the Chukchi Sea, mesotrophic slope regions of the Beaufort Sea off the North Slope of Alaska, and oligotrophic deep-water sites in the Canada Basin. A variety of conditions were encountered, from heavy sea-ice cover during both spring cruises, moderate sea-ice cover during summer of 2002, and light to no sea ice during summer of 2004, with a concomitant range of trophic conditions, from low chlorophyll-a (Chl-a; <0.5 μg L−1) during heavy ice cover in spring and in the open basin, to late spring and summer shelf and slope open-water diatom blooms with Chl-a >5 μg L−1. The microzooplankton community was dominated by large naked ciliates and heterotrophic gymnodinoid dinoflagellates. Significant, but low, rates of microzooplankton herbivory were found in half of the experiments. The maximum grazing rate was 0.16 d−1 and average grazing rate, including experiments with no significant grazing, was 0.04±0.06 d−1. Phytoplankton intrinsic growth rates varied from the highest values of about 0.4 d−1 to the lowest values of zero to slightly negative growth, on average 0.16±0.15 d−1. Light limitation in spring and post-bloom senescence during summer were likely explanations of observed low phytoplankton growth rates. Microzooplankton grazing consumed 0–120% (average 22±26%) of phytoplankton daily growth. Grazing and growth rates found in this study were low compared to rates reported in another Arctic system, the Barents Sea, and in major geographic regions of the world ocean.  相似文献   

9.
In order to estimate the contribution of cold Pacific deep water to the Indonesian throughflow (ITF) and the flushing of the deep Banda Sea, a current meter mooring has been deployed for nearly 3 years on the sill in the Lifamatola Passage as part of the International Nusantara Stratification and Transport (INSTANT) programme. The velocity, temperature, and salinity data, obtained from the mooring, reflect vigorous horizontal and vertical motion in the lowest 500 m over the ~2000 m deep sill, with speeds regularly surpassing 100 cm/s. The strong residual flow over the sill in the passage and internal, mainly diurnal, tides contribute to this bottom intensified motion. The average volume transport of the deep throughflow from the Maluku Sea to the Seram Sea below 1250 m is 2.5 Sv (1 Sv=106 m3/s), with a transport-weighted mean temperature of 3.2 °C. This result considerably increases existing estimates of the inflow of the ITF into the Indonesian seas by about 25% and lowers the total mean inflow temperature of the ITF to below 13 °C. At shallower levels, between 1250 m and the sea surface, the flow is directed towards the Maluku Sea, north of the passage. The typical residual velocities in this layer are low (~3 cm/s), contributing to an estimated northward flow of 0.9–1.3 Sv. When more results from the INSTANT programme for the other Indonesian passages become available, a strongly improved estimate of the mass and heat budget of the ITF becomes feasible.  相似文献   

10.
Seven years (2001–2008) of dissolved organic carbon (DOC) vertical profiles were examined in order to assess the main processes determining DOC concentration and distribution in the meso- and bathypelagic layers of the Mediterranean Sea. As expected, DOC showed high and highly variable concentrations in the surface layer of 57–68 μM (average values between 0 and 100 m), with a decrease to 44–53 μM between 200 and 500 m. Deep DOC distribution was strongly affected by deep-water formation, with a significant increase to values of 76 μM in recently ventilated deep waters, and low concentrations, comparable to those observed in the open oceanic waters (34–45 μM), where the oldest, deep waters occurred. In winter 2004/2005 a deep-water formation event was observed and the consequent DOC export at depth was estimated to range between 0.76–3.02 Tg C month–1. In the intermediate layer, the main path of the Levantine Intermediate Water (LIW) was followed in order to estimate the DOC consumption rate in its core. Multiple regression between DOC, apparent oxygen utilization (AOU), and salinity indicated that 38% of the oxygen consumption was related to DOC mineralization when the effect of mixing was removed. In deep waters of the southern Adriatic Sea a DOC decrease of 6 μM, together with an AOU increase of 9 μM, was observed between the end of January 2008 and the end of June 2008 (5 months). These data indicate a rate of microbial utilization of DOC of about 1.2 μM C month−1, with 92% of the oxygen consumption due to DOC mineralization. These values are surprisingly high for the deep sea and represent a peculiarity of the Mediterranean Sea.  相似文献   

11.
Sea-ice and water samples were collected at 14 stations on the shelves and slope regions of the Chukchi and Beaufort Seas during the spring 2002 expedition as part of the Shelf–Basin Interaction Studies. Algal pigment content, particulate organic carbon and nitrogen, and primary productivity were estimated for both habitats based on ice cores, brine collection and water samples from 5-m depth. The pigment content (0.2–304.3 mg pigments m−2) and primary productivity (0.1–23.0 mg C m−3 h−1) of the sea-ice algae significantly exceeded water-column parameters (0.2 and 1.0 mg pigments m−3; <0.1–0.4 mg C m−3 h−1), making sea ice the habitat with the highest food availability for herbivores in early spring in the Chukchi and Beaufort Seas. Stable isotope signatures for ice and water samples did not differ significantly for δ15N, but for δ13C (ice: −25.1‰ to −14.2‰; water: −26.1‰ to −22.4‰). The analysis of nutrient concentrations and the pulse-amplitude-modulated fluorescence signal of ice algae and phytoplankton indicate that nutrients were the prime limiting factor for sea-ice algal productivity. The estimated spring primary production of about 1–2 g C m−2 of sea-ice algae on the shelves requires the use of substantial nutrient reservoirs from the water column.  相似文献   

12.
Since 2000 long-term measurements of vertical particle flux have been performed with moored sediment traps at the long-term observatory HAUSGARTEN in the eastern Fram Strait (79°N/4°E). The study area, which is seasonally covered with ice, is located in the confluence zone of the northward flowing warm saline Atlantic water with cold, low salinity water masses of Arctic origin. Current projections suggest that this area is particularly vulnerable to global warming. Total matter fluxes and components thereof (carbonate, particulate organic carbon and nitrogen, biogenic silica, biomarkers) revealed a bimodal seasonal pattern showing elevated sedimentation rates during May/June and August/September. Annual total matter flux (dry weight, DW) at ~300 m depth varied between 13 and 32 g m?2 a?1 during 2000 and 2005. Of this total flux 6–13% was due to CaCO3, 4–21% to refractory particulate organic carbon (POC), and 3–8% to biogenic particulate silica (bPSi). The annual flux of all biogenic components together was almost constant during the period studied (8.5–8.8 g m?2 a?1), although this varied from 27% to 67% of the total annual flux. The fraction was lowest in a year characterized by the longest duration of ice coverage (91 and 70 days for the calendar year and summer season, May–September, respectively). Biomarker analyses revealed that organic matter originating from marine sources was present in excess of terrigenious material in the sedimented matter throughout most of the study period. Fluxes of recognizable phyto- and protozooplankton cells amounted up to 60×106 m?2 d?1. Diatoms and coccolithophorids were the most abundant organisms. Diatoms, mainly pennate species, dominated during the first years of the investigation. A shift in the composition occurred during the last year when numbers of diatoms declined considerably, leading to a dominance of coccolithoporids. This was also reflected in a decrease in the sedimentation of bPSi. The sedimentation of biogenic matter, however, did not differ from the amount observed during the previous years. Among the larger organisms, pteropods at times contributed significantly to both the total matter and CaCO3, fluxes.  相似文献   

13.
Data collected on a cruise in January 2008, using a laser optical plankton counter, conductivity–temperature–depth sensors, and a lowered acoustic Doppler current profiler, was used to study the mesoscale distribution and advection of overwintering Calanus finmarchicus in its deep water winter habitat off the shelf of northern Norway. The overwintering animals were generally located immediately below the Atlantic Water (AW) in Arctic Intermediate Water (AIW), in the 600–1200 m depth range. The depth of the interface between AW and AIW varied considerably in the area and this was clearly reflected in the C. finmarchicus distribution. Maximum abundance varied from about 80 ind m?3 to more than 200 ind m?3 at the different stations. Current measurements showed the richness of mesoscazle eddies, with speeds exceeding 70 cm s?1 at the surface and rapidly decreasing with depth. In the main overwintering layer the eddy features were also clearly seen, but with speeds generally below 20 cm s?1. C. finmarchicus were found in the whole survey area, but they were not homogeneously distributed. Advection of the copepods resulted in relatively high local rates of change in overwintering C. finmarchicus abundance with mean value of 8% per day in the area. It is clear that mesoscale physical processes greatly contribute to the variability in the abundance of overwintering C. finmarchicus off the shelf of northern Norway. The collected data are also a valuable addition to the generally sparse datasets on the C. finmarchicus winter distribution and the role of the Lofoten basin in the large scale system is also discussed.  相似文献   

14.
The West Spitsbergen Current, flowing northward through Fram Strait, causes a benthic nepheloid layer (BNL) on the western slope of the Yermak Plateau. This BNL is weaker on the eastern side of the Plateau and absent on the Greenland side of the Fram Strait, where the East Greenland Current flows south. In this BNL we find throughout a depletion of 234Th relative to its parent 238U, and we use this to study the particle dynamics in the BNL. The export flux from the ice-covered surface ocean and from a young bloom found in the ice-free waters off NE Greenland is shown to be negligible, allowing us to explain the 234Th depletion by interaction with the sediment alone. The depletion, balanced by a similar excess in the surface layer of the sediment, implies the existence of a settling-resuspension loop with an average particle residence time of 1–2 months. The asymmetry with a stronger resuspension loop on the western (80–120 mg m−2 d−1) than on the eastern side of the Yermak Plateau (1–15 mg m−2 d−1) is reflected in the numbers of species and individuals of suspension feeders in box core samples, and in epifauna densities estimated from video observations. The suspension feeders thus contribute to deposition of particles that are advected from more productive ice-free regions. This explanation is in agreement with the east–west asymmetry in the input of organic material to the sediments of the Yermak Plateau, which has been concluded from the distribution of pigments, bacterial activity and meiofauna abundances, observed in a concurrent study at the same stations. On the West Spitsbergen shelf, a very intensive BNL was monitored over 1 month with a moored filtration system. A part of the sustained high suspended load may be advected over long distances. This study illustrates how the tracer 234Th can help to determine the extent to which suspended particles are in continuous exchange with the seafloor, and where biological mediation and chemical modification can be expected.  相似文献   

15.
We have hypothesized that the weekly/biweekly passage of winter storms in the subtropical open ocean destabilizes the water column leading to pulsed NO3? inputs, resulting in new production that is not accounted for in most annual estimates. This paper presents data on nitrogen and carbon cycling in the Sargasso Sea at approximately daily resolution, during the period prior to seasonal stratification in 2004 and 2005; these data permit us to assess the importance of winter storms for introducing NO3? and the contribution of these inputs to annual new and export production. The two sampling years were in stark contrast to each other with 2004 characterized by periods of relative calm between winter storms, and 2005 characterized by nearly continuous storm activity. As a result, temporal variability in mixed layer depth (MLD) and euphotic zone [NO3?] were very different between years. MLDs in 2004 increased to >150 m in response to the passage of storms and then rapidly shoaled to <100 m leading to the pulsed injection of NO3? (~100 nmol l?1) into the lower half of the euphotic zone, while in 2005 MLDs were consistently >300 m and euphotic zone [NO3?]>100 nmol l?1. Despite the very different [NO3?], rates of daily NO3? uptake were similar from year to year because of significant nocturnal uptake in 2004. Similar rates of new production did not translate into similar rates of particulate nitrogen and carbon export however, as observed export from the upper 200 m was 2–5-fold greater in 2004 than in 2005. Furthermore, the decrease of particulate nitrogen and carbon flux with depth between 200 and 400 m in 2004 was substantially lower than in 2005; this is consistent with the observed biological response in which diatoms and coccolithophores exhibited rapid growth following pulsed NO3? inputs in 2004. A combination of data from the Bermuda Testbed Mooring, which provides a longer temporal record than the cruise, and the observations presented in this study show that in the winter of 2004, there were 8–10 storm events that likely resulted in pulsed NO3? inputs. Summed over all the events, new production prior to seasonal stratification was estimated to be ~0.12–0.18 mol N m?2 or ~14–21% of current annual estimates.  相似文献   

16.
Organic carbon fluxes through the sediment/water interface in the high-latitude North Atlantic were calculated from oxygen microprofiles. A wire-operated in situ oxygen bottom profiler was deployed, and oxygen profiles were also measured onboard (ex situ). Diffusive oxygen fluxes, obtained by fitting exponential functions to the oxygen profiles, were translated into organic carbon fluxes and organic carbon degradation rates. The mean Corg input to the abyssal plain sediments of the Norwegian and Greenland Seas was found to be 1.9 mg C m−2 d−1. Typical values at the seasonally ice-covered East Greenland continental margin are between 1.3 and 10.9 mg C m−2 d−1 (mean 3.7 mg C m−2 d−1), whereas fluxes on the East Greenland shelf are considerably higher, 9.1–22.5 mg C m−2 d−1. On the Norwegian continental slope Corg fluxes of 3.3–13.9 mg C m−2 d−1 (mean 6.5 mg C m−2 d−1) were found. Fluxes are considerably higher here compared to stations on the East Greenland slope at similar water depths. By repeated occupation of three sites off southern Norway in 1997 the temporal variability of diffusive O2 fluxes was found to be quite low. The seasonal signal of primary and export production from the upper water column appears to be strongly damped at the seafloor. Degradation rates of 0.004–1.1 mg C cm−3 a−1 at the sediment surface were calculated from the oxygen profiles. First-order degradation constants, obtained from Corg degradation rates and sediment organic carbon content, are in the range 0.03–0.6 a−1. Thus, the corresponding mean lifetime of organic carbon lies between 1.7 and 33.2 years, which also suggests that seasonal variations in Corg flux are small. The data presented here characterize the Norwegian and Greenland Seas as oligotrophic and relatively low organic carbon deep-sea environments.  相似文献   

17.
Vertical changes in abundance, biomass and community structure of copepods down to 3000 m depth were studied at a single station of the Aleutian Basin of the Bering Sea (53°28′N, 177°00′W, depth 3779 m) on the 14th June 2006. Both abundance and biomass of copepods were greatest near the surface layer and decreased with increase in depth. Abundance and biomass of copepods integrated over 0–3000 m were 1,390,000 inds. m?2 and 5056 mg C m?2, respectively. Copepod carcasses occurred throughout the layer, and the carcass:living specimen ratio was the greatest in the oxygen minimum layer (750–100 m, the ratio was 2.3). A total of 72 calanoid copepod species belonging to 34 genera and 15 families occurred in the 0–3000 m water column (Cyclopoida, Harpacticoida and Poecilostomatoida were not identified to species level). Cluster analysis separated calanoid copepod communities into 5 groups (A–E). Each group was separated by depth, and the depth range of each group was at 0–75 m (A), 75–500 m (B), 500–750 m (C), 750–1500 m (D) and 1500–3000 m (E). Copepods were divided into four types based on the feeding pattern: suspension feeders, suspension feeders in diapause, detritivores and carnivores. In terms of abundance the most dominant group was suspension feeders (mainly Cyclopoida) in the epipelagic zone, and detritivores (mainly Poecilostomatoida) were dominant in the meso- and bathypelagic zones. In terms of biomass, suspension feeders in diapause (calanoid copepods Neocalanus spp. and Eucalanus bungii) were the major component (ca. 10–45%), especially in the 250–3000 m depth. These results are compared with the previous studies in the same region and that down to greater depths in the worldwide oceans.  相似文献   

18.
A combination of 2-year-long mooring-based measurements and snapshot conductivity–temperature–depth (CTD) observations at the continental slope off Spitsbergen (81°30′N, 31°00′E) is used to demonstrate a significant hydrographic seasonal signal in Atlantic Water (AW) that propagates along the Eurasian continental slope in the Arctic Ocean. At the mooring position this seasonal signal dominates, contributing up to 50% of the total variance. Annual temperature maximum in the upper ocean (above 215 m) is reached in mid-November, when the ocean in the area is normally covered by ice. Distinct division into ‘summer’ (warmer and saltier) and ‘winter’ (colder and fresher) AW types is revealed there. Estimated temperature difference between the ‘summer’ and ‘winter’ waters is 1.2 °C, which implies that the range of seasonal heat content variations is of the same order of magnitude as the mean local AW heat content, suggesting an important role of seasonal changes in the intensity of the upward heat flux from AW. Although the current meter observations are only 1-year long, they hint at a persistent, highly barotropic current with little or no seasonal signal attached.  相似文献   

19.
A quantitative study of metazoan meiofauna was carried out on bathyal sediments (305, 562, 830 and 1210 m) along a transect within and beneath the oxygen minimum zone (OMZ) in the southeastern Pacific off Callao, Peru (12°S). Meiobenthos densities ranged from 1517 (upper slope, middle of OMZ) to 440–548 ind. 10 cm−2 (lower slope stations, beneath the OMZ). Nematodes were the numerically dominant meiofaunal taxon at every station, followed by copepods and nauplii. Increasing bottom-water oxygen concentration and decreasing organic matter availability downslope were correlated with observed changes in meiofaunal abundance. The 300-m site, located in the middle of the OMZ, differed significantly in meiofaunal abundance, dominance, and in vertical distribution pattern from the deeper sites. At 305 m, nematodes amounted to over 99% of total meiofauna; about 70% of nematodes were found in the 2–5 cm interval. At the deeper sites, about 50% were restricted to the top 1 cm. The importance of copepods and nauplii increased consistently with depth, reaching ∼12% of the total meiofauna at the deepest site. The observation of high nematode abundances at oxygen concentrations <0.02 ml l−1 supports the hypothesis that densities are enhanced by an indirect positive effect of low oxygen involving (a) reduction of predators and competitors and (b) preservation of organic matter leading to high food availability and quality. Food input and quality, represented here by chloroplastic pigment equivalents (CPE) and sedimentary labile organic compounds (protein, carbohydrates and lipids), were strongly, positively correlated with nematode abundance. By way of contrast, oxygen exhibited a strong negative correlation, overriding food availability, with abundance of other meiofauna such as copepods and nauplii. These taxa were absent at the 300-m site. The high correlation of labile organic matter (C-LOM, sum of carbon contents in lipids, proteins and carbohydrates) with CPE (Pearson's r=0.99, p<0.01) suggests that most of the sedimentary organic material sampled was of phytodetrital origin. The fraction of sediment organic carbon potentially available to benthic heterotrophs, measured as C-LOM/Total organic carbon, was on average 17% at all stations. Thus, a residual, refractory fraction, constitutes the major portion of organic matter at the studied bathyal sites.  相似文献   

20.
In this paper, we investigate the ecology of live (rose Bengal stained) benthic foraminifera collected at 20 stations ranging from 15 to 100 m depth in the Rhône prodelta (Gulf of Lions, NW Mediterranean). These sites were sampled in September 2006, five months after the Rhône River annual flood. Statistical analyses based on foraminiferal communities (> 150 μm) divide our study area into six main biofacies directly related to environmental conditions. Miliolid species are abundant in the relict prodeltaic lobe which is characterised by sand with low organic matter content. Close to the river mouth, the limited oxygen penetration in the sediment combined with important hydro-sedimentary processes constitute stressful conditions for foraminiferal faunas dominated by opportunistic species (e.g. Leptohalysis scottii). With increasing distance from the river mouth, foraminiferal faunas (e.g. Nonionella turgida, Eggerella scabra) adapted to thrive in sediments enriched in Rhône-derived organic matter under more stable hydro-sedimentary conditions appear. In the distal part of the Rhône River influence, benthic species (e.g. Valvulineria bradyana, Textularia agglutinans) living in fine sediment enriched in both continental and marine organic compounds emerge. At the deepest stations located in the south-eastern part of our study area, benthic foraminiferal faunas (e.g. Bulimina aculeata, Melonis barleeanus, Bigenerina nodosaria) are highly diverse, underlining stable environmental conditions characterised by marine-derived organic matter supplies and relatively deep oxygen penetration depth in the sediment. We also compare foraminiferal faunas sampled in September 2006 with communities sampled in June 2005, one month after the Rhône River annual flood (Mojtahid et al., 2009). This comparison suggests that opportunistic species (e.g. B. aculeata, Cassidulina carinata, V. bradyana) have responded to organic matter inputs related to marine primary production in June 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号